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Equation for the force experienced by a wall overflowed by a granular avalanche:
Experimental verification
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The present paper deals with the force experienced by a wall overflowed by a granular avalanche. First, we
briefly report laboratory tests on dry granular avalanches overflowing a wall down a rough channel. In the first
step, the thickness and velocity of the control flows without a wall are measured. In the second step, a wall is
mounted to obstruct the flow and the normal force experienced by the wall is measured. Then a set of equations
based on depth-averaged momentum conservation, making it possible to derive the time-varying force on the wall,
is described. The model was proposed and calibrated in two-dimensional (2D) discrete numerical simulations in
an earlier work [Chanut, Faug, and Naaim, Phys. Rev. E 82, 041302 (2010)]. This model takes into account the
fact that a quasistatic stagnant zone is established upstream of the wall and coexists with an inertial flowing zone
above. For a large range of slopes, the model’s prediction is successfully compared to experimental data with a
reasonable estimation of the incoming flow density and in spite of some rough assumptions made to describe
the dynamics of the dead zone. Finally, the results are analyzed with regard to previous 2D discrete numerical
simulations and we discuss future work to be undertaken on the dynamics of the dead zone established upstream
of the wall.
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I. INTRODUCTION

Understanding granular flow dynamics around obstacles
and the force exerted by the flow on the obstacle is an
important question in different fields such as storage and
conveying processes in industry [1] or defense structures
against geophysical flows [2,3]. Certain studies have focused
on the drag experienced by various objects inside granular
flows. The quasistatic regime, from the pioneering work
of Wieghardt [4] to more recent studies [5–9], has been
investigated. The rapid-dilute regime has been also studied
[10–16]. Besides quasistatic (solid) and rapid-dilute (gaseous)
regimes, granular flows can exhibit an intermediate dense
regime [17], referring to the so-called granular liquid regime
[18]. However, the theoretical description of dense-liquid
granular flows remains an open question in spite of recent
progress [18,19]. Little attention has been paid to granular
force on objects in this intermediate flow regime.

This paper focuses on channelized dense dry granular
avalanches overflowing a flat obstacle spanning the channel.
The time-varying force on the wall exerted by the free-surface
gravity-driven flow is analyzed by cross-comparing the new
laboratory tests and the prediction of an analytical model
based on depth-averaged momentum conservation previously
developed for two-dimensional (2D) granular flows and
calibrated using discrete element method (DEM) numerical
simulations [20,21]. In the presence of a large obstacle—a wall
spanning the flow—these experiments show the formation of a
quasistatic stagnant zone upstream of the wall which coexists
with an inertial zone overflowing the wall (see Fig. 1). It is
important to notice that this flow-obstacle interaction regime,
obtained on a rough bed, does not refer to granular jumps
outlined earlier for rapid flows on relatively smooth beds
[22–25]. By successfully cross-comparing the experimental
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force to the analytical prediction, this study demonstrates the
robustness of the proposed equation to link the growth of the
dead zone to the mean resulting force on the wall.

The experimental setup and procedure to investigate gran-
ular avalanches impacting a wall—normal to the incident
flow and the bottom—are presented in Sec. II. Section III is
dedicated to a succinct description of the analytical model
(previously reported in detail in Ref. [20] for the steady
regime and in Ref. [21] for the avalanche regime), which
aims at predicting the force from a granular avalanche on a
wall in the presence of a dead zone. Section IV deals with
the cross-comparison between the laboratory data and the
model’s prediction in term of the time-varying force on the
wall. Finally, the paper is concluded with a discussion on
the results and on the prospective work with respect to dead
zone dynamics.

II. LABORATORY TESTS

The experimental setup is a 1.3-m-long and 0.25-m-wide
rough (sandpaper) channel mounted on an incline whose slope
angle θ can be varied. The channel is equipped with a reservoir
to store the granular material released by opening a gate at a
constant height H0 = 3.5 cm. The granular material consists
of glass beads (a constant mass, m = 9.2 kg, is released for
each test) with a mean diameter d = 1 mm and a particle
density ρP = 2450 kg m−3. A sketch of the experimental setup
is depicted in Fig. 2. The material was characterized by the
angles θmin = 20◦, related to the effective friction associated
with quasistatic deformation, and the angle θmax = 28◦ related
to rapid collisional flows. These angles were derived from
the function hstop(θ ), similarly to the procedure described in
Refs. [19,26] (see inset in Fig. 1). Two series of experiments
were conducted within a large range of slopes, each degree,
from 21◦ (just above θmin, for which the avalanche release is
prevented) to θc = 33◦, relatively larger than θmax.
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FIG. 1. Granular avalanche overflowing a wall of height H =
25d (example for laboratory tests at θ = 31◦): coexistence of a
quasistatic stagnant zone and a flowing inertial zone upstream of
the wall. The snapshot is the sum of 15 images in order to distinguish
the flowing zone and the stagnant zone. (Inset) Function hstop(θ ).

Control avalanche flows—in the absence of the wall—
were first studied. The time-varying flow thickness h(t) was
measured at the distance x0/d = 1300 from the gate (channel
exit) using a laser sheet deflected by the granular mass and
a high-speed video camera recording the images from 200
to 350 fps depending on the slope inclination. The surface
velocity us(t) was measured using the granular particle image
velocimetry (PIV) method with the high-speed video camera
fixed normal to the flow surface. Figure 3 gives the change over
time of the thickness h (thick dashed lines) and the surface
velocity us (solid lines) for three slope inclinations: θ = 21◦,
27◦, and 33◦. The thickness and the velocity are normalized by
the particle diameter d and the typical velocity

√
gd (based on

the particle diameter), respectively. Curves highlight that the
time ti to reach the location x0/d where the measurements
are made decreases, not surprisingly, when the slope angle
is decreased. Three avalanche phases characterizing the time-

FIG. 2. (Color online) Sketch of the experimental setup. A finite
volume (hatched area) of an assembly of beads (mean diameter d) is
suddenly released from the reservoir by an aperture of height H0 =
35d , and the grains flow down the inclined slope. In the inset is shown
the wall spanning the flow: Only the ten central centimeters over the
25-cm width of the channel was connected to the two force sensors
(the white arrow indicates the avalanche flow direction).

FIG. 3. Laboratory tests. Normalized thickness h/d (thick dashed
lines) and surface velocity us/

√
gd (solid lines) of the granular

avalanches versus time t for three slope inclinations: θ = 21◦ (black),
27◦ (gray), and 33◦ (light gray).

varying phenomenon are generally evidenced: (i) an increase
in h and us , (ii) a maximum or even a plateau, and (iii) a
more or less rapid decrease of h and us . Both the jamming
transition at θ = θmin and the dense-to-dilute transition around
θ = θmax were evidenced from these measurements on control
avalanche flows (see details in Ref. [27]). Analyzing in detail
the experimental h and us data is beyond the scope of the
present paper. These data will be used as an input for the
model’s equations presented in Sec. III.

In the second step, a wall of height H = 25d spanning
the whole width of the channel was placed at the channel
exit. The time-varying normal force F (t) exerted on the
wall was measured with two XFT C300 piezoelectric sensors
measuring the tension value at a frequency of 1 kHz. A
specific sensor calibration (tension-force relation) as well as
validation procedures (based on various known masses applied
on different positions along the obstacle) were designed to
ensure the accuracy of the force measurement (see details in
Ref. [27]). Note that only the ten central centimeters, over the
25-cm width of the channel, was connected to force sensors in

FIG. 4. Laboratory tests. Force per unit width, F/�, measured on
the wall versus time t for three slope inclinations: θ = 21◦ (black),
27◦ (gray), and 33◦ (light gray).
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order to avoid resonance phenomena, as is shown in inset of
Fig. 2. Figure 4 provides the measured force per unit width,
F/�, on the wall for three slope inclinations: θ = 21◦, 27◦, and
33◦. � corresponds to the width of the part of the wall connected
to the force sensors (� = 100d). Again, one can observe that
the time ti to reach the obstacle decreases when the slope
angle is decreased. Force signals also show the three avalanche
phases characterizing the time-varying phenomenon: (i) an
increase in force, (ii) a maximum in force or even a plateau,
and (iii) a more or less rapid decrease of the force. More
experimental data about the force are presented elsewhere [27]
and in Sec. IV, where these data are compared to the prediction
of the analytical model described in Sec. III.

The changes over time (i) in thickness and velocity for
control flows and (ii) in force are described and analyzed in
detail in Ref. [27]. The present paper focuses on the cross-
comparison between the laboratory data and the analytical
model recently proposed to describe the force from granular
avalanches on the wall when a stagnant zone coexists with a
flowing zone above [21]. The model’s equations to link the
force to incoming flow depth and velocity are presented in the
following section.

III. THEORETICAL FRAMEWORK

A. Depth-averaged momentum conservation

The following is a succinct description of the theoretical
framework. Further details can be found in previous studies
[20,21]. Figure 1 gives a sketch of the flow geometry upstream
of the obstacle. We define V0 as the upstream volume disturbed
by the obstacle. V0 includes the volumes of the stagnant zone
and of the flowing zone above (see hatched zone in Fig. 1).
Depth-averaged momentum conservation applied to V0 leads
to (see details in Refs. [20,21])

F = FN
u + Fh + FN

w − μ̄zm

[
FT

w + FT
u

] + Fmv, (1a)

FN
u

/
�c = βφ̄ρP ū2h[1 − δu cos α], (1b)

Fh/�c = 1

2
kφ̄ρP gh2 cos θ, (1c)

FN
w

/
�c = φ̄0ρP

V0

�c

g sin θ, (1d)

FT
w

/
�c = φ̄0ρP

V0

�c

g cos θ, (1e)

FT
u

/
�c = −βφ̄ρP ū2hδu sin α, (1f)

Fmv/�c = −1

2

d

dt
[ρ̄ū(1 + δu)] , (1g)

where F is the total normal force on the wall and �c is the
channel width, which has to be taken into account here contrary
to 2D DEM simulations reported in Ref. [21]. h, ū, and φ̄ are,
respectively, the flow thickness, the depth-averaged velocity,
and volume fraction at section S (see Fig. 1). Equation (1b)
defines FN

u , which is the normal component of the force due
to momentum variation between sections S and S∗. In order to
derive FN

u , we defined the Boussinesq coefficient β related to
the velocity profile in depth, the deflection angle α with respect
to the flow bottom, and the velocity ratio δu = ū∗/ū, where ū∗
is the depth-averaged velocity at section S∗. Equation (1c)

gives Fh, which is the pressure force of the incoming flow. k is
classically defined as the earth pressure coefficient [28]. FN

w is
the normal component of the weight of the control volume V0.
φ̄0ρP V0, in Eq. (1d), is the mean mass of the control volume
assumed to be equal to

φ̄ρP

(
V0 − 1

2HL�c

) + 1
2φmaxρP HL�c, (2)

in order to consider the compaction of the stagnant zone
with respect to the flowing zone above. It is assumed that
the dead zone has a triangular shape and L is its length (see
Fig. 1). φmax is defined hereafter. The term μ̄zm[FT

w + FT
u ] is

the basal friction force between the dead zone and the rough
bottom of the channel. It takes into account one contribution
from the tangential component of the weight of the control
volume (FT

w ) and another contribution from the tangential
component of the force due to momentum variation between
sections S and S∗ (FT

u ). μ̄zm is the space-averaged coefficient
of effective friction between the stagnant zone and the bottom
(see detail in Refs. [20,21] and in Sec. III B). Fmv is the
force due to momentum variation over time inside the control
volume (Fmv = 0 in steady regime [20]). Detailed calculation
to obtain Eq. (1g) is given in Ref. [21] based on the main
assumption that the mean density and velocity are equal to φ̄ρP

and 1
2 (ū + ū∗), in the volume V0 − 1

2HL�c (control volume
V0 minus the volume of the stagnant zone). The mass flux
from the inertial zone to the quasistatic zone is neglected:
We assume φ̄∗ū∗h∗ � φ̄ūh for any time t , where φ̄∗ and h∗
are volume fraction and thickness, respectively, at section S∗.
This assumption is reasonable except for times shorter than
the characteristic time of the dead zone formation. The control
volume V0 is derived from geometry:

V0

�c

= hL

2

[
2 +

(
L

h
− δh sin α

)
tan γ + δh

L
(H − h) sin α

]
,

(3)

where γ = 2α − arctan H
L

and δh = h∗/h. The dead zone
length is simply derived from the triangular shape of the
stagnant zone (see Fig. 1):

L = H

tan(αzm)
, (4)

where αzm is the dead zone angle (see Fig. 1) and is defined
in the next section. The jet angle with the channel bottom,
or deflection angle, α is equal to the mean resulting value
between the dead zone angle αzm and the free-surface angle
αsl (see Fig. 1):

α = αzm + αsl

2
. (5)

B. Closure equations

The free-surface (αsl) and dead zone (αzm) angles are
assumed to increase exponentially with time before reaching
the asymptotic values α0

sl and α0
sm corresponding to the

stationary state [20], as is proposed in Ref. [21]:

αzm = α0
zm +

(
π

2
− α0

zm

)
e(ti−t)/τ , (6)

αsl = α0
sl +

(
π

2
− α0

sl

)
e(ti−t)/τ . (7)
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τ is the characteristic time of the stagnant zone formation and
ti depicts the measured time between the avalanche release
and its first impact with the wall (see Figs. 3 and 4). As we
did not measure the growth of the dead zone in the laboratory
experiments presented in this paper, we assume exponential
variations similar to what was observed for previous 2D DEM
simulations (see Fig. 5 in Ref. [21]). Equations (6) and (7) are
valid if t � ti ; otherwise, αzm = αsl = π/2 when t � ti . The
asymptotic values α0

zm and α0
sl corresponding to a stationary

state are derived using the results from previous 2D DEM
simulations in the steady regime (see detail in Ref. [20]):

α0
zm = θ − θmin, (8)

α0
sl = θmin

θmax − θmin
(θ − θmin). (9)

In Ref. [20], where steady flows were studied thanks to discrete
numerical simulations, it is shown that the angle of the dead
zone with respect to the horizontal, equal to θ − α0

zm, does
not depend on the slope angle and is equal to the constant
value θmin, which leads to Eq. (8). Equation (9) is derived
from the fact that the free-surface angle in steady regime, α0

sl ,
is a simple affine function of the slope angle θ : α0

sl = aθ +
b, where a and b are calculated with the following physical
arguments: (i) α0

sl tends toward zero when θ = θmin (the dead
zone propagates increasingly upstream of the wall), which
gives α0

sl = a(θ − θmin) and (ii) α0
sl tends toward θmin when θ =

θmax (the free-surface and the frontier between the stagnant
zone and the flowing zone above are parallel), which gives
a = θmin/(θmax − θmin). Here, for the sake of simplicity, we do
not distinguish slopes below and above θmax, as was proposed
in Refs. [20,21], where different values of a and b were given
when θ > θmax. We verified that this choice had very little
effect on the model’s prediction displayed in Sec. IV.

Two other closure equations are needed to derive the
velocity reduction δu and the basal friction coefficient μ̄zm. The
velocity reduction is calculated using the empirical relation
proposed in Ref. [20] assuming that the relative velocity
reduction is proportional to the deflecting—or jet—angle (the
larger the deflecting angle α, the higher the expected velocity
decrease is): (ū − ū∗)/ū = κα, which leads to

δu = 1 − (1 − e)
α

π/2
= 1

δh

, (10)

where e is the restitution coefficient of particles (e ≈ 0.9 for
glass beads) stemming from the limit condition corresponding
to a purely collisional regime at high slope (jet angle equal to
α = π/2) for which δu � e = 1 − κπ/2. The depth variation
δh = h∗/h is simply derived from mass conservation by
assuming that the volume fraction is relatively unchanged be-
tween sections S and S∗. Finally, the basal friction coefficient is
also derived from the results from previous discrete numerical
simulations with the following relation compatible with the
dead zone angle (see [20,21]):

μ̄zm = tan(θ − αzm). (11)

Equations (1)–(11) can be used to predict the force on the wall
if the time signals h(t), ū(t), and φ̄(t) are known. The entire
calculation to derive Eqs. (1)–(11) is detailed in Ref. [20]
for the steady regime and in Ref. [21] for the time-varying

avalanche regime. The following section deals with the cross-
comparison between the laboratory data and the prediction
from the set of Eqs. (1)–(11).

IV. FORCE ON THE WALL: MODEL VERSUS
LABORATORY TESTS

A. Model’s parameters

Contrary to DEM simulations for which h(t), ū(t), and
φ̄(t) signals could be simultaneously measured for control
flows [21], we only measured h(t) and us(t) here. We assume
us(t) ≈ ū(t) and we estimate φ̄ with (see [18])

φ̄(Ī ) = φmax + (φmin − φmax)Ī , (12)

where φmin = 0.4 and φmax = 0.64 are typical minimum
and maximum values of the volume fraction for relatively
dense granular flows. Ī is the macroscopic inertial number
[19]: Ī = 5ūd/2h

√
gh cos θ . Equation (12) is strictly valid

for slopes in the range [θmin,θmax]. For θ � θmax, it gives
unreasonable values. We found very low φ̄ values that were
not compatible with the experimental observations, or even
negative unphysical values, resulting from large Ī values (rapid
and thin flows). This point is discussed below when cross-
comparing the predicted force and the experimental data.

The following parameters are needed to derive the force
from the model’s equations presented in Sec. III: θmin, θmax, e,
k, β, ti , and τ . The friction angles θmin = 20◦ and θmax = 28◦
were experimentally determined from the function hstop(θ ).
The restitution coefficient of particles e was estimated to 0.9
for the glass beads used in the experiments. The model’s
sensitivity to the earth pressure coefficient k and to the
Boussinesq coefficient β was found to be insignificant, as also
reported in Ref. [21]: k = 1 and β = 1 were therefore chosen.
ti corresponds to the initial impact of the avalanche front with
the wall. It was estimated from the measurements of thickness
and velocity combined with force (see examples in Figs. 3 and
4). As we did not measure the growth of the dead zone, the
characteristic time related to the dead zone formation was first
fixed at τ = 0.4 s for any slope on the basis of the DEM simu-
lations reported in Ref. [21] for which the growth of the dead
zone was analyzed (see Fig. 5 in Ref. [21]). We are aware that
the creation of the dead zone is a key point here. The dynamics
of the dead zone should be studied in detail in the future in
order to investigate the possible influence of parameters such
as the obstacle and channel sizes on the characteristic time τ .

B. Model’s prediction

Without any other fitting procedure, except the choice to
discriminate between slopes above and below θmax to calculate
φ̄ [see following discussion and Figs. 6(a) and 6(b)], the
model’s prediction is found to be in quantitative agreement
with the experimental data for a large range of slopes, as
displayed in Fig. 5(a). For slopes close to θmin (θ � 24◦), it
was necessary to increase τ above the initial value of 0.4 s
mentioned in previous section [see also following discussion
and Fig. 5(b)]. The analytical model is able to reproduce
the different phases of the avalanche for a certain range of
slope angles: (i) the increase in force, (ii) the maximum in
force, or even the plateau, and (iii) the force decrease. For
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FIG. 5. Normal force per unit of width F/� (N m−1) versus time
t (s): cross-comparison between the model’s prediction from
Eqs. (1)–(11) (lines) and the experimental data (circles). (a) Model
predictions are shown with φ̄ = φfit [see Fig. 6(b)]. (b) Model
predictions are shown with a fitted value of τ [see Fig. 6(c)] for
θ � 24◦.

θ � 27◦ (close to θmax), preliminary tests showed that the
model’s prediction could give good results if the volume
fraction was corrected with φ̄(t) = φmin for any time instead
of the time-varying values derived from Ī . For θ � 27◦, the
results can be improved using the volume fraction as a fitting
parameter: The final results are illustrated in Fig. 5(a).

Interestingly is the comparison of the obtained φ̄ values to
previous existing experimental measures of volume fraction
inside granular avalanches. Figure 6(a) gives the maximum
value φM reached by the volume fraction [derived from Ī

with the help of Eq. (12)] versus the slope, as well as the
fitted values φfit (constant value for any time) when θ � 27◦.
The data are displayed in terms of φ̄/φmax as a function
of tan θ/ tan θmin so that they can be compared to previous
experimental data from Fig. 15 in Ref. [29]. The fitted values
φfit (for θ � 27◦) are compatible with the laboratory data from
Ref. [29], whereas the values derived from the φ̄(Ī ) relation
Eq. (12) are systematically lower when θ � 27◦. This result
confirms that the φ̄(Ī ) relation is no longer valid above a
critical angle close to θmax. Figure 6(b) shows the increase of
the difference φfit − φM with slope (we consider that φfit = φM

FIG. 6. (a) Normalized volume fraction φ̄/φmax versus
tan θ/ tan θmin: maximum values φM derived from Ī , via Eq. (12)
(cross symbols), and fitted values φfit with φfit = φM for θ � 27◦

(circles); the values measured in Ref. [29] are also given for compar-
ison (gray symbols). (b) Difference φfit − φM versus tan θ/ tan θmin

(we consider that φfit − φM = 0 for θ < 27◦ in the absence of a
fitting procedure). (c) Characteristic time τ versus tan θ/ tan θmin

(τ = 0.4 s for θ � 25◦). The vertical dashed lines in graphs (b) and
(c) correspond to θ = θmax.

for θ � 27◦ in the absence of a fitting procedure), which
can be seen as the trace of the dense-to-dilute transition
in gravity-driven granular flows at slope angle θ close to
θmax [18]. As we did not measure the volume fraction in
the presented laboratory tests, we are not able to conclude
whether such a transition in volume fraction really occurs in the
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experiments. It may be only an artifact of the fitting procedure
on φ̄. Future experiments including measurements of the
volume fraction, based on indirect and cost-effective methods
applied to gravity-driven granular flows [29,30] (compared
to the existing sophisticated magnetic resonance imaging or
the radioactive positron emission particle tracking methods),
would be of great interest to verify this point.

It is worth mentioning that for the lowest θ (nearby θmin)
the model failed: It overestimated strongly the force F (t) with
τ = 0.4 s. The gap between the model and experimental data
could be reduced by using τ as a fitting parameter for slopes
smaller than θ = 24◦. Figure 6(c) displays the characteristic
time τ stemming from this fitting procedure. τ increases when
approaching θmin, which is compatible with the expectation
that the dead zone would indefinitely propagate upstream of
the wall for θ = θmin. In Fig. 5(b) are shown the results with the
fitted values of τ for θ � 24◦. The agreement is still not perfect,
contrary to 2D DEM simulations [21]. This can be explained
by the possible effects related to the jamming transition that
are not considered in the proposed model (forces per unit of
width), which can increase the friction term (resulting in F

decrease): (i) wall effects related to the formation of a network
of strong force chains and (ii) the fact that the flow started
to come to a standstill before reaching the wall with no—or
slight—overflow. By construction, the first effect does not exist
in the 2D DEM simulations reported in Ref. [21]. The second
effect is enhanced in the laboratory tests for which the wall was
placed at a distance x0/d = 1300, much greater than x0/d =
500 for the 2D DEM simulations in Ref. [21]. Investigating
the influence of the channel and the obstacle sizes on these
effects—with respect to a kind of dynamic Janssen effect—is
beyond the scope of this paper but would be of crucial interest
in the future.

The results for θ = 29◦, 32◦, and 33◦, not shown here,
are fully compatible with the results illustrated in Fig. 5(a).
The results are presented with Fmv = 0 in Fig. 5 because this

FIG. 7. Normal force per unit of width versus time (example
for θ = 31◦). The various contributions Eq. (1a) to the total force
(black line) are shown: normal inertial force F N

u (dark gray line),
pressure force Fh (dark gray dashed line), and apparent weight
F N

w − μ̄zm(F T
w + F T

u ) (light gray line). The force due to momentum
variation over time, Fmv , is not shown (this is negligible for any slope,
as found in Ref. [21]).

term was shown to have a negligible influence on the model’s
prediction, as also found for DEM simulations in Ref. [21].

Beyond its ability to predict the measured time-varying
force on the wall, the analytical model gives the various
contributions to the total force F , which provides a better
understanding of the avalanche-wall interaction over time.
Figure 7 gives an example for θ = 31◦. The inertial force FN

u

related to the square of the incoming velocity and taking into
account the velocity reduction Eq. (1b), decreases substantially
from t = 1.25 s to t = 3 s (dark gray line in Fig. 7), whereas
the apparent weight, FN

w − μ̄zm(FT
w + FT

u ), of the upstream
volume disturbed by the wall becomes equal to FN

u at t = 1.25
s and increases to reach a maximum at around t = 2.5 s.
Note that the pressure force Fh from the incoming flow
remains negligible at any time of the flow-obstacle interaction
here. Figure 7 generally emphasizes the strong contribution
stemming from the dead zone process occurring upstream of
the wall.

V. DISCUSSION AND CONCLUSION

The maximum pressure experienced by the wall that
can be compared to typical pressures related to the control
flow without any obstacle is important. Figure 8(a) reports

FIG. 8. Maximum pressure Pmax = Fmax/(�H ) scaled by pres-
sures P0 = F0/(�chm) with F0 = 1/2φ̄ρP hm

2�c cos θ (pressure force,
circles and lines in gray) or F0 = 1/2φ̄ρP um

2hm�c (kinetic force,
squares and lines in black) versus the scaled slope tan θ/ tan θmax.
(a) Model’s prediction (lines) compared to experimental data (sym-
bols); (b) model’s prediction (lines) compared to DEM simulations
in steady (plain symbols and solid lines [20]) and avalanche (empty
symbols and dotted lines [21]) regimes.
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the maximum pressures Pmax = Fmax/(�H ) scaled by the
typical pressures P0 = F0/(�chm) of the incident control
flows versus the scaled slope tan θ/ tan θmax, with F0 =
F 0

h = 1/2φ̄ρP hm
2�c cos θ (pressure force) or F0 = F 0

u =
1/2φ̄ρP um

2hm�c (kinetic force). hm is the maximum thickness
of the control flows and um the related velocity. At high values
for θ , Fig. 8(a) shows that the maximum force is driven by
inertia: Pmax/P

0
u is relatively constant. At low slopes, the

ratio Pmax/P
0
h ranges from 10 (around θmax) to 3 (close to

θmin). This result is caused by the additional and dominant
contribution of the apparent weight of the upstream volume
disturbed by the wall. These curves are fully compatible with
the laboratory results from 2D DEM simulations reported
ealier in Refs. [20,21] and drawn in Fig. 8(b). It can be
concluded that the maximum pressures from both the DEM
simulations (purely 2D) and the laboratory tests (channelized
flows) are well reproduced by the analytical model, which is
able to catch the transition in force at the slope angle θ close
to θmax.

In conclusion, we have carried out laboratory tests on
confined granular avalanche overflowing a wall. 2D DEM
numerical simulations were previously reported in Ref. [21],
which made it possible to develop and calibrate an equa-
tion to predict the avalanche force in similar flow-obstacle
configuration. Up to now, no experimental verification of
the model has been available. Except for low slopes, the
equation was successfully compared to the laboratory data,
which demonstrates the robustness of the force model.
Moreover, it confirms that the force experienced by the
wall overflowed by a granular avalanche is the sum of
(i) the pressure force of the incoming undisturbed flow,

(ii) the inertial force related to velocity reduction, and (iii) the
apparent weight of the upstream volume—the quasistatic zone
surmounted by the inertial zone—disturbed by the obstacle.
The proposed equations based on depth-averaged momentum
equations are sufficient to link the growth of the dead zone
to the mean force. However, it is worth pointing out that the
granular temperature goes to zero in the quasistatic stagnant
zone and the related dissipation must be very important. Hence,
this description may fail to describe the creation of the dead
zone and the force fluctuations on the wall. Investigating the
physical process at a microscopic (grain) scale is a future
challenge. Finally, quantifying the gap between the laboratory
data and the equation at the lowest slopes, attributed to
wall effects occurring near the jamming transition, remains
an important challenge. Laboratory tests and/or 3D DEM
simulations with various channel width and obstacle height
should be undertaken in the future to verify these assumptions
with respect to the Janssen effect. It will also provide crucial
information on the characteristic time defining the growth of
the dead zone when the obstacle and the channel sizes are
varied.
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