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Anomalous change in the dynamics of a supercritical fluid
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We perform molecular dynamics simulations to investigate dynamical properties of a supercritical Lennard-
Jones fluid. We find that in the supercritical region there is a short-ranged deviation in dynamic character. We
further find that this anomalous change is associated with the presence of the Widom line, the locus of specific
heat maxima, of the liquid-vapor phase transition. The salient change in dynamics is consistent with a crossover
in the correlation of the diffusion coefficient with the excess entropy. Our results lead to an interpretation that,
even though a supercritical fluid excludes a singularity, its dynamical properties can be significantly affected by
the existence of thermodynamic response maxima.
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A special thermodynamic line known as the Widom line,
the locus of specific heat maxima, exists in continuity with
a coexistence line of two phases beyond a critical point [1].
Generally, phase transitions in liquids, such as solid-liquid
and liquid-vapor transitions, have been of wide interest [2–4].
Recently, water researches have initiated extensive studies
of the Widom line due to the hypothesized liquid-liquid
second critical point in supercooled water [1,5–8]. Since a
direct experimental search for the liquid-liquid critical point
is prohibited by spontaneous crystallization, and since the
Widom line provides alternative evidence of the critical point,
many experimental and computational studies have focused
on the Widom line of the liquid-liquid transition [1,5,6,9,10].

Many studies of supercooled water found that the Widom
line of the liquid-liquid transition crucially affects dynamic
quantities as well as static quantities [1,5,6,8–11]. Inelastic
neutron scattering experiments of confined water have found
that there is a fragile-to-strong dynamic crossover of the
structural relaxation time in the supercooled region [9,12].
Experimental and computational studies have further revealed
that the temperature of the dynamic crossover indeed coincides
with the Widom temperature [1,5,6,9]. The fragile-to-strong
transition in water has been first proposed from evidence
that water changes dynamic character from a fragile liquid
at temperatures above 236 K to a strong liquid near 136 K
[13]. Similarly, simulation studies for supercooled silicon
have found a change in dynamic character associated with
the first-order liquid-liquid phase transition between a fragile
(high-density) liquid and a strong (low-density) liquid [14].

The Widom line also exists in the supercritical region
beyond the liquid-vapor critical point. Compared to the
Widom line of the liquid-liquid transition, the Widom line
of the liquid-vapor transition has not been extensively studied
so far. Recently, inelastic x-ray scattering studies of argon
revealed the important role of the Widom line of the liquid-
vapor transition as a subtle boundary between liquidlike and
vaporlike behaviors in the supercritical region [15]. This
experimental result suggests that the presence of the Widom
line may significantly affect the thermodynamic and dynamical
properties of supercritical fluids. However, the effect of the
Widom line on the dynamics of the supercritical fluid remains
unknown. Of particular interest is whether the presence of
the Widom line has a universal effect on dynamics of fluids.
In this paper, we investigate how dynamics of a supercritical

Lennard-Jones (LJ) fluid is affected by the presence of the
Widom line of the liquid-vapor transition and further examine
if there is a universal effect on dynamics by the Widom lines
of both the liquid-liquid and liquid-vapor transitions.

We carried out extensive molecular dynamics (MD) sim-
ulations of N = 1728 LJ fluids in NPT (N : the number
of particles; P : pressure; and T : temperature) ensembles. LJ
particles interact with each other through the LJ interparticle
potential defined as

ULJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
. (1)

Here the LJ parameters ε and σ represent energy and
length scales, respectively, and r is the distance between two
particles. We truncated the LJ interparticle potential at a cutoff
radius rc = 4.0σ , and then shifted it to make the potential
and force continuous at r = rc [16]. We used the reduced
MD dimensionless units (denoted by a superscript ∗) using
appropriate combinations of energy scale ε, length scale σ ,
mass m, and the Boltzmann’s constant kB throughout this
work [16]. We implemented the Berendsen thermostat and
barostat to keep the temperature and pressure constant [17]. We
used periodic boundary conditions in all x, y, and z directions.

First, we calculate the local structure of a LJ fluid. Note
that in our calculation the liquid-vapor critical point is located
at T ∗

c � 1.305 and P ∗
c � 0.16 (Fig. 1). In Fig. 2, we present

the radial distribution function g(r∗) as a function of distance
r∗ for different T ∗ at constant P ∗ = 0.20 (>P ∗

c ). The local
structure obtained from g(r∗) does not show a significant
change with crossing the Widom line. As T ∗ increases, the
peaks in g(r∗) gradually decrease. Whereas crossing the
Widom line of the liquid-liquid transition in supercooled water
induces a significant change of the structure of water [11],
the local structure of the supercritical LJ fluid does not
exhibit a significant change with crossing the Widom line.
The difference may come from the fact that two liquids are
structurally different and two Widom lines are located in a
different temperature regime. It is of interest to mention that the
third peak, although it is small, appearing in g(r) for T ∗ < T ∗

w
(the Widom temperature) disappears for T ∗ > T ∗

w.
To examine if the Widom line affects dynamical properties

in the supercritical region, we calculate the diffusion coeffi-
cient D via the Einstein relation, limt→∞〈[�r(t)]2〉 = 2dDt ,

051204-11539-3755/2011/84(5)/051204(5) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.051204


SUNGHO HAN PHYSICAL REVIEW E 84, 051204 (2011)

1.2 1.3 1.4 1.5

Temperature (T
*
)

0.1

0.2

0.3

P
re

ss
ur

e 
(P

* )

Liquid

VaporCoexistence line

Liquid-vapor critical point

Widom line

Isobaric path

FIG. 1. (Color online) Phase diagram of the LJ fluid in the
temperature-pressure (T ∗ − P ∗) plane. A black solid line is the
liquid-vapor coexistence line. A red circle is the liquid-vapor critical
point. Blue dots represent the locus of the isobaric specific heat
maxima. A green dash line is the isobaric path (P ∗ = 0.20) we used
in this study. All data are taken from our simulation results.

where d is dimensionality [4,18]. In Fig. 3, we present D∗
as a function of 1/T ∗ at constant P ∗ = 0.20 (>P ∗

c ). At high
T ∗, D∗ can be well fit by an Arrhenius form of temperature
dependence, given by D∗ ∝ exp[−E∗

A/T ∗], and it slightly
deviates from the Arrhenius fit at low T ∗. Note that the
difference between an Arrhenius (∼exp[−EA/kBT ]) and a
non-Arrhenius temperature dependence represented by the
Vogel-Fulcher-Tammann function (∼exp[−EA/kB(T − T0)])
becomes negligible for high temperatures of T 
 T0. Inter-
estingly, we find an anomalous behavior of D∗ around the
Widom temperature T ∗

w, as shown in Fig. 3. As T ∗ approaches
T ∗

w from below, D∗ saliently, rather than steadily, increases by
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FIG. 2. The radial distribution function g(r∗) as a function of
distance r∗ at pressure P ∗ = 0.20 (>P ∗

c � 0.16) and six different
temperatures (a) T ∗ = 1.02, (b) T ∗ = 1.12, (c) T ∗ = 1.26,
(d) T ∗ = 1.36 (≈T ∗

w ), (e) T ∗ = 1.44, and (f) T ∗ = 1.58. As T ∗

increases along the isobaric path, g(r∗) shows that the peaks gradually
decrease.
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FIG. 3. (Color online) Shown in a semilog plot is the diffusion
coefficient D∗ as a function of 1/T ∗ at pressure P ∗ = 0.20 (>P ∗

c ). D∗

at high temperatures can be well fit by an Arrhenius form of
temperature dependence, D∗ ∝ exp[−E∗

A/T ∗]. Around the Widom
line (denoted by an arrow), as T ∗ varies, D∗ rapidly changes by
deviating from the Arrhenius fit. The slopes of the Arrhenius fit (E∗

A)
for T ∗ > T ∗

w and T ∗ < T ∗
w show the same values (E∗

A � 6.05).

deviating from the Arrhenius fit, and in the reverse direction D∗
decreases in the same way as D∗ increases. However, crossing
the Widom line does not modify temperature dependence form
of D∗. The EA in the Arrhenius fit, interpreted as the activation
energy for self-diffusion, shows the same value (E∗

A � 6.05)
before and after crossing the Widom line. The significant
change in ln D∗ with respect to 1/T ∗ occurs only near the
Widom line. Since this anomalous change is represented by a
bending of a straight line in the plot of ln D versus 1/T , we
call this anomalous change of D associated with the Widom
line a dynamic bend, similar to the dynamic crossover [1,5,9].
The existence of the dynamic bend indicates that although
a supercritical fluid excludes a singularity, its dynamics is
significantly affected by the presence of the Widom line. Here
we might need to address a comparison between the dynamic
bend and the critical slowing down [19]. Approaching a critical
point, the relaxation time τ of a system dramatically increases
in the form of τ ∼ |T − Tc|−ζ , known as the critical slowing
down. The dynamic bend shows a rapid increase or decrease
of D depending on heating or cooling, whereas for the critical
slowing down D only decreases drastically as T approaches
Tc.

For various liquids, there have been many efforts to find
a connection between the translational self-diffusion and the
excess entropy [20–25]. The (intensive) excess entropy sex is
defined as

sex ≡ s − sid, (2)

the difference between the total entropy s and the entropy of
an ideal gas sid [≡ −kB ln ρ + w(T )], where ρ is density and
w(T ) is a temperature-dependent constant [22,24,25]. Note
that a more negative value of sex represents more ordered
structure. sex can be estimated from the two-body contribution
on the excess entropy sex

(2) in an expansion of sex with respect

051204-2



ANOMALOUS CHANGE IN THE DYNAMICS OF A . . . PHYSICAL REVIEW E 84, 051204 (2011)

1 1.1 1.2 1.3 1.4 1.5 1.6

T*

-2.5

-2

-1.5

-1

-0.5

0

s*e
x

(2
)

P
*
 = 0.18

P
*
 = 0.20

P
*
 = 0.22

P
*
 = 0.24

P
*
 = 0.26

(a)

(b)

1 1.1 1.2 1.3 1.4 1.5 1.6

T*

0

1

2

3

4

5

6

ds
*e

x
(2

)
/ d

T
*

P
*
 = 0.18

P
*
 = 0.20

P
*
 = 0.22

P
*
 = 0.24

FIG. 4. (Color online) (a) The two-body excess entropy s∗ex
(2)

and (b) the two-body excess entropy change ds∗ex
(2) /dT ∗ as a

function of temperature T ∗ for different pressures in the supercritical
region. ds∗ex

(2) /dT ∗ shows the maximum at the Widom temperature
T ∗

w (P ∗).

to the radial distribution function g(r) as follows [26]:

sex
(2) ≡ −2πρkB

∫
{g(r) ln[g(r)] − [g(r) − 1]}r2dr. (3)

Since sex
(2) is related to g(r), it can be used for an alternative

measure of the translational structure of the system. The two-
body excess entropy sex

(2) gives a reasonable estimate of the
excess entropy sex for various systems [22,26]. For example,
sex

(2) for LJ systems is approximately between 85% and 95%
of sex over a fairly wide range of densities [26]. sex

(2) has been
used to represent the cascade regions of structural, dynamic
and thermodynamic anomalies of water in the phase diagrams
[22,24,25].

Next we investigate a connection between the dynamic bend
and the excess entropy sex

(2). Using the results of g(r∗) and
Eq. (3), we calculate the two-body excess entropy s∗ex

(2) as a
function of T ∗ at constant P ∗ = 0.2 (>P ∗

c ). At higher T ∗, s∗ex
(2)

becomes less negative, indicating that the structure becomes
more disordered. In Fig. 4(a), we find an interesting behavior
of s∗ex

(2) associated with the Widom line. As T ∗ approaches T ∗
w,

s∗ex
(2) rapidly changes, and this change becomes weaker as P ∗
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FIG. 5. (Color online) (a) The isobaric specific heat c∗
P and (b)

the two-body excess isobaric specific heat c∗ex
P (2) [≡ T ∗(ds∗ex

(2) /dT ∗)P ∗ ]
as a function of temperature T ∗ for different pressures in the
supercritical region. Both c∗

P and c∗ex
P (2) show the maximum at the

Widom temperature T ∗
w (P ∗).

is away from P ∗
c . One can clearly see this behavior of s∗ex

(2) on
the Widom line from the calculation of the two-body excess
entropy change ds∗ex

(2) /dT ∗. In Fig. 4(b), the calculation of
ds∗ex

(2) /dT ∗ shows a maximum at T ∗ = T ∗
w, and the maximum

value becomes smaller with increasing P ∗.
Since the excess isobaric specific heat cex

P is directly related
to dsex/dT , we further calculate the two-body excess isobaric
specific heat cex

P (2) = T (dsex
(2)/dT )P , and compare it with the

(normal) isobaric specific heat cP = (1/N)(dH/dT )P , where
H is the enthalpy. In Fig. 5, we present c∗

P and c∗ex
P (2) as a

function of T ∗. Both isobaric specific heats exhibit a maximum
value at T ∗ = T ∗

w, and the peaks in both c∗
P and c∗ex

P (2) decrease
with increasing P ∗. It suggests that the calculations of sex, an
order parameter of the translational structure, can provide a
good probe of the Widom line of the liquid-vapor transition
rather than the calculation of g(r), an indicator of the local
structure.

To find a connection between the dynamic bend and excess
entropy, we examine D in terms of sex

(2). For supercooled
liquids, Adam-Gibbs theory offers a description between the
diffusion coefficient D and the configurational entropy Sconf
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FIG. 6. (Color online) Shown in a semilog plot is the diffusion
coefficient D∗ versus the negative of the two-body excess entropy
−s∗ex

(2) at P ∗ = 0.20 (>P ∗
c ). It shows a crossover in the linear

relationship between ln D and sex
(2), given by D ∝ exp[Bsex

(2)]. The
parameter B is 2.88 at high temperature and 1.21 at low temperature.
The arrow denotes the location of the Widom line.

near the glass transition [27,28], given by

D ∝ exp

[
− A

T Sconf

]
, (4)

where A is a temperature-independent parameter. Another
description between D and sex

(2) has been introduced in various
liquid systems [20,21], given by

D ∝ exp
[
Bsex

(2)

]
, (5)

where B is a temperature-independent parameter. Whereas
Eq. (4) provides a connection between the dynamics and the
structure near the glass transition [27,28], Eq. (5) describes
the whole liquid dynamics associated with the liquid structure
[23–25]. The linear relationship between 1/(T Sconf) and sex

(2)
in the supercooled region has been shown in computational
studies of a core-softened fluid [23].

In Fig. 6, we present the diffusion coefficient D∗ as a
function of the negative of the two-body excess entropy −s∗ex

(2) .
As shown in Fig. 6, ln D∗ shows a linear relationship with

−s∗ex
(2) . Interestingly, we find two different linear relationships

between ln D∗ and −s∗ex
(2) depending on T ∗. The crossover in

the linear relationship occurs around the Widom temperature
T ∗

w. The parameter B in Eq. (5) for high temperature (low −sex
(2))

is 2.88, whereas B for low temperature (high −sex
(2)) is 1.21.

Note that the crossover in the linear relationship between ln D

and −sex
(2) has been also found for hard sphere and square-well

fluids in association with the onset of the breakdown of the
Stokes-Einstein relation [24]. For supercooled water, the onset
of the breakdown of the Stokes-Einstein relation is related
to the Widom line of the liquid-liquid transition [6]. Since
the relation between ln D and sex represents the correlation
between the self-diffusivity and the structure, the crossover
in the linear relationship between ln D and sex indicates a
change in the correlation between the translational diffusion
and the translational structural order. Our results of Figs. 3 and
6 show the possible connection between the dynamic bend and
the crossover in the linear relationship between ln D and sex.
They further imply that the dynamic bend originates from the
rapid change in the correlation between the self-diffusion and
translational order on the Widom line.

Our finding of the dynamic bend in the supercritical
region leads to an important interpretation that the dynamical
properties can be universally affected by the presence of the
Widom line, as seen in both the dynamic crossover and the
dynamic bend. Thus wherever one finds the Widom line, one
can expect a change in dynamics of fluids, in association with
its existence. However, it seems that there is a difference
between the dynamic bend and the dynamic crossover due
to the thermal effect and the structure difference of fluids. The
dynamic crossover shows a sharp change in dynamic character
between an Arrhenius fit and a non-Arrhenius fit of D at
T = Tw [1,9,10,29]. The dynamic bend we found here does
not exhibit the sharp change in the temperature dependence
of D. Our finding will shed light on the full understanding
of dynamical properties of fluids in the supercritical region.
Whereas the dynamic crossover is restricted to the tetrahedral
liquids, our results provide a high level of generality for
understanding dynamics of fluids.
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