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Theoretical calculation of the phase behavior of colloidal membranes
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We formulate a density functional theory that describes the phase behavior of hard rods and depleting polymers,
as realized in recent experiments on suspensions of fd virus and nonadsorbing polymer. The theory predicts the
relative stability of nematic droplets, stacked smectic columns, and a recently discovered phase of isolated
monolayers of rods, or colloidal membranes. We find that a minimum rod aspect ratio is required for stability of
colloidal membranes and that collective protrusion undulations are the dominant effect that stabilizes this phase.
The theoretical predictions are shown to be qualitatively consistent with experimental and computational results.
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I. INTRODUCTION

The relationship between intermolecular interactions and
structure is fundamental to statistical mechanics and mate-
rials science. Hard particles, which interact solely by steep
repulsive potentials that prohibit overlap, have served as
essential model systems for understanding this relationship.
Studies of hard spheres elucidated the structure of liquids
[1] and three-dimensional (3D) crystalline phases [2,3] and
investigations of hard rods demonstrated the existence of
3D nematic and smectic phases [4–6]. Since all accessible
hard particle configurations have no interparticle interaction
energy, these results showed that entropy alone can drive the
self-assembly of structures with long-range order. While the
phase diagram of purely repulsive hard rods is well known
[6], adding nonadsorbing polymers introduces attractive in-
teractions between rods through the depletion effect, which
leads to myriad novel equilibrium phases and metastable
morphologies that are poorly understood [7–10]. Of particular
interest from a structural perspective, recent experiments on
suspensions of monodisperse rodlike colloidal viruses and
the nonadsorbing polymer Dextran demonstrated assembly
of “colloidal membranes” comprised of a one rod-length-
thick monolayer of colloidal rods [11]. This observation has
fundamental and practical significance. Unlike other examples
of entropy-driven assembly which lead to long-range order in
three dimensions, the colloidal membranes are self-limited
to the thickness of a single rod in one dimension and
thus are two-dimensional (2D) structures. From a practical
perspective, equilibrium colloidal membranes could enable
manufacture of inexpensive and easily scalable optoelectronic
devices [12].

Previous approaches toward assembly of colloidal mem-
branes employed chemically heterogeneous rods that mimic
the amphiphilic nature of lipids which comprise biological
membranes [13]. In contrast, the fd molecules involved in as-
sembly of colloidal membranes are structurally homogeneous,
suggesting that geometry as well as chemical heterogeneity
can be used to design molecules that assemble into partic-
ular structures. Doing so, however, requires a fundamental
understanding of the forces that conspire to limit assembly
and the relationship between molecular design parameters and
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equilibrium structures. In this paper, we therefore construct
a theoretical description of colloidal rods in the presence
of depletant molecules. The theory is built on insights from
recent experiments on suspensions of fd virus in Dextran [11]
and simulations of hard spherocylinders in depletant [14].
We derive a density functional theory for a system of hard
cylinders and depletant. In particular, we use an equation
of state for hard disks in two dimensions to calculate the
equilibrium areal density of rods within the membrane, apply
free volume theory [15] to calculate the volume that the
membrane excludes to polymers, and use a virial expansion to
calculate rod-rod interactions between nearby membranes. The
calculations yield predictions for the relationships between
osmotic pressure, rod aspect ratio, membrane properties, and
phase behavior. These expressions are derived under the
simplifying assumption that rod orientations are parallel to
a fixed axis, and are extensively compared to computational
and experimental results. We find that the theory successfully
describes the interplay between configurational entropy of rods
within membranes, depletion interactions, and the resulting
phase behavior of colloidal rods in depletant. We demonstrate
that the dominant effect which stabilizes isolated membranes
arises from the entropic penalty associated with suppres-
sion of protrusion fluctuations of rods within membranes
when the membranes stack. While this effect was originally
modeled [11] based on a theory describing protrusions of
individual rods [16], we find that repulsions are driven
primarily by collective protrusion undulations, consistent with
simulations [14].

This paper is organized as follows. We first review the
experiments and simulations on hard rods in the presence
of depletant molecules in Sec. II. We construct a simplified
theoretical model for hard rods in depleting polymers and
associated free energy as a functional of the rod density
distribution in Sec. III. We then use the theory to predict the
optimal density distributions of rods and hence the system
phase behavior in Sec. IV. Under conditions for which
membranes are stable, we analyze the distribution of rods
within an isolated membrane. We then examine how this
distribution changes as two membranes approach each other
along the membrane normals, and thereby evaluate the cou-
pling between attractive depletion interactions and repulsive
protrusion interactions as a function of membrane separation.
Finally, predictions for protrusion distributions in isolated and
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interacting membranes, the total interaction potential between
membranes, and the system phase behavior are compared to
results of molecular simulations of a rod-depletant suspen-
sion [14]. We find that agreement between the theory and
simulations is quantitative for the nematic-colloidal membrane
coexistence osmotic pressure and qualitative for the osmotic
pressure at which colloidal membranes and smecticlike stacks
coexist.

II. PREVIOUS EXPERIMENTAL STUDIES OF
COLLOIDAL MEMBRANES

We first review recent experiments on suspensions of
monodisperse rodlike colloidal viruses and the nonadsorbing
polymer Dextran [11], which motivate our theory. fd viruses
alone approximate the behavior of homogenous rods interact-
ing with repulsive hard-core interactions [17]. The polymer
induces an entropy-driven attractive (depletion) potential
between the rods, the strength and range of which can be
tuned by changing the polymer concentration and radius of
gyration, respectively [7]. At high polymer concentrations
(attraction strength) dilute viruses condense into smecticlike
stacks of quasi-two-dimensional membranes [18]. Below a
threshold polymer concentration, individual 2D monolayers
(membranes) within a smectic filament unbind, indicating that
the membrane-membrane interaction switches from attractive
to repulsive [11]. The monolayer membranes are stable over
months or longer and can be many millimeters in diameter. As
the polymer concentration is decreased further past a second
threshold, membranes become unstable to nematic liquid crys-
talline droplets or tactoids [9]. While the properties of tactoids
and configurations of rods within them have been explored
with theory and computation (e.g., [19–34]), and the formation
of lamella or chains of spheres in a nematic background of
rods has been studied extensively (e.g., [8,35–49]), theoretical
models of quasi-two-dimensional colloidal membranes are
lacking.

Although experiments conclusively demonstrated the ex-
istence of colloidal membranes, the molecular mechanisms
that control their stability remained unclear. The depletion
interaction that drives lateral association of rods also generates
an attractive interaction between vertically adjacent mem-
branes. For isolated membranes to be stable against stacking,
there must be a repulsive interaction that overwhelms the
depletion interaction. Experiments on colloidal membranes
containing a low volume fraction of fluorescently labeled
rods revealed significant protrusions of rods from isolated
membranes, the magnitude of which could be tuned by
changing the concentration of nonadsorbing polymer. In
comparison, these protrusion fluctuations were suppressed
in stacked membranes [11]. Based on that observation, a
model was proposed in which the entropy penalty associated
with suppressing protrusion fluctuations of individual rods
[16] leads to repulsive interactions membrane-membrane
interactions under moderate osmotic pressure. However, other
plausible factors could also lead to the observation of isolated
membranes, including attractive interactions between virus
tips and depletant, repulsions due to bending (Helfrich) modes,
or kinetic trapping of metastable membrane intermediates.
In Ref. [14] we used computer simulations (described in

Appendix A) to show that collective protrusion effects alone
are sufficient to produce qualitative agreement with the exper-
imental observations. The simulations predicted that there is
a minimum aspect ratio below which colloidal membranes
are never stable; this prediction was confirmed by further
experiments [14]. Here we develop a theory with which we
explore the origins of the stabilization of colloidal membranes
in greater detail.

III. THEORETICAL MODEL

In this section we use insights obtained from our previous
simulations of colloidal membranes [14] to derive a tractable
theoretical model for colloidal membranes. Because the
simulations suggest that large rod aspect ratios are essential
for the existence of stable membranes, we cannot model
colloidal membranes by directly applying previous theoretical
approaches used for studying bulk phases of rod-polymer or
rod-sphere mixtures [49–53].

Following the simulation model [14], we consider hard rods
and polymers that can freely interpenetrate other polymers
but act as hard particles when interacting with rods [7]. For
simplicity, rods are represented as cylinders with diameter σ

and length L, and polymers are represented as short cylinders
with diameter δ and height h = 2

3δ. The parameter h is defined
such that a polymer cylinder has the same volume as a sphere
of diameter δ (the traditional theoretical representation of
a depletant). Cylinders can interpenetrate one another but
experience hard-core interactions with rods.

We focus on conditions relevant to the experiments, where
rods have large aspect ratios and are immiscible with polymers
[11]. We showed previously [14] that under these conditions
membrane bending modes, which involve deviations of rod
orientations from the membrane normal [54], are high energy
in comparison to protrusions of rods from the membrane
surface [55] on length scales that control membrane-membrane
stacking. Bending modes can thus can be neglected when
evaluating phase behavior, and we simplify our calculation by
constraining rod orientations to be parallel to a fixed direction
(the ẑ axis).

We use the density of rods with center of mass at position
�r , ρ(�r), to describe system configurations. To investigate
macroscopic membranes we consider periodic boundary con-
ditions in the xy plane and assume that the density depends
only on z, ρ(�r) = ρ(z). The latter simplification follows from
constraining rod orientations parallel to ẑ. Then a peak in
ρ(z) corresponds to a membrane which is macroscopic in two
dimensions (e.g., Fig. 2 below). The width of the peak reflects
the size of the membrane in the z direction and thus the extent
of the protrusion distribution.

Free volume theory for the free energy. We describe rod-
rod interactions with a third order virial expansion and rod-
polymer interactions with the free volume approach presented
in Ref. [15], adapted to describe the 2D cross sections of
membranes. The results are close to those of a complete third
order virial expansion, which is lengthy and is not presented
here.

In the free volume theory [15], for a particular rod density
distribution ρ(z) the free energy per unit area, ftot, can be
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written as

Sxyβftot =
∫

d1ρ(1)[ln ρ(1)λ3 − 1]

−1

2

∫
d1d2ρ(1)ρ(2)f (1,2)

−1

6

∫
d1d2d3ρ(1)ρ(2)ρ(3)f (1,2)f (1,3)f (2,3)

+Sxyβps

∫
dz[1 − α(z)], (1)

where Sxy ≡ ∫
dx dy is the total area of the membrane, bold

numbers are the spatial coordinates, and f (1,2) is the Mayer
function between rods. In Eq. (1), the first term is the ideal
gas free energy and the following two terms are, respectively,
the second and third order virial terms for rod-rod interactions.
The second virial term represents the pairwise mutual excluded
volume interaction between a rod and its neighbors, and the
third virial term accounts for the mutual exclusion among
three rods. In the numerical minimization of free energy of
multimembranes described below, we found that a free energy
expression with only the second order virial term often leads
to merging of membranes and unphysically high rod densities,
thus the three body effects in the third order virial term are
necessary for physical results. This is to be expected, since a
second order virial expansion is inaccurate for parallel rods [4].

The last term in Eq. (1) is the free energy due to the volume
that rods exclude to spheres. The variable α(z) describes the
free area available to polymers at position z, and depends
on rod densities at any center of mass position from which
rods can overlap. Specifically, the total density of rods that
could overlap with a cylinder of height h at z is ρ∗(z) =∫ z+L/2+h/2
z−L/2−h/2 dz ρ(z). If we assume that the xy distribution of

rods is not perturbed by polymer, then the fraction of free area
α(z) can be calculated from ρ∗(z), using the result of scaled
particle theory for two dimensions [59],

α(z) = (1 − φ) exp(−2γ η − γ η2 − γ 2η2), (2)

with φ ≡ πσ 2ρ∗(z)/4, γ ≡ φ/(1 − φ), and η ≡ δ/σ . Finally
the excluded volume per unit area for the whole membrane
is

∫
dz[1 − α(z)]. By using the scaled particle theory, the

effects of overlapping excluded volumes of protruding rods are
considered approximately, and hence the rod-rod correlations
are partially included. As mentioned above, this approximation
is equivalent to a third order virial expansion of rod-polymer
interactions.

Note that the integration over the z coordinate should be
restricted to a finite region to avoid divergence, since there
is always an arbitrarily low but finite concentration of rods
in the solution, and we will do so in the following numerical
calculations.

Since the rod density depends only on z, integration over
the x and y directions can be carried out analytically to give
the final form for the free energy as

βftot =
∫

dz ρ(z)[ln ρ(z) − 1]

+1

2
A

∫
dz1 ρ(z1)[ρ†(z1 + L/2) + ρ†(z1 − L/2)]

 0.6

 0.8

 1

 0.04  0.08  0.12  0.16

ρ 2
d

ps

FIG. 1. Surface density of rods in isolated membranes. Symbols
are the results of simulations (Appendix A). Lines are predictions
calculated from the equation of state for a two-dimensional hard disk
system [56] as described in the text. The rod lengths, from top to
bottom, are L = 175, 150, 125, 100, 75, and 50. The diameter of
a polymer sphere in the simulations is δ = 1.5 and thus a diameter
h = 1 is used for the theoretical cylinders. The dashed line indicates
the freezing density of a hard disk system, ρ = 0.88 [57,58].

+1

3
B

∫
dz1 ρ(z1)

∫ z1

z1−L

dz2 ρ(z2)ρ†(z2 + L/2)

+1

6
B

∫
dz1 ρ(z1)[ρ†(z1 + L/2)]2

+βps

∫
dz[1 − α(z)] (3)

with A = πσ 2, B = σ 4(π2 − 3
√

3
4 π ), and the cumulative

density defined as

ρ†(z) ≡
∫ z+L/2

z−L/2
dz ρ(z). (4)

The details of the calculation are provided in Appendix C.
The equilibrium rod distribution can be acquired by

minimizing ftot with respect to ρ(z). We will see that Eq. (3)
can qualitatively describe features of the phase behavior and
membrane-membrane interactions. However, it does not give
an accurate prediction of the areal density of rods within the
membrane, ρ2d. This limitation is to be expected, since areal
densities are high and membranes are even crystallized at high
osmotic pressures according to the simulations. To overcome
this limitation, we independently relate ρ2d to the osmotic
pressure ps, the rod length L, and the polymer size h using the
equation of state for 2D hard disks [56], modified to account
for the extent of the rods in the z direction. The adaptation of
the equation of state to rods within the membrane is described
in Appendix B. The equation of state relating ρ2d to a 2D
pressure p2d is given in Eqs. (B1)– (B4) and the 2D pressure
is given by p2d ≈ (L + h)ps. The predicted areal densities are
compared to simulation results in Fig. 1.

The equation of state value of the areal density is used as a
constraint when minimizing the free energy,

0 = C ≡
∫

dz ρ(z) − mρ2d(L,h,ps). (5)

Here the quantity m is an integer which corresponds to the
number of membranes that will form if the nematic phase
is unstable to formation of isolated or stacked membranes.
Specifically, the total number of rods in the system Ntot is
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given by Ntot = mρ2dSxy with Sxy the area in the xy plane. In
the simulations reported here, m = 1 or 2, but the calculation
works for any integer value of m.

Minimizing ftot thus requires

0 = δβftot

δρ(z)
− ζ

δC

δρ(z)
, (6)

with ζ a Lagrange multiplier. Substituting Eqs. (3) and (5)
into Eq. (6) then results in an integral equation for the rod
distribution

ρ(z) = exp(−ζ ) exp

(
βps

∫
dz1

∂α(z1)

∂ρ(z)

)
× exp[−A(ρ†(z + L/2) + ρ†(z − L/2)]

× exp[−B

∫ z

z−L

dz1 ρ(z1)ρ†(z1 + L/2)]

× exp

{
−1

2
B[ρ†(z + L/2)]2

}
. (7)

The detailed derivation of Eq. (7) is given Appendix D. Equa-
tion (7) along with Eq. (5) can be solved numerically to obtain
the equilibrium rod distribution ρ(z) for a specified value
of m.

IV. THEORY RESULTS

In this section we analyze the behavior predicted by
Eqs. (7) and (5). Our results are reported with the fol-
lowing units: the rod diameter σ is the unit of length,
kBT is the unit of energy, and kBT σ−n is the unit of
n-dimensional pressure (n = 2 or 3). For low and moderate
osmotic pressures ps, we will see that stacks of membranes
are thermodynamically unstable; either isolated membranes
or nematic configurations (with no membranes) are thermo-
dynamically stable. Under these conditions one can set the
number of membranes in Eq. (5) to m = 1 without loss of
generality [60].

A. Nematic-isolated membrane
phase boundary

For low ps, a flat distribution ρ(z) = constant is the unique
solution to Eq. (7), indicating that the nematic state is the
thermodynamic equilibrium. (Note that we cannot consider the
isotropic to nematic transition, which would occur at lower ps,
because we have assumed that rods are parallel to the z axis.)
As ps increases past a threshold value a stable inhomogeneous
solution also appears, with a peak in ρ(z) that corresponds to
the center of a membrane (Fig. 2). This solution corresponds
to an isolated colloidal membrane. The free energies of the
two solutions are compared to determine the equilibrium
state.

The phase behavior is shown as a function of osmotic pres-
sure ps, aspect ratio L, and depletant size δ in Fig. 3, where we
see that the predicted coexistence curves for the nematic phase
and isolated membranes show remarkable agreement with
simulation results. As the osmotic pressure increases across
the spinodal, only the inhomogeneous solution (corresponding
to an isolated membrane) remains stable.

10-5

10-4

10-3

10-2

10-1

-30 -20 -10  0  10  20  30

ρ(
z)

z

FIG. 2. Protrusion distribution in a single membrane. z is the
displacement of rods from the center of the membrane. Curves are
for δ = 1.5, L = 100, and ps = 0.06 (outer lines) or 0.12 (inner
lines). The dashed lines are the distributions predicted by Eq. (7), the
solid lines are simulation results, and the dotted lines show the scaling
expected from an analysis based on independent rod protrusions [16]:
ρ(z) ∼ exp(−psAz), with A = π (σ + δ)2/4.

Protrusion distribution. We can further investigate the abil-
ity of the theoretical model to describe colloidal membranes
by comparing theoretical predictions for the distribution of
rods within membranes to those measured from simulations
and a mean field estimate [16]. In the latter approach the
protrusion of a single rod from a membrane exposed to
depletant osmotic pressure ps incurs a free energy frod =
psAz, with A the cross-sectional area of the rod and z

the protrusion distance. For uncorrelated protrusion sites the
distribution of protrusions obeys an exponential distribution
pprot(z) ∼ exp(−psAz/kBT ), with pprot(z) the density of rods
with ends located a distance z above the mean surface of
the membrane. Examples of the numerical solutions for ρ(z)
are compared to rod distributions measured in simulations of
isolated membranes and the mean field estimate in Fig. 2.
We see that Eq. (7) correctly reproduces the exponential
distribution at large |z| (predicted by the mean field estimate)
and the broadening of the distribution at small |z|. The theory is
more accurate than the simple mean field estimate [16] in this
context because the free area accounts for rod-rod correlations
induced by the overlapping excluded volumes of protruding
neighbors.

Although the agreement between theory and simulations
is good, the predicted distributions are narrower then the
simulation results. We also used the third order virial expansion
(instead of the free volume approach) to calculate the rod-
polymer interaction, and obtained similar results. The fact that
the theory predicts a narrower rod distribution reflects the fact
that rod-rod correlations are not completely accounted for by
either the free volume or third order virial expansion calcu-
lations. The quantitative accuracy likely could be improved
by going to fourth order in the virial expansion, since graphs
involving polymers (cylinders) that are in the excluded volume
regions of two neighboring but nonoverlapping rods appear at
this order. We also note though that collective protrusions
introduce long wavelength modes to the membrane, as shown
by the height-height correlation spectrum (flicker spectrum)
in Fig. 7 of Ref. [14]. One can potentially account for these
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FIG. 3. (Color online) (a),(b) Theoretical phase diagrams as a function of osmotic pressure ps and (a) varying aspect ratio L for depletant
size δ = 1.5 and (b) varying δ for L = 100. The theoretical phase boundaries, calculated as described in the text, are shown as dashed lines. The
depletant size is δ = 1.5.(c),(d) Phase behavior predicted by simulations for the same parameters as in (a),(b) respectively. Triangles � denote
denote parameters that lead to nematic configurations, ◦ symbols correspond to isolated membranes, and � symbols correspond to smectic
layers. In (c),(d) the lower solid lines are the theoretical prediction for the nematic-colloidal membrane phase boundary, while the upper solid
lines are fit by eye to the the colloidal membrane-smectic phase boundary. The dashed line in (c) indicates parameter values above which rods
crystallized within simulated colloidal membranes. Simulation data is from Ref. [14].

long wavelength modes using renormalization theory, as in
Ref. [61].

B. Isolated membrane-smectic phase boundary

For osmotic pressures at which membranes are favor-
able, we determine whether isolated colloidal membranes
or smecticlike stacks are the thermodynamic minimum by
evaluating the rod distribution for the case of two membranes
by solving Eq. (7) under the constraint of Eq. (5) with m = 2.
Numerical solution of Eq. (7) at osmotic pressures above
the nematic-isolated phase boundary yields a stable solution
for ρ(z) with two peaks corresponding to two membranes.
The distance between the peaks depends on the osmotic
pressure and closely matches simulation results, as shown
by the configuration for ps = 0.12 and L = 100, for which
smecticlike stacks are thermodynamically favorable, in Fig. 4.
However, there is a finite predicted rod density between the
two membranes, which is likely due to truncating the virial
expansion at third order, and the predicted membrane widths
are narrower than those of the simulation, as discussed above.

Below a certain value of the osmotic pressure, membrane-
membrane interactions switch from attractive to repulsive, as
signified by a switch from adjacent to separated peaks in the
optimal density distribution. However, the exact pressure at
which this occurs is sensitive to numerical error and depends

on the region integrated over (which sets the concentration of
membranes). As noted in Ref. [14] the osmotic pressure at
which smecticlike stacks become stable must depend on the
concentration of membranes, since the membrane-membrane
interaction free energy must be sufficiently attractive to
compensate the reduction in membrane translational entropy
associated with stacking. Therefore, to accurately predict

10-5

10-4

10-3

10-2

10-1

-100 -50  0  50  100

ρ(
z)

z

FIG. 4. Rod density ρ(z) of two attractive membranes. The
dashed line is the prediction of Eq. (7) and the solid line is from
simulations. Note that the two peaks are separated by approximately
the rod length and thus the configuration contains two closely
stacked membranes. The parameter values are δ = 1.5, L = 100,
and ps = 0.12.
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the colloidal membranes-smectic phase coexistence osmotic
pressure, we next use the theoretical model to calculate the
interaction free energy between two membranes.

Membrane-membrane interactions. To calculate the free
energy f (d) as a function of the distance between membrane
centers d we use an approach analogous to umbrella sampling
[18] (this approach is much simpler than performing the
projection by analytical integration). We augment Eq. (6) with
an additional constraint on d,

d

2
=

∫
z>0 dz zρ(z)∫
z>0 dz ρ(z)

= −
∫
z<0 dz zρ(z)∫
z<0 dz ρ(z)

. (8)

Following the umbrella sampling procedure [18], we imple-
ment this constraint as a penalty to the free energy:

βfpenalty = k

(∫
z>0 dz zρ(z)∫
z>0 dz ρ(z)

− d

2

)2

+k

(∫
z<0 dz zρ(z)∫
z<0 dz ρ(z)

+ d

2

)2

, (9)

with k > 0 an adjustable constant. We then numerically min-
imize ftot + fpenalty to obtain the optimal density distribution
ρ(z; d) under the constraint Eq. (8). Finally, the interaction
free energy f (d) is obtained by subtracting the penalty term:
f (d) = ftot[ρ(z; d)]/mρ2d.

Examples of interaction free energies are shown in Fig. 5(a).
If we compare these theoretical predictions to simulation
umbrella sampling results [14] in Fig. 5(b), we see that the
theoretical f (d) curves qualitatively agree with simulation
results, but that the theoretical calculations have shallower
attractive basins. Like the discrepancy between the theoretical
and computational protrusion distributions, this quantitative
difference may be due to the fact that the rod-rod correlations
are not fully accounted for.

Following Ref. [14], smectic layers are thermodynamically
favorable at a finite membrane concentration ρm if the total
free energy of the attractive basin in the membrane-membrane
interaction potential satisfies

F � F0 = kBT ln ρmv0, (10)

-0.02

 0

 0.02
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d-L
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ps=0.16

f(
d)

-f
(∞

)

(a)
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0

0.05
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f(
d)

-f
(∞

)

d-L

ps=0.06

ps=0.12

ps=0.16

(b)

FIG. 5. (a) Theoretical free energy of interacting membranes
predicted by the free energy, Eq. (3), with the constraints, Eqs. (5)
and (8). Curves are for parameters δ = 1.5 and L = 100, with
indicated values of the osmotic pressures ps. (b) Free energy of
interacting membranes from simulations using umbrella sampling
at the same parameters. Data is from Ref. [14].
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FIG. 6. Theoretical calculation of the total free energy of the
attractive basin F , defined by Eq. (10) with M = 104, for rod lengths
L = 40, 75, 100, and 150 (solid lines, from left to right), and δ = 1.5.
The horizontal dashed line is F0, defined by Eq. (11) with ρmv0 =
10−8.

with

exp(−βF ) =
∫

f (s)<0
ds exp[−2βMf (s)], (11)

with M the number of rods in one membrane, and v0 a standard
state volume. We roughly estimate M = 104 and ρmv0 = 10−8

from the experimental conditions; the location of the phase
boundary is not sensitive to the value of ρmv0. Figure 6 shows
the theoretical values for the free energy of attractive basins
F at a number of rod lengths. As expected, F becomes more
favorable as the osmotic pressure ps increases. The theoretical
F curves cross kBT ln ρmv0 near ps ∼ 0.07, which is close to
the simulation results for depletant size δ = 1.5.

As shown in Fig. 3(a), the theoretical isolated-smectic phase
boundary shows reasonable agreement with the simulated
phase boundary for L � 100. Furthermore, both methods
predict a similar threshold value of the aspect ratio, L ≈ 30,
below which the system transitions directly from nematic
configurations to smecticlike stacks of membranes. Similarly,
the predicted variation of the phase boundary with depletant
size shows reasonable agreement with simulation results and
the theory predicts a threshold depletant size above which
colloidal membranes are never stable. This prediction was
confirmed by experiments [14] in which the osmotic pressure
was varied by controlling the concentration of nonadsorbing
polymer and the depletant size was varied by changing polymer
radius of gyration.

Notably, the theory does not reproduce the decrease in
the transition osmotic pressure at large rod lengths seen in
the simulations [compare Figs. 3(a) and 3(c)]. As described
in Ref. [14], this trend results from crystallization of rods
within membranes in the simulations. Under the simulation
conditions, membrane crystallization decreases the interac-
tion free energy due to protrusions and thus lowers the
isolated-smectic coexistence osmotic pressure. In contrast, the
theoretical interaction free energy f (d) assumes a disordered
distribution of rod positions within the plane of the membrane
and thus does not allow for membrane crystallization. It is
worth noting that simulations in which the constraint on
parallel rod orientations was relaxed required larger rod aspect
ratios and/or higher osmotic pressures for crystallization of
rods within membranes. Given that observation and the fact
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that theory and simulation agree for L � 100, we chose not to
extend the theoretical model to allow for crystallization.

V. CONCLUSIONS AND OUTLOOK

In summary, we have presented a theoretical model that
represents hard rods in the presence of depletant molecules
such as nonadsorbing polymer. The free energy is constructed
by using the free volume theory for depletant-rod interactions,
and a third order virial expansion for rod-rod interactions, with
the equation of state for a hard disk system to constrain the areal
rod density. The predicted nematic-membrane phase boundary
shows reasonable agreement with simulation results, and the
predicted isolated-smectic phase boundary qualitatively agrees
with simulation results for rod length L < 100σ . The predicted
phase boundaries establish that there is a critical rod length
L ∼ 30σ , below which isolated colloidal membrane cannot
be formed, for the given depletant size δ = 1.5σ .

The theoretical calculations enable systematic identifica-
tion of the factors that control system phase behavior. In
particular, the theoretical results demonstrate that correlations
between protruding rods significantly enhance protrusion
fluctuations and thereby profoundly affect membrane mor-
phologies and the range of interactions between membranes.
This effect is emphasized by comparison of the theoretically
predicted protrusion distributions with those of a simpler
theory that neglects correlations between neighboring rods.
Evaluation of the theoretical predictions at different orders of
the virial expansion further demonstrate that the terms up to
third order that we have considered are essential for physical
predictions.

Lastly, we consider the approximations made in this work
and how relaxing them might improve accuracy. First, we
neglect rod orientational fluctuations. As shown in previous
work [14] accounting for orientational fluctuations does not
qualitatively affect the locations in phase space of isolated and
stacked membranes, but does lead to quantitative changes and
would enable representation of the isotropic phase. As dis-
cussed earlier, the bending modes which arise in the presence
of orientational fluctuations will make limited contributions
to membrane-membrane repulsions under the experimental
conditions due to the high membrane bending modulus, but
could become more important as the rod length is decreased.
Second, we used a third order virial expansion to describe
membrane-membrane interactions due to rod protrusions.
Truncation at third order is sufficient because the rod density
is relatively low in regions where membranes overlap. Given
the level of agreement between the theory and simulation
results, it appears that including fourth order terms in the
virial expansion would not lead to new qualitative insights
although it could enable more quantitative agreement with the
simulation results below the membrane crystallization point.
Even at this order, we anticipate that augmenting the theory
with the colloidal equation of state [56] will be necessary to
determine areal densities; a virial expansion is not well suited
to describe the high density of rods within a single membrane.
Finally, we consider the limit of rigid rods while fd rods have
a persistence length which is about three times the rod length.
It was shown through scaling arguments in Ref. [14] that
semiflexibility renormalizes the interactions between rods in

the membrane leading to a smaller equilibrium areal density;
in addition, semiflexible rods will behave as if polydisperse in
length.
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APPENDIX A : SIMULATIONS OF COLLOIDAL
MEMBRANES

In this appendix we describe the computer simulations
whose results we have compared with the theory predictions.
The simulations describe the equilibrium phase behavior for a
model of hard rods and depletant molecules in the absence of
any attractive interactions between rod ends and depletant [14].
The rods are represented as hard spherocylinders with diameter
σ and length L. The nonadsorbing polymer (depletant) is
modeled with ghost spheres [62] of diameter δ, which act
as hard spheres when interacting with rods but can freely
interpenetrate one another. Compared with an effective pair
potential approach [63–65], this model accounts for multirod
interactions induced by polymers. As noted above, tilting
of rods does not qualitatively affect membrane-membrane
interactions and thus most free energy simulations were
performed with rod orientations constrained parallel to the
z axis of the simulation box.

Examples of membrane-membrane interaction free en-
ergies calculated by umbrella sampling [18] are shown in
Fig. 5(b). The phase behavior of the computational model
system was predicted as a function of the depletant osmotic
pressure ps, the rod aspect ratio L, and the size of the depletant
ghost spheres δ, which corresponds to the polymer radius of
gyration, as shown in Figs. 3(c) and 3(d).

APPENDIX B : AREAL ROD DENSITIES

As noted in the main text, the virial expansion, Eq. (1),
cannot accurately predict the areal densities of rods ρ2d within
a membrane because areal densities are high under conditions
for which membranes are stable, and membranes crystallize
under high osmotic pressures.

We therefore independently obtain ρ2d by noting that, under
the assumption that rods are parallel to z direction, the cross
section of a colloidal membrane can be considered as a 2D
system of hard disks. We ignore the small density of polymer
that is actually inside the membrane, and the osmotic pressure
ps determines the two-dimensional pressure felt by the hard
disks (rods). The equation of state for hard disk systems has
been studied extensively [56,66–68]. Here we use the global
equation of state given by Luding [56] which characterizes
both the liquid and crystalline phases. The equation of state is
given by

βp2d/ρ2d − 1 = P4 + fmerge(ν)(Pdense − P4), (B1)
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where ν = ρ2dπσ 2/4 is the areal fraction and fmerge = {1 +
exp[−(ν − νc)/m0]}−1 with νc = 0.7006 and m0 = 0.0111
merges between the low density and high density results. P4

is the low density result,

P4 = 2νg4(ν), (B2)

with

g4(ν) = 1 − 7ν/16

(1 − ν)2
− ν3/16

8(1 − ν)4
(B3)

and Pdense is the high density result

Pdense = c0

νmax − ν
h3(νmax − ν) − 1, (B4)

with νmax = π/(2
√

3) the maximum areal fraction, h3(x) =
1 + c1x + c3x

3 a fit polynomial, and constants c0 = 1.8137,
c1 = −0.04, and c3 = 3.25. Full details are in [56]. Equa-
tion (B1) gives the pressure p2d as a function of the density,
but the density can be numerically inverted for a given pressure
to give

ρ2d = ρ2d(p2d). (B5)

The 2D pressure p2d is the result of polymer osmotic
pressure acting laterally to the membrane. The excluded
volume per rod in the membrane is approximately vex ≈
(L + h)/ρ2d, where we neglect rod protrusions. Mechanical
equilibrium then requires the 2D pressure to be

p2d = −ρ2
2d

∂vex

∂ρ2d
ps ≈ (L + h)ps. (B6)

The areal density of rods ρ2d(L,h,ps) is then acquired from
Eqs. (B5) and (B6) for a given L, h, and ps.

Predicted values of ρ2d are compared to simulation results in
Fig. 1. The simulation results of ρ2d are obtained from stable
membranes of 256 rods; areal densities are not sensitive to
system size. We find that the difference between simulated and
predicted areal densities is within 5%, and estimated values are
always lower than the simulation results. The difference can
be attributed to the rough estimation of the excluded volume
per rod and the neglect of rod protrusions, as well as the
accuracy of Eq. (B1) [56]. The sharp increase of ρ2d, starting
near ρ2d ≈ 0.88, identifies the transition from liquid phase
to crystal phase (identified from the two-dimensional radial
distribution function of rods g(r) [14]), with ρ2d ≈ 0.88 the
hard disk freezing point [57,58].

APPENDIX C : INTEGRATION OF FREE ENERGY

Because rods are required to be parallel to the z direction,
the free energy expression, Eq. (1), can be greatly simplified.
The rod-rod Mayer function f (1,2) ≡ exp[−βU (1,2)] − 1
can be separated into the Mayer function in the z direction
and the Mayer function in the x−y plane [69],

f (1,2) = −fz(1,2)fxy(1,2), (C1)

with

fz(1,2) =
{−1 |z1 − z2| < L

0 otherwise,

fxy(1,2) =
{−1 (x1 − x2)2 + (y1 − y2)2 < σ 2

0 otherwise.
(C2)

Since the rod density depends only on z, the integrations in
Eq. (1) can be separated as well. We have

βf =
∫

dz ρ(z)[ln ρ(z) − 1]

− 1

2
A

∫ (
2∏

i=1

dzi ρ(zi)

)
fz(1,2)

− 1

6
B

∫ (
3∏

i=1

dzi ρ(zi)

)
fz(1,2)fz(1,3)fz(2,3)

+βps

∫
dz[1 − α(z)], (C3)

with

A ≡ − 1

Sxy

∫ (
2∏

i=1

dxi dyi

)
fxy(1,2)

= πσ 2 (C4)

and

B ≡ − 1

Sxy

∫ (
3∏

i=1

dxi dyi

)
fxy(1,2)fxy(1,3)fxy(2,3)

= σ 4

(
π2 − 3

√
3

4
π

)
. (C5)

The integrations over z can be further simplified,∫ (
2∏

i=1

dzi ρ(zi)

)
fz(1,2)

= −
∫

dz1 ρ(z1)
∫ z1+L

z1−L

dz2 ρ(z2)

= −
∫

dz1 ρ(z1)[ρ†(z1 + L/2) + ρ†(z1 − L/2)] (C6)

and ∫ (
3∏

i=1

dzi ρ(zi)

)
fz(1,2)fz(1,3)fz(2,3)

= −
∫

dz1 ρ(z1)
∫ z1

z1−L

dz2 ρ(z2)
∫ z2+L

z2

dz3 ρ(z3)

−(z2 ⇔ z3)

−
∫

dz1 ρ(z1)
∫ z1+L

z1

dz2 ρ(z2)
∫ z1+L

z1

dz3 ρ(z3)

= −2
∫

dz1 ρ(z1)
∫ z1

z1−L

dz2 ρ(z2)ρ†(z2 + L/2)

−
∫

dz1 ρ(z1)[ρ†(z1 + L/2)]2, (C7)

with ρ†(z) defined in Eq. (4). The final expression for the free
energy, Eq. (3), is then acquired by substituting equations from
Eq. (C4) to Eq. (C7) into Eq. (C3).
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APPENDIX D : FREE ENERGY MINIMIZATION

The two terms in Eq. (6) are calculated as

δβftot

δρ(z)
= ln ρ(z) + A[ρ†(z + L/2) + ρ†(z − L/2)] + B

∫ z

z−L

dz2 ρ(z2)ρ†(z2 + L/2)

+1

2
B[ρ†(z1 + L/2)]2 − βps

∫
dz1

∂α(z1)

∂ρ(z)
(D1)

and
δC

δρ(z)
= 1. (D2)

Note that the factor 1/2 in front of A and the factor 1/3 in front of B are canceled because ρ appears multiple times in the
corresponding terms [see Eq. (1)]. Substituting these results into Eq. (6), the resulting integral equation of ρ is acquired as Eq. (7).
When ρ is numerically solved, the constraint, Eq. (5), is applied through ζ in each iteration step.
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