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Lift and drag forces on an inclined plow moving over a granular surface
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We studied the drag and lift forces acting on an inclined plate while it is dragged on the surface of a granular
media, both in experiment and in numerical simulation. In particular, we investigated the influence of the
horizontal velocity of the plate and its angle of attack. We show that a steady wedge of grains is moved in front
of the plow and that the lift and drag forces are proportional to the weight of this wedge. These constants of
proportionality vary with the angle of attack but not (or only weakly) on the velocity. We found a universal
effective friction law that accounts for the dependence on all the above-mentioned parameters. The stress and
velocity fields are calculated from the numerical simulations and show the existence of a shear band under the
wedge and that the pressure is nonhydrostatic. The strongest gradients in stress and shear occur at the base of the
plow where the dissipation rate is therefore highest.
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I. INTRODUCTION

The forces required to disturb the surface of soil have been
an important concern of humankind since the invention of
the plow, the principal animal-powered tool for this task,
about 6000 years ago [1]. In this paper we consider the
forces on the simplest possible plow, a flat blade inclined
in the direction of motion, interacting with the simplest
possible soil, a noncohesive granular material. Remarkably,
this ancient problem has recently received significant attention
[2,3] because of renewed interest in the complex and poorly
understood rheology of dry granular materials [4].

A simple inclined blade has also been studied as a surrogate
for the more complicated situation of a rolling wheel moving
over a granular roadbed [5–12]. Both plows and rolling wheels
exhibit an oscillatory instability that produces a spontaneous
rippling of the roadbed, leading to a condition known as
washboard or corrugated road. Washboard ripples bedevil
drivers on unpaved roads worldwide, and their mitigation
is a serious engineering challenge [13–15]. The modern
framework of nonlinear pattern formation [16] gives new
insight into the formation of washboard ripples [10–12]. A
key feature of the washboard instability is the existence of a
critical speed vc below which the flat roadbed is stable. It has
been shown that neither a spring and dashpot suspension nor
compaction of the roadbed is essential to the existence of the
instability [10]. For a wide plow, the problem can be reasonably
studied in a two-dimensional (2D) vertical plane. Dimensional
analysis arguments suggest [10,11] that the critical speed for
the instability scales as vc ∼ (mg2/ρw)1/4, where g is the
acceleration due to gravity, m is the mass of the plow, w is its
width, and ρ is the density of the granular material [11].

In this paper we examine the case of a fixed plow
using a combination of experiment and molecular dynamics

simulation. An understanding of this basic state is a prereq-
uisite to the elucidation of its subsequent instability to form
a washboard pattern. To do this, we must account for the lift
and drag forces experienced by the plow as a function of its
speed v and its vertical position y, relative to the position of
the undisturbed surface y0. These forces are related to their
familiar hydrodynamic equivalents, but, as we will show, a
straightforward fluid mechanical analogy is not particularly
helpful.

The lift and drag forces acting on a totally immersed
intruder in a granular medium have been studied for more than
30 years [17–21]. In a recent paper on immersed intruders [3],
it was observed that the lift and drag forces exhibit a strong
correlation, indicating that they scale similarly with system
parameters. Gravish et al. [2] considered the drag on a vertical
blade that plowed the free surface of a granular medium and
found oscillatory flow in certain regimes. This paper concerns
the similar case of a fixed inclined blade for which this type of
oscillation is not observed. Our main result is that the plowed
material behaves as a solid block sliding over the granular
bed. By focusing on the basic state of a flat bed, this study
opens the way to a better understanding of the washboard
instability.

This paper is organized as follows: In Sec. II and Sec. III
we describe the experimental apparatus and the numerical
simulations. The results of both of these are presented in
Sec. IV. Section V contains a general discussion, while Sec. VI
presents our conclusions.

II. EXPERIMENT

The experimental apparatus, shown schematically in Fig. 1,
consisted of a circular track that is 25 cm high and 25 cm wide.
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FIG. 1. (Color online) A schematic view of the experiment. The
system consists of a circular track that is 5 m long, 25 cm wide, and
25 cm high filled with sand. A plow is moved over the sand bed at
constant (but variable) horizontal velocity and vertical position.

It is filled with sand of typical grain size 300 ± 100 μm. The
circumference of the track was L = 5 m.

A plow consisting of a flat, inclined blade was moved
around the track by a rotating arm. It was held at a fixed,
but adjustable, vertical position y, relative to the position y0

of the undisturbed bed. The plow was a 15-cm-wide PVC
plate, and its angle of attack α with respect to the horizontal
could be varied. The plow blade was rigidly attached to a
translation stage, which allows its vertical position y to be
adjusted to within a precision of 5 μm. The speed of the plow
over the roadbed can be varied from 0.1 to 1.5 ms−1, which
covers the range of speed where the washboard instability
occurred in previous experiments [11]. However, in the fixed
plow experiments we discuss here, no washboard instability
occurs, and the roadbed is always smoothed by the motion of
the plow. These values of the speed are high enough to produce
a continuous-flow regime and low enough to avoid a gaseous
regime.

The contact forces acting between the plow and the sand
were measured by two force transducers (Testwell KD40S)
operating in parallel. Using two transducers reduces the torque
acting on them and increases the stiffness of the plow support
system. The force transducers provide a voltage proportional to
the stress exerted along their axis. The sum of the transducer
voltages was amplified and digitized at 500 Hz. Since the
force transducers are sensitive to only one direction of stress,
we modified the arrangement of the transducers in order to
measure the two perpendicular forces, lift and drag, in different
runs of the experiment.

The action of the plow pushes a triangular mound of sand
in front of the blade. The geometry and flow of this plowed
material is crucial to producing the lift and drag forces. We
measured the upper position of this mound on the blade
using a one-dimensional laser position sensor (optoNCDT

FIG. 2. A schematic view of the forces on the plow and of the
geometry of the mound of plowed sand. The drag force FD is defined
to be the horizontal component of the force, while the lift FL is the
vertical one. M is the total mass of the mound of plowed sand, which
varies with the speed of the plow v.

1302). This device provided the length � of the part of the
mound that was in contact with the plow blade, as shown in
Fig. 2. The length � was measured to within an accuracy of
0.2 mm.

Further measurements were performed using a laser sheet
that allows for the computation of the entire shape of the mound
of plowed sand. We found that this shape can be reasonably
approximated by a triangular prism with a constant dynamic
angle of avalanche θ � 35◦.

The mound was uniform across the front of the plow, which
had lateral width w, and the sand was prevented from escaping
around the ends of the plow by thin forward-facing fins on each
end of the plow. Given the angle of attack of the plow α, the
volume V of the mound is determined if � and the angle of
avalanche θ are known. The mound contains sand with mass
M = ρφV , where ρ is the density and φ is the compaction of
the grains. Combining this information gives the mass of the
sand in the mound:

M = ρφV = 1

2
w ρ φ �2 sin2 α

(
1

tan α
+ 1

tan θ

)
. (1)

In this experiment, w = 15 cm and ρ = 2500 kg m−3. We
will show in what follows that the length � changes with the
speed v and position y of the plow, while the other quantities
in Eq. (1) remain constant.

The forward flow down the front of the mound produced a
constant angle of avalanche that was found to be θ = 35◦ for
any plow velocity v and angle of attack α. By collecting and
weighing the mound of plowed sand we found the compaction
of the mound was essentially constant with φ = 0.55. It will
emerge that the mass M is the main dynamically important
quantity that is required to understand the lift and drag forces
on the plow blade.

The experimental protocol was as follows. Initially, the
plow was lifted above the sand surface and remained empty.
Then its vertical position y was slowly decreased until it
plowed ahead of it a mound of grains with a mass of nearly
1 kg. The plow was then kept fixed at this position for at
least 10 rotations around the track. After this preconditioning
step, force measurements were begun. The vertical position
of the plow was increased in steps of approximately 10 μm
every 2 seconds. In this way the mound ahead of the plow was
slowly drained, so that after 5 to 15 rotations it was empty
again. Lifting the plow five times faster or slower did not
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FIG. 3. A typical snapshot of the 2D molecular dynamics sim-
ulations (showing just the region of interest). A plow is dragged at
constant velocity and vertical position over a layer of grains that is
periodic in the horizontal direction.

change the measured forces significantly, so we may assume
that the system evolved quasistatically.

III. NUMERICAL SIMULATION

Two-dimensional molecular dynamics simulations were
carried out to model the granular motion in the vertical plane
perpendicular to the face of the plow. A snapshot of such a
simulation is shown in Fig. 3. While such 2D simulations
cannot provide quantitative agreement with experiments, they
provide good qualitative agreement and can be used to gain
insight into the origin of the lift and drag forces. In addition, the
simulations allow studies of the positions, forces, velocities,
and stresses on individual simulated grains, which are difficult
to measure directly in an experiment.

The simulation models the individual grains as deformable
disks, rotating and colliding with one another. The collision
forces acting on each grain are computed each time step, and
the equations of motion are integrated using the Verlet method
[9]. The collision force acting between two colliding grains is
computed from their overlap δ. A spring-dashpot scheme is
used to compute the normal force Fn given by

Fn = −2
kr

R
δ − ηR

2r
δ̇, (2)

where R is the mean radius of the grains and 1/r = 1/ri +
1/rj , where ri and rj are the radii of the two colliding grains,
and k and η are parameters. The first term describes a Hertz’s
law repulsion due to the small overlap δ of the two disks
(whereas Fn ∝ δ3/2 for spheres). The second term in Eq. (2)
describes the dissipation during collisions, which is linear in
the velocity δ̇ = dδ/dt .

The tangential force acting between colliding grains Ft

was computed using a two-parameter regularized Coulomb
scheme [22]:

|Ft | = min(μFn,γtvs), (3)

where the microscopic friction coefficient μ was 0.3, while
the slope of the regularized region was γt = 100 and vs is the

sliding velocity of the contact. A tangential spring model [22]
was also tested and showed no significant differences.

A typical numerical simulation used 20 000 disks with a
20% polydispersity in their diameter to prevent crystallization,
giving a periodic domain of length L = 500 d and depth
y0 = 40 d. We used the average diameter d, the average mass m̄

and
√

d/g as the units of length, mass, and time, respectively.
In these units, the moment of inertia I = m̄d2

8 = 1/8. Unless
otherwise specified, we used parameters k = 104 and η =
7.085, so that the coefficient of restitution of a collision is
e = 0.8. The time step was chosen to be about 1% of the
collision time τ = π

√
m̄/(2k).

The simulation used periodic boundary conditions in the x

direction, which mimics the circular track of the experiment.
The simulated plow was formed of smaller disks (10 times
smaller) fused together. The size of the disks forming the plow
does not change the results as long as they remain much smaller
than the disks in the bed. The layer of disks was prepared by
dropping grains with a random initial position and velocity, and
then left to settle under gravity. A numerical run began with
the plow above the surface. Its horizontal speed v was constant
throughout the run, while its vertical position was slowly
decreased through y0 until it reached the desired height y.
Thereafter, the numerical system was allowed to evolve to a
statistically stationary state (after several “rotations”). The lift
and drag forces on the plow were defined to be the sum of the
vertical and horizontal forces, respectively, on all the grains
making up the plow.

In the 2D simulation, the mass of the plowed mound can be
found from a similar geometrical measurement of � following
Eq. (1), or by estimating the area occupied by the disks above
the level y of the tip of the plow. Since the velocities of the
individual grains are known in the simulation, a third definition
of M is the following:

M = 1

v

N∑
i=1

mivi, (4)

which implicitly computes the average mass of the grains that
are carried along at the speed of the plow. All three methods
gave the same results for the simulations.

IV. RESULTS

In this section we diagnose the origin and parameter
dependence of the lift and drag forces by moving back and
forth between the experiment and the 2D simulations. We will
then show how the data in each case may be scaled to produce
a general result that can be seen as a simple Coulomb’s law of
friction with an effective friction coefficient.

A. Frequency spectrum of the lift and drag forces

We studied time series of the lift and drag forces in both
the experiment and in simulation (for velocities for which
the washboard instability develops when the plow is free to
move vertically). Both forces naturally fluctuate as the noisy
granular flow proceeds, even in the steady-state regime. As
shown in Fig. 4, the Fourier power spectra of these time series
show a roughly power-law dependence on frequency, with no
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FIG. 4. The Fourier power spectrum of a time series of the lift
force FL found in experiments (left panel) and simulation (right
panel). The spectrum of the drag force FD is similar. No special
frequencies are evident in the flow in either case. The dashed lines
have a slope −1.

special frequencies evident and an exponent of roughly −1.
This indicates that the flow of the grains is continuous in
the regime of plowing speeds we consider, in contrast to the
oscillatory flows observed in previous experiments at lower
speeds [2]. In addition, Gravish et al. [2] showed that the
oscillations in the drag force increase with increasing packing
fraction of the sand bed. In our system that packing fraction is
rather low since the sand bed is decompacted at each rotation.
The qualitative agreement between the experiments and the
numerics is excellent.

This rather simple result has important implications for
the mechanism of the instability to washboard road, in the
case when the plow is free to move vertically. The absence of
special frequencies for flow around the fixed plow indicates
that the washboard instability is not merely triggered by some
internal oscillatory avalanching mode characteristic of the
plowed material alone. Instead, the continuous flow regime
must become unstable to an oscillatory mode with a new
frequency that emerges from the coupled motion of the grains
and the free plow itself. For the present fixed plow study, this
result simply means that we can characterize the lift and drag
forces by their average values in the steady state.

B. Influence of the plowing speed

The lift and drag forces increase with the plowing speed v

for fixed altitude y and angle of attack, both in the experiment
(Fig. 5 left) and in the simulations (data not shown). This
increase is a manifestation of the increase in the volume of
plowed material that builds up in front of the blade, which
increases with v (Fig. 5 right).

Figure 6 shows the remarkable result of this analysis (for
an angle of attack of α = 45◦): The lift and drag forces exhibit
a simple linear relationship when plotted as a function of
the plowed mass M , roughly independent of the plowing
speed v. This shows that FL and FD are not directly velocity
dependent, as would be the case for hydrodynamic forces,
but rather depend only indirectly on velocity, via the mass
of the mound of plowed material and small changes to
the effective friction. Again, note the excellent qualitative
agreement between experimental and numerical results.
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FIG. 5. On the left, FD as a function of v for a constant altitude
of the bottom of the plow. On the right, M as a function of v.

This behavior is quite consistent with previous experiments
on totally immersed intruders [17,21], in which it was observed
that the drag or lift forces have an extremely weak dependence
on velocity. This result shows that it is not possible to make
any straightforward analogy with a hydrodynamic system such
as skipping stones [12,23], since both viscous and inertial
hydrodynamic forces crucially depend on v.

The simulations can be extended to very high velocities
where the bed becomes fluidized and the drag and lift forces
become strongly velocity dependent. This regime is far above
what is accessible experimentally, however.

C. Influence of the angle of attack

We repeated the experimental protocol described above for
different angles of attack α. For each angle, the plow was
operated at three different velocities, 0.2 m s−1, 0.5 m s−1,
and 1.0 m s−1 and various values of the vertical position y.
As before, we found that the lift and drag forces depend on
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(simulation only).

the mass of the plowed material M and not directly on the
velocity. Figure 7 shows how the forces depend on M and α.
In Fig. 7 the forces were averaged over the three velocities.
A similar protocol was used in the simulations. As might be
expected, the lift force FL decreases with the angle of attack.
Interestingly, the drag force has a similar dependence on α.
These data incorporate some small contributions due to the
nonzero thickness of the plow blade.

The experiments and the simulations show again a very
good agreement.

In the following, we will show how this phenomenology can
be understood and these data collapsed onto a single curve. We
next turn to the simulations for insight into the interior of the
flowing granular material.

D. The interior of the plowed material

Figure 8 show several views of the results of the 2D
simulation. We can clearly see the triangular region of the
plowed material and the forces and flows within it.

Within the plowed material, the streamlines in Fig. 8(a),
computed in the moving frame of reference of the plow, show
a region of forward circulating flow just below the free surface
of the plowed material. Nearer the bottom tip of the plow, the
flow is downward. On the face of the plow, the flow velocity
is nearly zero relative to the plow. The packing fraction φ is
quite homogeneous in the plowed sand, similarly to what was
measured experimentally, although the values are much higher
in this 2D system. The plowed material slips over the bed at
a well-defined region of high shear running horizontally from
the bottom of the plow to the end of the free surface.

This shear band, shown in Fig. 8(b), cleanly separates the
plowed material, which is mostly carried along with the plow,
from the sand in the bed, which makes its way under the tip of

FIG. 8. (Color online) Four views of the simulation, showing
different aspects. (a) Packing fraction φ (color) and average motion
of the grains in the plowed region. Arrows show the velocity field in
the frame of reference of the plow, and the solid lines are streamlines.
(b) Shear rate γ̇ in the plowed material and (c) the pressure σ

distribution. (d) Dissipated power per unit volume.

the plow. Along this band, there are two localized regions of
very high shear, one near the tip of the blade, and the other at
the forward toe of the slip face.

Using the simulation, we can learn more about the origin
of the drag forces by considering the energetics of the flow
both locally and globally. Denoting by E, K, and U the total
energy, total kinetic energy, and total gravitational potential
energy of the grains, global energy conservation requires

dE

dt
= dK

dt
+ dU

dt
= Pi + Pd, (5)

where Pi is the total power injected by the machinery driving
the plow and Pd is the total power dissipated by the grains. In
steady state, the total energy is constant and

Pd = −Pi = FDv. (6)

This implies that the drag force is due to the dissipation in
the whole of the flowing granular material. By measuring the
drag force and independently integrating the local dissipation
over the flow we checked that this steady-state result is indeed
true. In particular this shows that the time step used in the
simulation is not too large.

The local dissipation comes from two sources, the col-
lisional restitution and the friction between the grains. The
collisional dissipation is due to the form taken for the normal
forces, given by Eq. (2), and depends on the parameters k

and η, which contribute to the coefficient of restitution e. The
frictional dissipation depends on the form of the tangential
forces and depends on the friction coefficient μ used in the
regularized Coulomb scheme given by Eq. (3). It is possible
to calculate the total power dissipated by each of these
mechanisms, so that

Pd = Pc(e) + Pf (μ), (7)

where Pc and Pf are the total dissipation by collisional
and friction forces, respectively. Figure 9 shows the fraction
of the total dissipation due to friction forces as a function of
the friction coefficient μ for various values of e. As long as
the friction coefficient is reasonably high (μ > 0.2 � tan 11◦),
most of the dissipation is frictional (approximately 80%), even
for relatively low values of the restitution coefficient (e = 0.5).
For lower values of the friction it is expected that most of the
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total dissipation should originate from the inelasticity of the
collisions.

Returning to Fig. 8, we can use the simulation results to
examine the localization of the dissipation within the flow.
Figure 8(c) shows that the pressure is concentrated near the
tip of the plow. This pressure maximum is much larger than
what the hydrostatic pressure would be at that depth. The
combination of the high pressure with the high rate of shear at
the tip of the plow gives a highly localized region of dissipation,
as shown in Fig. 8(d). This dissipation is due to the large
loading of the sliding frictional contacts in this small region.

The simulation thus gives us a rather clear picture of the
processes within the flow that give rise to the dissipation,
and hence the drag force. The plowed material is an undilated
region of circulating flow with a well-defined triangular shape,
as sketched in Fig. 2. This material slides over the grains in
the bed at its lower surface. Its geometry and mass M depend
on the plowing speed v, plow depth y, and angle of attack α

in such a way that the lift and drag forces are linear in M and
independent of v.

V. DISCUSSION

The linear relationship between the lift and drag forces
and the plowed mass M suggest that all the forces might
be accounted for by modeling the plowed material as a
solid sliding block moving over a flat surface with Coulomb
friction. The lift and drag forces on the plow, shown in Fig. 2,
have corresponding equal and opposite reaction forces on the
plowed material, considered as a triangular solid block. The
reaction to the lift force FL acts downward on the block, while
the reaction partner of the drag force FD pushes the block
forward in the direction of 	v. In addition, the block weight
Mg, is exerted downward. Modeling the shear band shown in
Fig. 8(b) as a simple sliding surface with Coulomb friction
subjected to a normal force FL + Mg, we arrive at a simple
relationship between FD , FL, and M ,

FD = μeff(FL + Mg). (8)

Figure 10 shows that this model relationship achieves a near
perfect collapse of all the data for both experiment and
simulation, using a single universal value of μeff in each case.
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FIG. 10. The drag force FD as a function of total downward force
FL + Mg on the plowed material, modeled as a simple sliding block.
Good data collapse is found for all speeds v, vertical positions y, and
angles of attack α, in both the experiment (left panel) and simulation
(right panel).

For experiments, we find μeff = 0.7, while the simulations give
μeff = 0.3. This difference reflects the rather ideal nature of the
2D simulations, which used perfect disks, which makes them
only a very qualitative model of the real grains. Nevertheless,
the main features of the flow are recovered by the simulation,
including all the qualitative parameter dependencies observed
experimentally.

Having found a linear law between the drag FD and the
plowed mass M , FD = μD(α)Mg, on the one hand, and the
lift FL and M on the other hand, FL = μL(α)Mg, it is expected
that FD should also be a linear function of FL + Mg [Eq. (8)].
Therefore,

μeff = μD(α)

1 + μL(α)
.

However, our results show that μeff is indeed a constant,
meaning that the dependence on α cancels out. This universal
effective friction law demonstrates that the horizontal drag
force FD is a simple function of the vertical force FL + Mg

and depends only indirectly on the altitude y, the velocity v,

and the angle of attack α.

VI. CONCLUSION

We have studied both experimentally and numerically the
drag and lift forces on an inclined plow blade acting on the
surface of a dry granular material. We considered the case of
a wide plow that had no grains flowing around its ends. The
flow was nearly 2D and could thus be simulated in the vertical
plane. We studied how the forces depended on the mass and
geometry of the mound of granular material transported by the
blade. Using molecular dynamics simulation, we examined
the forces, flow, and energy dissipation within this plowed
material. We found that the flow is steady in the velocity regime
we studied, so that the washboarding instability of a free plow
could not be explained by any preexisting unsteady motion
within the plowed material in front of the fixed plow. The lift
and drag forces did not depend significantly on the velocity
of the plow if they are considered as functions of the mass
of the transported material. We also found that the two forces
and the weight of the plowed material could be combined into
a simple relationship in which the plowed material behaves
as a solid block sliding over the underlying granular bed.
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The sliding was characterized by a single effective Coulomb
friction coefficient.

The case of the fixed plow discussed in this paper must be
generalized in order to establish a linear stability analysis of
a free plow, which is unstable to the formation of washboard
ripples. Nonstationary states of the plow and of the mound
of plowed material, and the time-dependent effect of these
on the lift and drag forces, must be accounted for in such a
stability analysis. In future work the response of the system
to small, imposed vertical oscillations at various frequencies

will be studied using the same experimental and simulation
techniques described here. This approach will shed some light
on the dynamic origin of the washboard instability.
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