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Correlations and critical behavior of the q model
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The q model is a random walk model used to describe the flow of stress in a stationary granular medium. Here
we derive the exact horizontal and vertical correlation functions for the q model in two dimensions. We show
that close to a critical point identified in earlier work these correlation functions have a universal scaling form
reminiscent of thermodynamic critical phenomena. We determine the form of the universal scaling function and
the associated critical exponents ν and z.
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I. INTRODUCTION

The q model was introduced by Coppersmith et al. [1]
to describe the flow of stress in a static granular medium
motivated by the experiments of Ref. [2]. Since then there
have been significant advances in experiments and theory
(see, for example, [3] and references therein). Although the
q model has been superseded, it remains of some interest as
a simple tractable model of a granular medium. Moreover,
the q model is closely related to models that describe
the process of aggregation in statistical mechanics [4], the
transport of electrons on the surface of an integer quantum
Hall multilayer [5], passive scalar turbulence [6], and the
branching of river networks [7], among others. In earlier work
by Lewandowska et al. [8] it was shown that although the
q model describes physics far from equilibrium, nonetheless,
for a particular value of its parameters, the q model behaves
in a manner reminiscent of the critical point in an equilibrium
thermodynamic phase transition. It was found that the q model
is remarkably soluble and a number of exact critical exponents
and universal scaling functions near to the critical point were
obtained. The purpose of the present work is to strengthen the
analogy to thermodynamic critical phenomena by calculating
the two-point correlation functions for the q model.

In experiments that the q model is used to describe, a
pack of beads is loaded from above with a uniform stress.
The distribution of load at the bottom of the bead pack as
well as the propagation of stress through the pack have been
measured experimentally [2]. In the q model it is assumed
that the beads lie at the sites of a regular lattice. The beads
in each layer are supported by their nearest neighbors in the
layer below. For simplicity let us consider the q model in
two spatial dimensions. Let us suppose that the beads are
arranged in a square lattice as shown in the Fig. 1. For each
bead a fraction f of its load is supported by its neighbor to
the left in the layer below and a fraction 1 − f by its neighbor
to the right. These fractions are assumed to vary randomly
from bead to bead. We denote the depth of the layer by t

and the position of a bead within a layer by n. The load on
bead n in layer t + 1 is then determined by the recursion
relation

wn(t + 1) = fn+1,twn+1(t) + (1 − fn−1,t )wn−1,t + In(t + 1).

(1)

Given the random fractions f one can use Eq. (1) to propagate
an applied uniform load in the top layer downward. The goal
is to obtain a statistical description of the load as a function
of depth by analytic or numerical solution of Eq. (1). In the
original q model an extra term corresponding to the weight of
the beads was included. Here have neglected that term, as is
appropriate for the experiments of Ref. [2].

In the q model it is generally assumed that the fractions
are independent identically distributed random variables with
a distribution P (f ) that satisfies the symmetry requirement
P (f ) = P (1 − f ). The simplest choice is to assume that each
fraction is either zero or one with equal probability; this is
called the singular distribution, and it was shown in Ref. [8] that
the behavior of the q model for this distribution is reminiscent
of a critical point in equilibrium thermodynamics. Other
distributions can be characterized by a parameter δ (defined
precisely below) that measures how far the distribution is from
the critical point.

In this paper we calculate the horizontal and vertical two-
point correlations of the load on the beads by generalizing the
methods of Ref. [8]. The horizontal load correlation

c(m,t) = 〈wn(t)wn+2m(t)〉 (2)

is the covariance of the load on two beads that are in the same
layer at depth t and have a horizontal separation 2m. The
brackets 〈. . .〉 denote an average over the random fractions.
By translational invariance the covariance depends only on
the separation of the two beads (2m) and not on the absolute
location of either bead (n and n + 2m, respectively). By anal-
ogy to thermodynamic critical phenomena we would expect
the horizontal correlation length to diverge as ξhorizontal ∝ 1/δν

and the vertical correlation length to diverge as ξvertical ∝ 1/δνz

close to the critical point. Furthermore, we would expect the
horizontal correlation function to have the universal scaling
form

ch(m,t) − 1 = 1

δα
G(mδν,tδνz). (3)

We find that in two dimensions the correlation function does
indeed have a universal scaling form for large depth t and
small δ that we determine. Moreover, we find the correlation
length exponent ν = 1, the dynamical exponent z = 2, and the
amplitude exponent α = 0.
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FIG. 1. Upper panel: The q model in two dimensions (reproduced
from Ref. [8]). The beads are assumed to be arranged in a square
lattice. Each bead is assumed to be supported by its nearest neighbors
in the layer below. A random fraction f of the load is transferred
to the neighbor at left, the remainder (1 − f ) to the neighbor to
the right. The fractions vary from bead to bead and are assumed to
be independent identically distributed random variables. t specifies
the horizontal layer occupied by a bead. The horizontal layers are
numbered by consecutive integers. The position of a bead within a
horizontal layer is given by n. n is even in a layer with even t and odd,
for odd t . Thus the horizontal separation of two beads in the same
layer must be an even integer. Similarly the horizontal separation
for two beads in layers with an even vertical separation must also
be an even integer. Lower panel: The distribution of load in layer
t = 100 computed numerically for a single realization of the q model
with the random fractions f drawn from the singular distribution. A
uniform load is applied to the top layer t = 1. It is assumed that there
are 100 beads in each layer and periodic boundary conditions have
been applied. The gray bar shows the horizontal correlation length
appropriate to the singular q model at this depth derived in Sec. II B.

The vertical two-point correlation

cv(m,t,τ ) = 〈wn(t)wn+2m(t + 2τ )〉 (4)

is the covariance of the load on two beads that are located in
horizontal layers separated by a depth of 2τ and that have
a horizontal separation of 2m. Since the q model is only
translationally invariant in the horizontal direction, the vertical
two-point correlation depends on both the separation of the two
layers (2τ ) as well as the absolute location of the first layer
(t). Again, by analogy to thermodynamic critical phenomena

we would expect the vertical correlation to have the universal
scaling form

cv(m,t,τ ) − 1 = 1

δβ
H(mδν,tδνz,τδνz). (5)

We find that in two dimensions the correlation function does
indeed have a universal scaling form for large depth t and
small δ that we determine. Moreover, we find the correlation
length exponent ν = 1 and the dynamical exponent z = 2,
in agreement with the values obtained from the horizontal
correlation calculation and the amplitude exponent β = 1.

The relationship of the q model to random walk models can
be understood as follows. Suppose that instead of a uniform
load, a unit load is applied to a small number of beads in
the top layer. In the singular case the subsequent propagation
of the load follows the trajectories of random walkers that
coalesce upon contact and move together thereafter. The
nonsingular case can be interpreted as walkers that have a
certain probability to fission. By contrast, in common random
walk models the walkers either pass through each other in the
noninteracting case or bounce off each other or annihilate each
other upon contact in interacting models [9]. It is seen below
that the horizontal correlation functions of the q model decay
as Gaussians rather than exponentials, reflecting their close
kinship to random walks.

In the prior work of Lewandowska et al. [8] the critical
point was characterized by computing the covariance of the
load on a single bead. Reference [8] derived the universal
scaling function that describes the evolution of this quantity
and computed a number of critical exponents including the
product νz = 2 (but not the separate values of ν and z). The
present work adds to this body of knowledge the universal
scaling forms for the two-point correlations and the important
critical exponents ν and z. The present work is limited to two
dimensions where the critical behavior is most interesting.
Reference [8] also studied higher dimensions and thereby
discovered that the upper critical dimension for the q model is
three. Moreover, Ref. [8] considered the effect of an “injection
term” that takes into account the weight of the beads, which
has been neglected in comparison to the applied load in
Eq. (1). In other related work Rajesh and Majumdar [10]
computed the two-point correlations for the q model but at
large depth and far from the critical regime. Finally, Snoeijer
and van Leeuwen [11,12] have studied the distribution of load
at asymptotically large depths, as discussed further in the
Conclusion.

II. HORIZONTAL CORRELATIONS

A. Exact solution

Our purpose in this subsection is to evaluate the evolution
of the correlations Eq. (2) with depth by use of Eq. (1). We
begin by noting that the random fractions that appear in Eq. (1)
are assumed to be independent identically distributed random
variables with a symmetric distribution P (f ) that satisfies the
requirement P (f ) = P (1 − f ). The distribution of fractions
may be characterized by a parameter ε defined via

〈(
f − 1

2

)2〉
= ε

4
. (6)
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It is easy to verify that ε = 1 for the singular distribution and
ε = 1

3 for the uniform distribution. Thus δ defined as

δ = 1 − ε (7)

is a measure of the distance of a distribution from the singular
distribution.

We assume that a uniform load is applied to the top layer.
Hence the correlation in the top layer ch(m,0) = 1. As shown
in Sec. II A of Ref. [8], the subsequent evolution of the
correlation is governed by

ch(m,t + 1) =
∑

n

Hmnc(n,t)

=
(

1

2
+ ε

2
δm,0

)
ch(m,t)

+
(

1

4
− ε

4
δm,1

)
ch(m − 1,t)

+
(

1

4
− ε

4
δm,−1

)
ch(m + 1,t). (8)

The evolution matrix H may be interpreted as the Hamiltonian
of a quantum particle on a lattice with a non-Hermitian barrier
at the origin. It was shown in Sec. II B of Ref. [8] that
one can obtain an integral expression for the correlation at
depth t by making a biorthogonal expansion in the left and
right eigenstates of the non-Hermitian Hamiltonian H . An
important subtlety in this procedure is that one has to verify that
the eigenstates of H are complete, since there is in general no
guarantee that a non-Hermitian operator will have a complete
set of eigenstates. Making use of the biorthogonal expansion
and the expressions for the left and right eigenvectors of H

derived in Ref. [8] we obtain1

ch(m,t) = 1 +
∫ π

−π

dk

2π
cos2t

(
k

2

)
eikm

× [−iε2 sin k − ε(1 − ε)(1 + cos k)]

[(1 − 2ε + 2ε2) + (1 − 2ε) cos k]
. (9)

Equation (9) is an exact expression for the horizontal corre-
lation function and is the main result of this subsection. We
note that Eq. (9) applies for all m except m = 0. For m = 0
the horizontal correlation function ch(0,t) coincides with the
variance calculated by Ref. [8] and the expression for ch(0,t)
is given by their Eq. (41).

B. Critical exponents and scaling limit

To obtain the scaling limit of the correlation function we
now simplify Eq. (9), assuming t � 1 and δ � 1, but without
making any assumptions about the relative size of t , δ, and m.
Specifically, we first approximate cos2t (k/2) ≈ exp(−k2t/4).
This form is justified for small k and leads to negligible

1To be specific, we start from the formal expression for ch(m,t)
given in Eq. (38) of Ref. [8]. Expressions for a(±)(k) are given by
Eqs. (35) and (40) of Ref. [8]; for φ(±)(k) by Eqs. (28) and (30)
of Ref. [8]; and for λ(k) by Eq. (29) of Ref. [8]. Substituting these
expressions in Eq. (38) of Ref. [8] and simplifying yields Eq. (9) of
the present manuscript.

error for large k, since both the exact expression and the
approximation are negligible for large k compared to 1/

√
t .

For the same reason we may extend the range of integration
in Eq. (9) to infinity with negligible error. Finally, since the
integrand has negligible weight for large k, we may expand
both numerator and denominator in the second line of Eq. (9)
to leading order in k and δ. After making these approximations
and a rescaling of the integration variable we find

ch(m,t) − 1 = −f (θ,μ) − ∂

∂μ
f (θ,μ), (10)

where θ = δ
√

t is a scaled measure of depth and μ = 2mδ is
a scaled measure of horizontal separation and the function

f (θ,μ) =
∫ ∞

−∞

du

π

e−u2θ2
e−iμu

1 + u2
. (11)

It is evident from Eqs. (10) and (11) that the horizontal corre-
lations have the expected scaling form Eq. (3). Furthermore,
from the form of the scaled variables θ and μ we infer that
the horizontal correlation length exponents ν = 1 and the
dynamical exponent z = 2.

To derive the asymptotic behavior of the correlation
function in the scaling regime it is convenient to rewrite the
correlation function as

ch(m,t) − 1 = − 1√
π

∫ ∞

μ/θ

ds

× exp

[
− θ

(
s − μ

θ

)]
exp

(
−1

4
s2

)
. (12)

This form is obtained by noting that f (θ,μ) is an integral over
a product of a Gaussian and a Lorentzian. Using Parseval’s
theorem it may therefore be written as an integral over
a product of the Fourier transforms of the Gaussian and
Lorentzian factors. Using this transformed representation for
f (θ,μ) leads from Eqs. (10) to (12).

Now let us consider the regime of small depth, θ � 1, or
equivalently, tδ2 � 1 (the “critical regime”). In this regime we
would expect the correlation function to be indistinguishable
from the correlation function at the critical point (since, for
fixed t , the case that tδ2 � 1 corresponds to the limit that
δ → 0). Indeed, we find that for small θ Eq. (12) simplifies to

ch(m,t) − 1 = − 1√
π

∫ ∞

μ/θ

ds exp

(
−1

4
s2

)
. (13)

Thus the correlation function depends only on μ/θ or
equivalently, m/

√
t and is independent of δ. Equation (13)

reveals that in the critical regime the loads (or to be precise,
the deviations in load from the mean) on neighboring beads are
strongly anticorrelated. For small distances (m/

√
t) Eq. (13)

simplifies to

ch(m,t) − 1 ≈ −1 + 2m√
πt

+ . . . (14)

At large distances (m/
√

t � 1) Eq. (13) simplifies to

ch(m,t) − 1 ≈ −
√

t

πm2
exp

(
−m2

t

)
; (15)

in other words, the anticorrelations decay as a Gaussian. In
summary, we find that in the critical regime there are strong
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horizontal anticorrelations whose range grows with the square
root of the depth.

Next let us consider the regime of large depth, θ � 1, or
equivalently, tδ2 � 1 (the “saturated regime”). In this regime
Eq. (12) simplifies to

ch(m,t) = − 1√
πtδ2

exp

(
−m2

t

)
. (16)

Thus in the saturated regime there are weak anticorrelations.
The amplitude of these anticorrelations falls off inversely with
depth while their range continues to grow as the square root
of the depth.

III. VERTICAL CORRELATIONS

A. Exact solution

There is a remarkably simple exact relationship between
the horizontal and vertical correlations for the q model [10].
In order to establish this relationship it is instructive to first
consider the correlations between beads in two consecutive
layers, t and t + 1, with a horizontal separation 2m + 1. By
use of the evolution Eq. (1) we may write

〈wn(t)wn+2m+1(t + 1)〉
= 〈fn+2m+2,twn(t)wn+2m+2(t)〉

+ 〈(1 − fn+2m,t )wn(t)wn+2m(t)〉. (17)

Note that the load on the beads in layer t is independent of the
fractions that appear on the right-hand side of Eq. (17); these
fractions determine that the subsequent propagation of load
from layer t propagates to layer t + 1. Hence the averages
on the right-hand side of Eq. (17) factorize. Recalling that
by virtue of the symmetry condition on the distribution of
the fractions, 〈f 〉 = 〈(1 − f )〉 = 1/2, and making use of the
definition of the horizontal correlation Eq. (2) we obtain

〈wn(t)wn+2m+1(t + 1)〉 = 1
2ch(2m + 2,t) + 1

2ch(2m,t). (18)

Similarly one can relate the correlation between beads sepa-
rated by two layers, cv(m,t,τ → 1), to horizontal correlations
by twice using the evolution Eq. (1) to obtain

cv(m,t,1) = 1
4ch(m + 2,t) + 1

2ch(m,t) + 1
4ch(m − 2,t). (19)

By now the astute reader will have noted the appearance of
binomial coefficients in Eqs. (18) and (19) and indeed, it is not
difficult to show by induction that

cv(m,t,τ ) = 1

22τ

+τ∑
k=−τ

(
2τ

τ + k

)
ch(m − k,t). (20)

Equation (20) is the exact relationship between vertical and
horizontal correlations and is the main result of this subsection.

B. Critical exponents and scaling limit

In this section we derive the universal scaling behavior of
the vertical correlation function. There are three circumstances
to consider. It is clear from Fig. 1 that each bead sits at the
bottom of an inverted cone of beads that are partially supported
by it. The correlation between two beads will evidently be
strong if the upper bead of the pair lies inside the support

cone of the lower bead. Under this circumstance, which we
call the “direct case,” |m| � τ . On the other hand, if the two
beads are so far apart that their support cones do not intersect
at all the correlation between their loads is rigorously zero.
The “uncorrelated case” corresponds to the condition |m| >

2t + τ . Finally there is the intermediate “indirect case” in
which the two support cones do intersect but the upper bead
does not lie inside the support cone of the lower bead.

We first consider the scaling limit for the direct case.
The sum in Eq. (20) can be separated into two parts. The
first part corresponds to the single term with k = m. This
term determines the contribution of the covariance in load
of the upper bead to the vertical correlation with the lower
bead. It will emerge that this covariance contribution leads to
positive correlations and tends to dominate the direct vertical
correlations. The second part corresponds to the remaining
terms in Eq. (20). It will emerge that this contribution leads to
anticorrelations and is generally subdominant.

We now compute the covariance contribution to the direct
vertical correlation. Retaining only the k = m term in Eq. (20)
we obtain

cv(m,t,τ ) = 1

22τ

(
2τ

τ + m

)
ch(0,t). (21)

Assuming that τ � 1 and |m| � 1, we may approximate the
binomial coefficient as a Gaussian. Finally, using the scaling
limit of ch(0,t) given in Eq. (48) of Ref. [8] we obtain2

cv(m,t,τ ) − 1 = 1√
πτδ2

exp

[
− (mδ)2

τδ2

]

×
[

1 − 1√
π

∫ ∞

0
ds exp(−s

√
tδ2)e−s2/4

]
.

(22)

Equation (22) gives the covariance contribution to the direct
vertical correlations in the scaling limit. It agrees with the
conjectured universal scaling form in Eq. (5) and we find that
the critical exponents are β = 0,ν = 1, and z = 2.

To gain further insight into the covariance contribution to
the direct vertical correlations, it is useful to consider the
limiting behavior of Eq. (22) in the critical regime (tδ2 � 1)
and the saturated regime (tδ2 � 1). In the former limit the
dependence on δ cancels and we find

cv(m,t,τ ) − 1 = 2

π

√
t

τ
exp

[
−m2

τ

]
. (23)

Thus in the critical regime there are strong vertical cor-
relations (not anticorrelations) and these correlations grow
with the square root of the depth t . The horizontal range
of the correlations grows as the square root of the vertical
separation between the two beads, τ . If we imagine increasing
the horizontal separation of the beads, keeping the vertical
separation fixed, then the correlations die away well before

2The alert reader will note that we have also transformed Eq. (48) of
Ref. [8], which features an integral of the product of a Gaussian and a
Lorentzian into an integral over the corresponding Fourier transforms
instead by use of Parseval’s theorem.
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we reach the boundary of the support cone. In the saturated
regime we find

cv(m,t,τ ) = 1

δ

1√
πτ

exp

(
−m2

τ

)
. (24)

Here, too, there are strong vertical correlations (not anticor-
relations), but these correlations have saturated and are no
longer growing with depth t . Their horizontal range grows as
the square root of the vertical separation between the beads, τ .
The correlations die away well before we reach the boundary
of the support cone, just as they do in the critical regime.

We turn now to the second contribution to the vertical
correlations in the direct case, namely, the sum over terms with
k �= m in Eq. (20). In the scaling regime we may approximate
the binomial coefficients in Eq. (20) as a Gaussian, convert
the sum into an integral, and extend the range of integration to
infinity to obtain

cv(m,t,τ ) =
∫ ∞

−∞
dk

1√
πτ

exp

(
−k2

τ

)
ch(m − k,t). (25)

Using Eq. (12) for ch we may perform the integral over k

explicitly to obtain

cv(m,t,τ ) − 1 = − 1√
π

exp

[
− (mδ)2

(t + τ )δ2

] ∫ ∞

0
ds e−s2/4

× exp

[
− s

(√
(t + τ )δ2 − mδ√

(t + τ )δ2

)]
.

(26)

Note that this contribution to the vertical correlation function
is also of the conjectured form of Eq. (5), with the same
critical exponents β = 0,ν = 1, and z = 2. It is noteworthy
that this contribution is a function only of (t + τ )δ2 and the
ratio mδ/

√
(t + τ )δ2; it is a more restricted function of its

arguments than required by the scaling form Eq. (5). The full
vertical correlation in the direct case is the sum of Eq. (22)
and Eq. (26); however, as noted above and shown below,
the contribution of Eq. (26) is generally dominated by the
contribution of Eq. (22).

To gain further insight into the second contribution to the
direct vertical correlations, it is useful to consider the limiting
behavior of Eq. (26) in the critical regime (tδ2 � 1) and the
saturated regime (tδ2 � 1). In the former limit the dependence
on δ cancels and we find

cv(m,t,τ ) − 1 = − 1

π
exp

(
− m2

t + τ

) ∫ ∞

0
ds e−s2/4

× exp

(
ms√
t + τ

)
. (27)

Equation (27) is still a formidable expression but it simplifies
to cv(m,tτ ) − 1 ≈ −1 for m/

√
t + τ � 1 and to cv(m,t,τ ) −

1 ≈ −2 for m/
√

t + τ � 1. Thus the second contribution to
the direct vertical correlation in the critical regime corresponds
to a weak anticorrelation that is negligible compared to the
strong positive correlation implied by the first contribution,
Eq. (23). Next let us consider the saturated regime (tδ2 � 1).

In this regime Eq. (26) simplifies to

cv(m,t,τ ) − 1 = −1

δ

1√
π (t + τ )

exp

(
− m2

t + τ

)
. (28)

Equation (28) should be compared to the first contribution,
Eq. (24). Thus in the saturated regime, too, the second
contribution to the direct vertical correlations is smaller than
the first contribution.

In summary, in the direct case the vertical correlation is the
sum of two contributions, both of which have the conjectured
universal scaling form, Eq. (5), with exponents β = 0, ν = 1,
and z = 2. The first contribution, Eq. (22), corresponds to
a positive correlation and generally dominates. The second
contribution, Eq. (26), corresponds to an anticorrelation and is
generally subdominant. It is illuminating to look at the limiting
behavior of the two components in the critical regime (tδ2 �
1) and the saturated regime. In the critical regime the first
contribution is given by Eq. (23) and the second contribution,
which lies between −1 and −2, is given by Eq. (27). In the
saturated regime the first contribution is given by Eq. (24) and
the second contribution by Eq. (28).

Finally, we now turn to the vertical correlation in the indirect
case, |m| > τ . In this case the first contribution is absent, since
the term k = m lies outside the range of the sum in Eq. (20).
Thus in the indirect case there is only a weak anticorrelation
between beads given by Eq. (26). This concludes our analysis
of the vertical correlations.

IV. CONCLUSION

In this paper we add to the existing body of known
results about the q model by obtaining results on the exact
horizontal and vertical correlation functions. We show that
the correlation functions have a universal scaling form close
to the critical point identified in previous work [8] and we
determine the scaling form and associated critical exponents.
It is intriguing that the q model, which describes physics
far from equilibrium, nonetheless shows behavior reminiscent
of equilibrium thermodynamic critical phenomena. Among
the many questions that our work leaves open, we here
mention two. First we note that it may be possible to calculate
three-point and higher correlation functions by means of
a non-Hermitian generalization of the Bethe ansatz [13].
Second, it is desirable to determine the dynamics of the entire
distribution of load on a single bead. Reference [8] obtained the
dynamics of the entire distribution right at the critical point,
and Snoeijer and van Leeuwen [12] studied the large depth
asymptotic dynamics of the load distribution in a case far from
the the critical point. Close to the critical point Ref. [8] made
a scaling hypothesis about the form of this distribution and it
remains of interest to verify this conjecture via numerics or
exact solution.
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