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Diffusive transport of light in two-dimensional granular materials
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We study photon diffusion in a two-dimensional random packing of monodisperse disks as a simple model
of granular material. We apply ray optics approximation to set up a persistent random walk for the photons. We
employ Fresnel’s intensity reflectance with its rich dependence on the incidence angle and polarization state of
the light. We present an analytic expression for the transport-mean-free path l∗ in terms of the refractive indices
of grains and host medium, grain radius, and packing fraction. We perform numerical simulations to examine
our analytical result.
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I. INTRODUCTION

Pebbles on a sea shore, sand, rice, and sugar, are a few
examples of ubiquitous granular systems [1,2]. Granular media
consists of discrete particles of size larger than 100 μm,
interacting with each other through dissipative contact forces.
In the absence of an external drive, particles rapidly lose their
kinetic energy. However, granular materials under external
forces exhibit transition between a liquid-like and a solid-like
state. In order to understand jamming transition [3], size segre-
gation [4], convection rolls, pattern formation, and dynamical
instabilities [5] of granular systems, probing the micron-scale
dynamics of constituent particles is important. Although
granular systems are opaque, diffusing wave spectroscopy
(DWS) [6] noninvasively probes their dynamics [7–22].

In a turbid material, light experiences many scattering
events before leaving the sample, and the transport of light
energy is diffusive [23]. Consequently, the photon can be
considered as a random walker. The structural details of the
opaque medium reflect in the transport-mean-free path l∗, over
which the photon direction becomes randomized. Moreover,
the dynamics of scatterers leads to the temporal intensity
fluctuations in the speckle field of the multiply scattered light.
Utilizing the intensity autocorrelation, DWS determines l∗ and
the mean-squared displacement of the scatterers. DWS has
been used to study colloidal dispersions [6], liquid crystals
[24], biopolymers [25], and foams [26,27].

Multiple light scattering from grains has been invoked to
reveal their relative motion. Three-dimensional gravity-driven
granular flow [7], gas-fluidized beds [8], water-fluidized beds
[11], vibro-fluidized systems [9,16–21], avalanche flow [10],
creeping motion [12], dilation due to temperature variations
[14], and response to a localized compression force [15] have
been thoroughly studied. As a key parameter, l∗ was measured.
For glass beads dispersed in water, l∗ ≈ 14R − 16R for 80 �
R � 200 μm. These samples had a packing fraction φ ≈ 0.64
[22]. For glass spheres of radius R = 47.5 μm dispersed in
air, l∗ ≈ 15R is reported [7]. Crassous [13] developed a ray-
tracing program to access l∗, but only for packing fraction
φ ≈ 0.64.
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It is natural to study l∗ as a function of the refractive
index of grains nin, refractive index of the host medium
nout, average grain radius R, and packing fraction φ. In one
approach, expansion of electromagnetic fields in a series of
vector multipole fields [28], or other accurate techniques
can be invoked to simulate the speckle pattern. To extract
l∗, simulations must be repeated for a large number of
realizations of the random system. Numerical calculations
are quite demanding as each sample contains hundreds of
grains. In another approach we focus on the elucidation of
mechanisms underlying the random walk of photons. As grains
are much larger than the wavelength of light, we rely on
ray optics approximation. Within this framework the role of
reflection and total internal reflection phenomena in abrupt
change of photons’ paths can be pictured.

We study photon diffusion in a two-dimensional random
packing of monodisperse disks as a simple model of granular
material. We assume that the grains are homogenous and trans-
parent. We employ ray optics approximation to follow a light
beam or photon as it is reflected by the grains with a probability
called the intensity reflectance. The photon’s random walk
based on the above rules is a persistent random walk [29]. This
shows that the diffusive transport of light in granular media
and foams [30,31] are much similar. As an extension of our
previous study [31], here we take into account that the intensity
reflectance depends on the incidence angle and the polarization
state of the light. Writing master equations to describe the
photon transport, we obtain analytic expression for l∗ as a
function of model parameters nin, nout, R, and φ. We perform
numerical simulations to examine our analytical result.

Our article is organized as follows. In Sec. II we introduce
the model. Photon transport in a random packing of disks using
Fresnel’s intensity reflectance is discussed in Sec. III. Discus-
sions, conclusions, and an outlook are presented in Sec. IV.

II. MODEL

Following a step-by-step approach to reality, we deliber-
ately focus on two-dimensional granular systems. Our model
granular medium is a random packing of circular disks. All
nonoverlapping disks have the same radius R, and cover a
fraction φ of the plane. The refractive indices of grains and
host medium are nin and nout, respectively. We assume that
nin > nout.
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Grains (>100 μm) are larger than the visible light wave-
length (400–700 nm). Therefore, we employ ray optics. A light
beam or photon experiences transmission or reflection as it
hits the surface of a grain. We denote by ro→i the intensity
reflectance for photons moving in the host medium and hitting
a grain. Similarly, we denote by ri→o the intensity reflectance
for photons moving in a gain and hitting its surface. According
to the Fresnel’s formulas, both ro→i and ri→o depend on the
polarization state of the light, incidence angle γ , nout and nin,
see Appendix A. Indeed the Fresnel’s intensity reflectance
ri→o(γ ) is 1 for γ > γc, where

γc = arcsin(nout/nin) (1)

is the critical angle. Our model does respect the total internal
reflection phenomena.

It is instructive to consider a toy model, a one-dimensional
lattice of (point) grains. On hitting a grain, a photon will be
either reflected by probability r or persist on its direction of
motion [32]. This leads to a persistent random walk of the
photons, where the walker remembers its direction from the
previous step [29,33]. Now it is clear that implementing the
rules of ray optics for photon diffusion in two- and three-
dimensional granular media results in a generalized persistent
random walk. First introduced by Fürth as a model for diffusion
in a number of biological problems [34], and shortly after by
Taylor in the analysis of turbulent diffusion [35], the persistent
random walks are employed in polymers [36], Landauer
diffusion coefficient for a one-dimensional solid [37], and
general transport mechanisms [38].

III. PHOTON TRANSPORT IN A TWO-DIMENSIONAL
GRANULAR MATERIAL

A. Analytical treatment

To simplify our analytical treatment of photons random
walk, we further assume that (i) the length of photon steps
outside (inside) the grains is Lout (Lin), that is, we neglect
the fact that the length of photon steps are not equal. (ii) A
photon which transmits into or out of a grain does not change
its direction of motion. In other words, we neglect the fact that
the angle of refraction is not equal to the angle of incidence.

In the two-dimensional space, each photon step can be
specified by an angle relative to the x axis. Consider a
photon which moves in the host medium along the direction
θ + π + 2γ and hits a grain with an incidence angle γ [see
Fig. 1(a)]. The photon will be either reflected to the direction
θ by probability ro→i(γ ), or enter the grain. The probability
distribution of the random variable 0 < γ < π/2 is [31]

Fout(γ ) = cos γ. (2)

Similarly, a photon moving in a grain along the direction
θ + π + 2γ and hitting its boundary with an angle γ will
be either reflected to the direction θ by probability ri→o(γ ) or
leave the grain along the initial direction θ + π + 2γ . Now
the probability distribution of the incidence angle is

Fin(γ ) =
{

cos γ /sin γc, |γ | < γc

0, otherwise,
(3)

see Appendix B. Note that nin > nout and ri→o(γ ) = 1 for
γ > γc. Thus γ < γc ensures that a photon moving in the
grain is not trapped forever.

We let P out
n (x|θ )dxdy [P in

n (x|θ )dxdy] denote the proba-
bility that a photon moving along the direction θ arrives at
vicinity dxdy of position x = (x,y) after its nth step outside
(inside) a grain. We express the evolution of P out

n (x|θ ) and
P in

n (x|θ ) by following master equations:

P out
n+1(x|θ ) =1

2

∫ π
2

− π
2

P out
n (x−Louteθ |θ + π + 2γ )Fout(γ )

×ro→i(γ )dγ + t i→oP
in
n (x−Louteθ |θ ), (4)

P in
n+1(x|θ ) = 1

2

∫ π
2

− π
2

P in
n (x − Lineθ |θ + π + 2γ )Fin(γ )

×ri→o(γ )dγ + to→iP
out
n (x−Lineθ |θ ), (5)

where eθ = (cos θ, sin θ ) is the unit vector along the direction
θ , Lout (Lin) denotes the average length of photon steps outside
(inside) the grains, and

to→i = 1

2

∫ π
2

− π
2

[1 − ro→i(γ )] Fout(γ )dγ,

(6)

t i→o = 1

2

∫ γc

−γc

[1 − ri→o(γ )] Fin(γ )dγ.

The first term on the right-hand side of Eq. (4) represents
the reflection of the photon with a probability ro→i(γ ). On
arriving at position (x − Lout cos θ,y − Lout sin θ ) along the
direction θ + π + 2γ , the photon changes its direction by an
angle π + 2γ according to the probability distribution Fout(γ ).
The second term focuses on photons which move inside the
grain and transmit to the host medium with a probability t i→o.
The photon which has arrived at position (x − Lout cos θ,y −
Lout sin θ ) along the direction θ , moves ballistically to position
(x,y). Equation (5) has a similar interpretation.

We are interested in the second moment of photon distribu-
tion with respect to the spatial coordinates x and y. To evaluate
the moments of an arbitrary distribution function Pn(x,y|θ ),
we utilize its associated characteristic function [29]

Pn(ωx,ωy |m) ≡
∫ π

−π

eimθ

∫∫
ei �ω·xPn(x,y|θ )dxdydθ. (7)

Indeed

〈xk1yk2〉n ≡
∫∫∫

xk1yk2Pn(x,y|θ )dxdydθ

= (−i)k1+k2
∂k1+k2 Pn( �ω|m = 0)

∂ω
k1
x ∂ω

k2
y

∣∣∣∣∣
�ω=0

, (8)

where k1 and k2 are either zero or positive integers, and �ω =
(ωx,ωy).

The Fourier transform of master equations (4) and (5) are

Pout
n+1(ω,α|m)

=
+∞∑

k=−∞
ike−ikαJk(ωLout)

[
t i→oPin

n (ω,α|k + m)

+cout
m,kPout

n (ω,α|k+m)
]
, Pin

n+1(ω,α|m)
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=
+∞∑

k=−∞
ike−ikαJk(ωLin)

[
to→iPout

n (ω,α|k + m)

+cin
m,kPin

n (ω,α|k+m)
]
, (9)

where ω and α are the polar representation of the vector �ω =
(ωx,ωy), Jk is the kth-order Bessel function, and

cout
m,k = (−1)m+k

2

∫ π
2

− π
2

e−i(2m+2k)γ Fout(γ )ro→i(γ )dγ,

(10)

cin
m,k = (−1)m+k

2

∫ π
2

− π
2

e−i(2m+2k)γ Fin(γ )ri→o(γ )dγ.

We introduce the Taylor expansions

Pout
n (ω,α|m) ≈ Qout

0,n(α|m) + iωLoutQ
out
1,n(α|m)

−ω2L2
out

2
Qout

2,n + · · · ,

Pin
n (ω,α|m) ≈ Qin

0,n(α|m) + iωLinQ
in
1,n(α|m)

−ω2L2
in

2
Qin

2,n + · · · . (11)

Now we insert Eq. (11) into Eq. (9). Using the Taylor expansion
of the Bessel functions and collecting all terms with the
same power in ω, we obtain a complicated set of recursion
relations for Qout

i,n (α|m) and Qin
i,n(α|m), see Appendix C. There

is an elegant method to transform this set of coupled linear
difference equations to a set of algebraic equations: the z

transform [29,39]. The z transform Q(z) of a function Qn

of a discrete variable n = 0,1,2, . . . is defined by

Q(z) =
∞∑

n=0

Qnz
n. (12)

The z transform of Eqs. (C1)–(C3) leads to a set of algebraic
equations whose solutions Qin

i (z|α,m) and Qout
i (z|α,m) are

reported in Appendix C.
From Eqs. (8) and (11) it follows that the first and second

moments of photon distribution are

〈x〉n = LoutQ
out
1,n(0,0) + LinQ

in
1,n(0,0),

〈y〉n = LoutQ
out
1,n(π

2 ,0) + LinQ
in
1,n(π

2 ,0), (13)

〈x2〉n = L2
outQ

out
2,n(0,0) + L2

inQ
in
2,n(0,0),

〈y2〉n = L2
outQ

out
2,n(π

2 ,0) + L2
inQ

in
2,n(π

2 ,0).

Powered by the analytical expressions for the inverse z

transform of Qin
i (z|α,m) and Qout

i (z|α,m), we find that in the
limit n → ∞

〈x〉n = 〈y〉n = 0,
(14)

〈x2〉n = 〈y2〉n = (
woutL

2
out + winL

2
in

)
n,

where

wout = to→i

t o→i + t i→o

{
t i→o

2
+ LinL

−1
outc

in
1,−1t i→o + t i→o

[
t i→oto→i + cout

0,1

(
1 − cin

0,1

)]
(
1 − cout

1,0

)(
1 − cin

1,0

) − to→i t i→o

}

+
{

LinL
−1
outto→i t i→o + cout

1,−1

[
t i→oto→i + cout

0,1

(
1 − cin

0,1

)]
(
1 − cout

1,0

)(
1 − cin

1,0

) − to→i t i→o

+ cout
0,0

2

}
t i→o

to→i + t i→o

, (15)

win = to→i

t o→i + t i→o

{
cin

0,0

2
+ L−1

in Loutto→i t i→o + cin
1,−1

[
t i→oto→i + cin

0,1

(
1 − cout

0,1

)]
(
1 − cout

1,0

)(
1 − cin

1,0

) − to→i t i→o

}

+
{

L−1
in Loutc

out
1,−1to→i + to→i

[
t i→oto→i + cin

0,1

(
1 − cout

1,0

)]
(
1 − cout

1,0

)(
1 − cin

1,0

) − to→i t i→o

+ to→i

2

}
t i→o

to→i + t i→o

. (16)

The task is now expressing the time nτ spent for the n steps
of the random walker. Indeed

τ = foutτout + finτin, (17)

where fout (fin = 1 − fout) is the fraction of time that the
photons spend outside (inside) the grains, τout = noutLout/c

(τin = ninLin/c) is the average time spent to make a step
outside (inside) the grains, and c is the velocity of light in
vacuum. To evaluate fin we consider a photon hitting a grain
with an incidence angle γ . The probability of m internal
steps before leaving the grain is ti→o(γ )[ri→o(γ )]m−1. Thus
the photon spends a time

∑
m=1

mτinti→o(γ )[ri→o(γ )]m−1 = τin/ti→o(γ )

inside a grain before leaving it. Averaging with respect to the
probability distribution Fin(γ ), we find that a photon spends a
time

1

2

∫ γc

−γc

τinFin(γ )

ti→o(γ )
dγ = τin

〈
1

ti→o

〉
(18)

inside the grain. It follows that

fout = τout

τin
〈

1
ti→o

〉 + τout
,

(19)

fin =
τin

〈
1

ti→o

〉
τin

〈
1

ti→o

〉 + τout
.

We also note that φ = Lin/(Lin + Lout). Figure 1(b) suggests
that Lin = 〈2R cos γ 〉, where γ is the incidence angle of
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(a) (b)

FIG. 1. (a) Path of a photon moving in the host medium and hitting
a grain with an incidence angle γ . (b) Path of a photon moving in
a grain and hitting its surface with an incidence angle γ . The step
length inside the grain is 2R cos γ , where R is radius of the grain.

photons moving in the grain, and here 〈· · · 〉 denotes averaging
with respect to the probability distribution Fin(γ ). Hence we
find

Lout = R(cos γc + γc/ sin γc)
1 − φ

φ
,

(20)
Lin = R(cos γc + γc/ sin γc).

As already mentioned, in the long-time limit nτ → ∞, the
behavior of the mean-square displacements is purely diffusive,
that is,

〈x2〉n = 〈y2〉n = 2Dτn. (21)

In two-dimensional systems the transport-mean-free path is
defined via

l∗ = 2D/vm, (22)

where vm is the transport velocity of light in the medium. To a
first approximation

vm = (1 − φ)
c

nout
+ φ

c

nin
, (23)

where c/nout (c/nin) is the velocity of light in the host medium
(grains) which cover a fraction 1 − φ (φ) of the plane. Now
we utilize Eqs. (14)–(23) to derive the diffusion constant
and transport-mean-free path in the two-dimensional granular
material

D = 1

2
Rc[nin/nout arcsin(nout/nin)+

√
1−(nout/nin)2]

×
[
wout

(
1−φ

φ

)2

+ win

]
nout

( 1−φ

φ

) + nin
〈

1
ti→o

〉
n2

out

( 1−φ

φ

) + n2
in

〈
1

ti→o

〉 , (24)

l∗ = R[nin/nout arcsin(nout/nin) +
√

1−(nout/nin)2]

×
[
wout

(
1 − φ

φ

)2

+ win

]
nout

( 1−φ

φ

) + nin
〈

1
ti→o

〉
n2

out

( 1−φ

φ

) + n2
in

〈
1

ti→o

〉

× 1
φ

nin
+ (1−φ)

nout

. (25)

We emphasize that wout, win, and 〈 1
ti→o

〉 can be explicitly
expressed in terms of physical parameters nout, nin, and φ.
The incident electric field can be either perpendicular ⊥ or
parallel ‖ to the two-dimensional plane covered by the grains.
The intensity reflectance depends on the polarization state of
light, thus the diffusion constants D⊥ and D‖ are not equal.
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FIG. 2. (Color online) The diffusion constant (a) D⊥ and (b) D‖
(in units of the disk radius R times the velocity of light c) as a function
of the packing fraction φ for the case nin = 1.5 and nout = 1.0.
(c) D⊥ and (d) D‖ for the case nin = 2.0 and nout = 1.34.

B. Numerical simulations

We carry out numerical simulations to examine our analyti-
cal result for the diffusion constant D. Using contact dynamics
simulations [40], we generate homogeneous and monodisperse
random packing of disks. We study samples with packing
fraction φ ∈ [0.15,0.25, . . . ,0.65]. Each sample consists of
104 nonoverlapping disks. We let 104 photons perform a
random walk in each sample. We launch the photons in a
direction specified by angle θ0. We repeat the simulation for
all angles θ0 ∈ [30◦,60◦, . . . ,360◦]. We implement Fresnel’s
formulas and Snell’s law as a photon hits a grain surface.
Following a standard Monte Carlo procedure, we generate the
trajectory of each photon, and evaluate the statistics of the
photon cloud at different times to access the diffusion constant
D. For improving the speed of our ray tracing program, we
adopt the cell index method commonly used in the molecular
dynamics simulations, see Refs. [30] and [31] for details.

As an example, we consider the glass disks (nin = 1.5)
immersed in the air (nout = 1.0). Figures 2(a) and 2(b)
demonstrate D⊥ and D‖ as a function of φ, respectively. As
another example, we consider glass disks (nin = 2) immersed
in the water (nout = 1.34). Corresponding D⊥ and D‖ as a
function of φ are shown in Figs. 2(c) and 2(d), respectively.
Equation (24) involves no free parameters, but reasonably
agrees with the numerical results.

IV. DISCUSSION

We have studied diffusive light transport in a two-
dimensional packing of monodisperse disks. We employed
ray optics to follow a light beam or photon as it is reflected
by the disks. We used Fresnel’s intensity reflectance with
its rich dependence on the incidence angle and polarization
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state of the light. We note that a photon which moves in a
grain hits its surface with an incidence angle γ less than γc =
arcsin(nout/nin). Indeed γ < γc ensures that photons are not
caged in grains due to the total internal reflection phenomena.
Using a constant intensity reflectance independent of the
incidence angle [31], it is not clear how the total internal
reflection phenomena influences the transport-mean-free path
l∗. Moreover, a constant intensity reflectance model does not
take into account that ri→o(γ ) �= ro→i(γ ).

Our analytical estimate of D is bigger than our numerical
estimate by a factor about 1.5 (see Fig. 2). In writing
master equations for photon transport, we do not consider
the inequality of step lengths either in the host medium or
in the grains. We also neglect the fact that the angle of
refraction is not equal to the angle of incidence. But in
our numerical simulations the photon step length exhibits its
natural distribution. Moreover, we strictly obey Snell’s law.

Consider a photon moving in the host medium and hitting
a grain with an incidence angle γ . The photon experiences
an average scattering angle

∫ π/2
0 (π − 2γ )Fout(γ )dγ = 2 (in

radians) due to the reflection. Taking into account Snell’s
law, the average angle between the incident and refracted
ray is

∫ π/2
0 [γ − arcsin( nout

nin
sin γ )]Fout(γ )dγ = 0.22, where

have assumed nin = 1.5 and nout = 1.0. Similarly, a photon
moving in a grain experiences an average scattering angle∫ γc

0 (π − 2γ )Fin(γ )dγ = 2.45 due to reflection, and an av-
erage scattering angle

∫ γc

0 [arcsin( nin
nout

sin γ ) − γ ]Fin(γ )dγ =
0.22 due to transmission. Thus the transmission is less efficient
than the reflection in randomizing the direction of photons.
Apparently respecting path randomization due to transmis-
sions our theoretical D decreases toward a numerical one.
We have also studied the distribution function of step length
G(Lout). After reaching its pronounced maximum, G(Lout)
decays exponentially (see Fig. 5 of Ref. [31]). Focusing on a
radically different model, an uncorrelated random walk in a
dilute packing of point scatterers, Heiderich et al. [41] found
that a broader distribution of step lengths leads to a greater
D. The interplay between the two above mentioned opposing
impacts on D remains to be clarified.

In two-dimensional space D = l∗vm/2, where vm is the
transport velocity of light. In a medium composed of spheres
comparable to the light wavelength, the transport velocity
differs by an order of magnitude from the phase velocity [42].
The difference between the two velocities is unimportant
when spheres are much larger than the light wavelength.
Equation (23) presents a “mean field” estimate of vm. Figure 3
demonstrates the transport-mean-free paths l∗⊥ = 2D⊥/vm and
l∗‖ = 2D‖/vm as a function of the packing fraction φ for
the case nin = 1.5 and nout = 1.0. As expected, l∗⊥ and l∗‖
monotonically decrease as φ increases: The photon hits more
gains and rapidly forgets its initial direction of motion. For
packing fraction φ ≈ 0.64, we find a reasonable value l∗ �
(l∗⊥ + l∗‖ )/2 � 12R (cf. Refs. [7,13,22]). Note that to address
photon diffusion in a three-dimensional system, we have taken
an average over ⊥ and ‖ polarizations.

To achieve a better understanding of photon diffusion in
granular systems, there is still much to do. We aim at a
superior model, which considers path randomization due to
transmissions and the natural distribution of step lengths. Also

 10
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FIG. 3. (Color online) The transport-mean-free paths l∗⊥ and l∗‖
(in units of the disk radius R) as a function of the packing fraction
φ for the case nin = 1.5 and nout = 1.0. Theoretical and Monte Carlo
simulation results are denoted, respectively, by lines and points.

an extension to the three-dimensional packing of polydisperse
spheres is envisaged. Here we estimate the transport-mean-free
path. DWS experiments also reveal the dynamics of granular
systems. Recent theories concerning deformations of a sphere
packing need an improvement as nout/nin becomes less than
2/3 and the critical angle γc = arcsin(nout/nin) deviates more
from π/2 (see Fig. 5 of Ref. [13]). Here one must consider
correlation between paths of a photon which moves in a
disk and suffers many reflections [13]. Currently we are
studying the abrupt change of photon paths due to the local
rearrangement of grains. Note that in another system, foam,
bubble rearrangements cause fluctuations in the intensity of
scattered light [26].

Different experiments may be performed on two-
dimensional granular systems. One can immerse a packing
of disks in various liquids to study l∗ dependence on the
refractive index nout. The incident electric field can be either
perpendicular or parallel to the two-dimensional plane. A
ray maintains its polarization state on hitting a disk. Quite
remarkably l∗‖ > l∗⊥ (see Fig. 3). This is reasonable since
r‖ < r⊥: A photon sooner forgets its initial direction of motion
as the scattering events becomes more probable. In another
anisotropic system, nematic liquid crystal, the light diffuses
faster along the director than perpendicular to the director [24].

APPENDIX A: INTENSITY REFLECTANCES

Fresnel’s intensity reflectance depends on the polarization
state of the light. The incident electric field can be either
perpendicular ⊥ or parallel ‖ to the two-dimensional plane
covered by the grains. For all angles 0 < γ < π/2,

r⊥
o→i(γ ) =

∣∣∣∣∣∣
nout cos γ − nin

√
1 − (

nout
nin

sin γ
)2

nout cos γ + nin

√
1 − (

nout
nin

sin γ
)2

∣∣∣∣∣∣
2

,

(A1)

r
‖
o→i(γ ) =

∣∣∣∣∣∣
nout

√
1 − (

nout
nin

sin γ
)2 − nin cos γ

nout

√
1 − (

nout
nin

sin γ
)2 + nin cos γ

∣∣∣∣∣∣
2

.
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For all angles γ < γc,

r⊥
i→o(γ ) =

∣∣∣∣∣∣
nin cos γ − nout

√
1 − (

nin
nout

sin γ
)2

nin cos γ + nout

√
1 − (

nin
nout

sin γ
)2

∣∣∣∣∣∣
2

,

(A2)

r
‖
i→o(γ ) =

∣∣∣∣∣∣
nin

√
1 − (

nin
nout

sin γ
)2 − nout cos γ

nin

√
1 − (

nin
nout

sin γ
)2 + nout cos γ

∣∣∣∣∣∣
2

.

Indeed r⊥
i→o(γ ) = r

‖
i→o(γ ) = 1 if γ > γc.

APPENDIX B: THE PROBABILITY DISTRIBUTION Fin(γ )

A photon which moves in a grain hits its surface with
an angle γ < γc, thus Fin(γ ) = 0 if γ > γc. To find the
probability distribution Fin(γ ) for γ < γc, we consider path

of photons inside the disk [see Fig. 1(b)]. Each ray can be
characterized by its distance s from the center of the disk.
s = R sin γ thus s < R sin γc. We assume that the random
variable s has a uniform distribution in the interval [0,R sin γc].
The cumulative distribution function Fc(γ ) ≡ ∫ γ

0 Fin(ψ)dψ is
then Fc(γ ) = Prob(s < R sin γ ) = R sin γ /(R sin γc). It fol-
lows that

Fin(γ ) = dFc(γ )

dγ
= cos γ / sin γc (B1)

for γ < γc. Further numerical simulations confirm our analyt-
ical results for Fin(γ ) and Fout(γ ).

APPENDIX C: FUNCTIONS Qout
i,n AND Qin

i,n

The functions Qout
i,n and Qin

i,n introduced in Eq. (11), are the
solutions of the following equations:

Qout
0,n+1(α|m) = t i→oQ

in
0,n(α|m) + cout

m,0Q
out
0,n(α|m),

(C1)
Qin

0,n+1(α|m) = to→iQ
out
0,n(α|m) + cin

m,0Q
in
0,n(α|m),

Qout
1,n+1(α|m) = λti→oQ

in
1,n(α|m) + cout

m,0Q
out
1,n(α|m) + 1

2e−iα
[
t i→oQ

in
0,n(α|m + 1) + cout

m,1Q
out
0,n(α|m + 1)

]
+ 1

2eiα
[
t i→oQ

in
0,n(α|m − 1) + cout

m,−1Q
out
0,n(α|m − 1)

]
,

Qin
1,n+1(α|m) = λ−1to→iQ

out
1,n(α|m) + cin

m,0Q
in
1,n(α|m) + 1

2e−iα
[
to→iQ

out
0,n(α|m + 1) + cin

m,1Q
in
0,n(α|m + 1)

]
+ 1

2eiα
[
to→iQ

in
0,n(α|m − 1) + cin

m,−1Q
in
0,n(α|m − 1)

]
, (C2)

Qout
2,n+1(α|m) = λ2t i→oQ

in
2,n(α|m) + cout

m,0Q
out
2,n(α|m) + e−iα

[
λti→oQ

in
1,n(α|m + 1) + cout

m,1Q
out
1,n(α|m + 1)

]
+ eiα

[
λti→oQ

in
1,n(α|m − 1) + cout

m,−1Q
out
1,n(α|m − 1)

] + 1
2

[
t i→oQ

in
0,n(α|m) + cout

m,0Q
out
0,n(α|m)

]
+ 1

4e−2iα
[
t i→oQ

in
0,n(α|m + 2) + cout

m,2Q
out
0,n(α|m + 2)

] + 1
4e2iα

[
t i→oQ

in
0,n(α|m − 2) + cout

m,−2Q
out
0,n(α|m − 2)

]
,

Qin
2,n+1(α|m) = λ−2to→iQ

out
2,n(α|m) + cin

m,0Q
in
2,n(α|m) + e−iα

[
λ−1to→iQ

out
1,n(α|m + 1) + cin

m,1Q
in
1,n(α|m + 1)

]
+ eiα

[
λ−1to→iQ

out
1,n(α|m − 1) + cin

m,−1Q
in
1,n(α|m − 1)

] + 1
2

[
to→iQ

out
0,n(α|m) + cin

m,0Q
in
0,n(α|m)

]
+ 1

4e−2iα
[
to→iQ

in
0,n(α|m + 2) + cin

m,2Q
in
0,n(α|m + 2)

] + 1
4e2iα

[
to→iQ

out
0,n(α|m − 2) + cin

m,−2Q
in
0,n(α|m − 2)

]
,

(C3)

where λ = Lin/Lout. The above set of linear difference equations express Qout
i,n+1 and Qin

i,n+1 in terms of Qout
i,n and Qin

i,n The z

transform of Qn+1 is simply Q(z)/z − Qn=0/z. Note the similarities of this rule with the Laplace transform of the time derivative
of a continuous function [43]. The z transform of above difference equations leads to a set of algebraic equations whose solutions
are

Qout
0 (z|α,m) =

(
1 − zcin

m,0

)
Qout

0,n=0(α,m) + zt i→oQ
in
0,n=0(α,m)

�m

,

(C4)

Qin
0 (z|α,m) = zto→iQ

out
0,n=0(α,m) + (1 − zcout

m,0)Qin
0,n=0(α,m)

�m

,

Qout
1 (z|α,m) =

(
1 − zcin

m,0

)
Am(α,z) + λzti→oBm(α,z)

�m

,

(C5)

Qin
1 (z|α,m) = λ−1zto→iAm(α,z) + (

1 − zcout
m,0

)
Bm(α,z)

�m

,

Qout
2 (z|α,m) =

(
1 − zcin

m,0

)
Dm(α,z) + λ2zt i→oEm(α,z)

�m

,

(C6)

Qin
2 (z|α,m) = λ−2zto→iDm(α,z) + (

1 − zcout
m,0

)
Em(α,z)

�m

.
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Here

Am(α,z) = Qout
1,n=0(α,m)+ z

2
e−iα

[
t i→oQ

in
0,n(α|m+1)+cout

m,1Q
out
0,n(α|m+1)

]+ z

2
eiα

[
t i→oQ

in
0,n(α|m−1)+cout

m,−1Q
out
0,n(α|m−1)

]
,

Bm(α,z) = Qin
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2
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in
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]+ z

2
eiα
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to→iQ

out
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m,−1Q
in
0,n(α|m−1)

]
,

Dm(α,z) = Qout
2,n=0(α,m)+ze−iα

[
λti→oQ

in
1,n(α|m+1)+cout

m,1Q
out
1,n(α|m+1)

]+zeiα
[
λti→oQ

in
1,n(α|m−1)+cout

m,−1Q
out
1,n(α|m−1)

]
+ z

2

[
t i→oQ

in
0,n(α|m)+cout

m,0Q
out
0,n(α|m)

]+ z

4
e−2iα

[
t i→oQ

in
0,n(α|m+2)+cout

m,2Q
out
0,n(α|m+2)

]

+ z

4
e2iα

[
t i→oQ

in
0,n(α|m−2)+cout

m,−2Q
out
0,n(α|m−2)

]
,

Em(α,z) = Qin
2,n=0(α,m)+ze−iα

[
λ−1to→iQ

out
1,n(α|m+1)+cin

m,1Q
in
1,n(α|m+1)

]+zeiα
[
λ−1to→iQ

out
1,n(α|m−1)

+cin
m,−1Q

in
1,n(α|m−1)

]+ z

2

[
to→iQ

out
0,n(α|m)+cin

m,0Q
in
0,n(α|m)

]+ z

4
e−2iα

[
to→iQ

in
0,n(α|m+2)+cin

m,2Q
in
0,n(α|m+2)

]

+ z

4
e2iα

[
to→iQ

out
0,n(α|m−2)+cin

m,−2Q
in
0,n(α|m−2)

]
,

and

�m = (
1 − zcout

m,0

)(
1 − zcin

m,0

) − z2to→i t i→o. (C7)

The expressions of Qin
i (z|α,m) and Qout

i (z|α,m) contain the sum of several terms whose inverse z transform are readily
accessible:

1 ↔ 1

1 − z
, n ↔ z

(1 − z)2
, an ↔ 1

1 − az
, nan ↔ az

(1 − az)2
. (C8)

Here a is an arbitrary real number whose absolute magnitude is less than 1.
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