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Collective acoustic modes in liquids: A comparison between the generalized-hydrodynamics
and memory-function approaches
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The most familiar approaches used to describe the dynamical structure factor from adiabatic density fluctuations
in liquids are based on generalized hydrodynamics and on the memory function, respectively. We show that,
contrary to the common belief, the two approaches are not fully equivalent. In particular, models based on the
memory function of a normalized damped oscillator fail in reproducing the correct experimental spectral profiles
of systems close to the relaxation process. The discrepancy is due to misleading interpretation of the theoretical
memory-function expressions, producing an unavoidable mixing of spectral contribution at different wave vectors
when the theory is forced beyond its limits of validity.
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I. INTRODUCTION

Brillouin spectroscopy represents a powerful tool for the
investigation of the collective dynamics in fluids. Rigorously
speaking, the term “Brillouin spectroscopy” refers to a
light-scattering experiment. This implies that the system is
investigated at very long wavelengths and over distances larger
than the intermolecular distance. As a consequence, it can
be described as a continuous and homogeneous fluid. The
traditional theoretical description of the scattering phenomena,
for a simple liquid, was obtained within the framework of
the hydrodynamic approximation [1–3]. However, the model
can be easily generalized to account for the occurrence of
relaxation processes [1–4], i.e., when one of the transport
coefficients becomes frequency dependent. This requires that
the real transport coefficient involved in the linearized hy-
drodynamic expression is translated into a complex functional
form. The real part is a dissipative coefficient which is the usual
transport coefficient at zero frequency, while the imaginary
part reflects the nondissipative response of the fluid. The
frequency dependence of the generalized transport coefficient
produces two distinct regimes; at high frequency the system
behaves like an elastic medium while at low frequency it
appears as a purely dissipative fluid. The transition between the
different regimes occurs at a characteristic frequency, whose
reverse marks the relaxation time of the generalized transport
coefficient. The immediate consequence of introducing a gen-
eralized transport coefficient is that the velocity of propagation
of the density fluctuations will assume a complex functional
form too. As a result, a relaxing system will exhibit a dispersion
of the sound velocity.

During the last three decades, the power of the Brillouin
technique improved due to the remarkable development
of the inelastic neutron and x-ray scattering at the large-
scale facilities. The new techniques allowed investigators to
extend by orders of magnitude the ranges of energy and
momentum exchanged between the probe and the sample,
including situations well outside the limits of the traditional
hydrodynamic approximation. Together with the experimental

*aliotta@me.cnr.it

techniques, computer simulation also advanced, becoming an
essential tool thanks to the continuous increase of available
computing power. The huge amount of collected data triggered
theoretical interest for the description and interpretation of
the experimental spectral profiles. An approach alternative to
the generalized-hydrodynamic model is the standard Mori-
Zwanzig memory-function approximation of the microscopic
time evolution of dynamical variables [4–9]. Within this
framework, the dynamical structure factor is derived by the
corresponding expression for the complex susceptibility. It
was originally proposed as a way to get access to information
about any relaxation process taking place in a system by the full
spectrum analysis of a single Brillouin spectrum, recorded over
a wide frequency region. In addition, this approach can provide
a correct k dependence of relevant dynamical parameters and
seems to represent a unique way to handle the data obtained
from molecular dynamics simulations or from neutron and
x-ray experiments.

Both experimental and computer simulation techniques
furnish the same quantity, i.e., the dynamical structure factor
S(k,ω), which is the frequency spectrum of the autocorrelation
function of the density fluctuations at a given value of the
exchanged wave vector. In analyzing the experimental or
calculated spectra, a fitting procedure is adopted with the
theoretical expression for S(k,ω), where ω is the variable
while k plays the role of a parameter that must be fixed at the
corresponding experimental value. Only density fluctuations at
a wave vector k matching the selection rule k = k1–k0 (k1 and
k0 being the wave vectors of the scattered photons and of the
probe, respectively) contribute to the experimental spectrum.

To be consistent, both approaches must produce the same
result within the limit of validity of the hydrodynamic approxi-
mation. In effect, it can be demonstrated that both the linearized
hydrodynamic and the generalized-hydrodynamic expressions
are retrieved from the adoption of suitable expressions for the
memory functions [10].

The aim of this article is to compare the outcomes from the
two approaches, under the assumption of the same memory
function. Obviously, the comparison will be made only within
the limit of validity of the hydrodynamic approximation.
Without loss of generality, in comparing the two formalisms
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we will assume a single relaxation process of the bulk viscosity.
Any extension to more complicated and realistic situations is
straightforward.

We will show that, contrary to the common belief, the
theoretical description that can be obtained by the complex
susceptibility, after the selection of the appropriate model of
the memory function, is not able to reproduce the full spectrum
of density fluctuations occurring in the system and that its
adoption should be limited to the description of the Brillouin
doublet only.

In particular, any attempt for extracting information about
the thermal relaxation by fitting a single experimental spectrum
with equations obtained within the above framework is wrong
or misleading.

This should be taken as a general result which also remains
valid outside the hydrodynamic limits.

II. THEORY AND MODELS

A. The linearized hydrodynamic model

Following the formalism of Ref. [1], the linearized hydro-
dynamic expression for the dynamical structure factor at given
wave vector ks is given by

I (ks,ω) = S(ks,ω)
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Equation (1) describes a spectral profile consisting of three
components. The central (Rayleigh) peak arises from fluc-
tuations at constant pressure and corresponds to the thermal
diffusivity mode (γ is the ratio of the constant volume and
constant pressure-specific heats; χ is the thermal diffusivity).
The two Lorentzian lines, symmetrically shifted at ±cks , are
the result of fluctuations at constant entropy and correspond
to the longitudinal acoustic modes. These modes propagate
with the adiabatic sound velocity c with a lifetime �−1,
where � = 1/2[υl + (γ –1)χ ] (υl = kinematic longitudinal
viscosity). The remaining two asymmetric terms are needed to
satisfy the first moment sum rule

∫ +∞
−∞ ωI (ω,ks)dω = 0, which

is the necessary condition for having a converging second
moment of the spectral distribution. Although these terms
are often disregarded because their contribution is considered
negligible, they become relevant to produce the correct spectral
shape at high frequency shifts.

B. The generalized-hydrodynamic model

The generalized-hydrodynamic expression for the dynam-
ical structure factor at given wave vector ks is obtained after
introduction of the concept of relaxation process into the
linearized hydrodynamic equations. Following the formalism
of Ref. [1], it can be written as
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where cs ,0 is the low frequency (relaxed) speed of sound, cs =
ωs/ks is the speed of sound at the frequency ωs/2π and τ is
the relaxation time. The quantity �sk

2
s is the half width at half

maximum of the experimental Brillouin line which contains
both nonrelaxing, �, and relaxing contributions and can be
written as

�s = � + 1

2
χ

(
1 − c2

s,0

c2
s,∞

)
+ 1

2

(
1 + γχk2

s τ
)c2

s,∞ − c2
s,0

1 + (ωsτ )2
τ,

(3)

where cs ,∞ is the high frequency (unrelaxed) value of the
sound velocity. The value of ωs in Eq. (2) is immediately
obtained as [1]

ωs = csks = cs,0ks

√√√√S +
√

S2 + 1

(cs,0ksτ )2
;

S = 1

2

[
c2
s,∞
c2
s,0

− 1

(cs,0ksτ )2

]
. (4)

The generalization of hydrodynamic equations leads to
a light-scattering spectrum Eq. (2) consisting of four
components. The origin of the Rayleigh line and the symmetric
Brillouin peaks is the same as in the above described linearized
model. The additional nonshifted component (Mountain
mode), whose linewidth is of the order of τ−1, arises from
the thermal relaxation. In Eq. (2), the quantities Rc and RB

are the amplitudes of the unshifted contribution arising from
the relaxation [4] and of the Brillouin lines, respectively
(see Ref. [1] for suitable expressions for these quantities).

C. The damped harmonic oscillator model

The first suggestions for alternative formulations [4,5] were
mainly regarding Brillouin scattering in nonrelaxing fluids.
They followed from the fact that in a Brillouin scattering
experiment the thermal diffusion contribution is usually much
narrower than the instrumental resolution. On this basis, any
contribution from thermal diffusion to the acoustic damping
can be disregarded and the equation of motion for the density
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fluctuations, at a given wave vector, is written as

ρ̈ks
+

(
ηl

ρ
k2
s

)
ρ̇ks

+
(

M

ρ
k2
s

)
ρks

= 0, (5)

where M is the compressibility modulus related to the velocity
of propagation, c0, of the undamped density fluctuation
through the relations c0 = √

M/ρ and ω0 = c0ks . In Eq. (5),
the quantity ηl = υl/ρ is the longitudinal viscosity. Defining
� = (1/2)υl , Eq. (5) can be rewritten as
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+ 2�k2

s ρ̇ks
+ ω2

0ρks
= 0. (6)

The fluctuation dissipation theorem allows us to obtaining the
corresponding spectral distribution, I (ks ,ω), from the complex
susceptibility, X(ks ,ω), leading to [3]
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where the quantity 〈ω2
ks
〉 denotes the second frequency moment

of the distribution I (ks ,ω), the nth moment being defined as

〈
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k

〉 =
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In the absence of any relaxation (cs = cs ,0 = cs ,∞) Eq. (2)
reduces to the linearized hydrodynamic expression Eq. (1)
and it collapses over Eq. (7), when the central diffusive mode
is disregarded. In fact, if we introduce the quantity ωs given by
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Eq. (7) is reduced to
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Equation (9) just produces two Brillouin lines symmetrically
shifted to the frequencies ±ωs = ±csks , while no unshifted
contribution is generated. It is not surprising since Eq. (5)
implies that the density is only a function of the time and
does not depend on the temperature. As a consequence, the
thermal expansion coefficient α is zero and Eq. (9) describes
an isothermal spectrum or the spectrum of a system for which
adiabatic, βs , and isothermal, βT , compressibilities coincide.
As a result γ = Cp/Cv = βT /βs = 1.

D. The generalized damped harmonic oscillator model
(viscoelastic model)

Equation (9) can be easily modified taking into account
a relaxation process. We will assume, as an example, a
Debye relaxation of the bulk viscosity (under the condition
γ = 1) and we will compare the indication of the modified
Eq. (9) against that of Eq. (2). Under this condition, the

damping coefficient � is translated into a generalized friction
coefficient:

�(ω) = Re[�(ω)] + iIm[�(ω)] = �′(ω) + i�′′(ω)
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0
eiωtM�(t)dt, (10)

where � is related to the nonrelaxing part of the kinematic
viscosity [and corresponds to the quantity � in Eqs. (1), (2),
and (8)] and M�(t) = exp(–t/τ ) is the memory function for
damping. Based on these assumptions, Eq. (10) becomes
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2
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s,0

) τ
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whose real part is consistent with Eq. (3) (disregarding the
thermal diffusion). It must be noticed that the function �(ω)
is also a function of k through the sound velocity. In the
following, the values of this function and of its real and
imaginary parts calculated at the wave vector ks will be
indicated by the subscript s.

The substitution of Eq. (11) into Eq. (7) produces the
required spectral density. Taking into account that, in the ω

space, the memory function can be written as
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we obtain
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(13)

where we made use of the above relation between ω0 and the
frequency ωs = ωs,0 corresponding to the relaxed value of the
sound velocity. In Eq. (13), the quantity cs(ω) is given by

cs(ω) =
√

c2
s,0 + c2

s,∞ − c2
s,0

1 + ω2τ 2
ω2τ 2 =

√
c2
s,∞ − c2

s,∞ − c2
s,0

1 + ω2τ 2
.

(14)

Equation (13) represents the widely adopted model for the
fitting of experimental data obtained over very wide frequency
ranges. Besides its above mentioned ability of reproducing
the correct k dependence of the involved parameters, a further
advantage comes for its apparent ability of reproducing,
with a simple and compact notation, the whole spectral
distribution including the central component, which relates
with nonpropagating modes originated by the relaxation
phenomenon occurring in the system.

051202-3



F. ALIOTTA et al. PHYSICAL REVIEW E 84, 051202 (2011)

III. DIFFERENCES BETWEEN THE DIFFERENT
APPROACHES

A. The linearized hydrodynamic model and the damped
oscillator model

It can be shown [10] that Eq. (2) can be derived
from the memory function M(k,t) = υlk

2δ(t) + (γ − 1)〈ω2
0〉

exp(−χk2t), where 〈ω2
0〉 = c2

s k
2/γ is the value of the second

moment in the hydrodynamic regime (which means at low k

values).
This occurrence is enough for asserting that, for a non-

relaxing system and under the condition γ = 1 within the
hydrodynamic approximation, Eq. (1) is fully equivalent to
Eq. (9).

B. The generalized-hydrodynamic model
and the viscoelastic model

Equation (13) can be rearranged leading to expressions
formally equivalent to Eq. (2) [10]. In the low or high frequency
limits, Eq. (14) is reduced to one of the two frequency-
independent values, cs ,0 or cs ,∞. In these limits the hypersonic
velocity does not exhibit dispersion and Eq. (13) is reduced
to Eq. (7), which is equivalent to Eq. (1). However, when
the explored frequency range includes a relaxation, Eq. (14)
produces a distribution of sound velocities. Each component
of this distribution corresponds to a density fluctuation at
a different frequency and at a different wave vector. But
actually only the waves propagating at the frequency ωs =
csks , corresponding to phonons matching the experimentally
selected wave vector, bring contributions to Eq. (1) and to the
experimental spectrum. Analogously, �(ω) is the generalized
frequency-dependent damping function while the quantity
�sk

2 is the lifetime of the density fluctuation at the frequency
ωs(k). It now becomes clear that the whole distribution of
sound velocities described by Eq. (14) contributes to Eq. (13).
As a consequence, Eq. (13) does not describe a spectral
profile at a fixed k value and hence does not correspond to
any experimental situation. In order to match with the given
definition of I (k,ω), the quantity k should play the role of
a parameter. Unfortunately, the quantity cs(ω) is implicitly
dependent on k even when the value of this parameter is fixed
at a given value in Eq. (13). As a consequence the left- and
the right-hand sides of Eq. (13) become inconsistent with each
other.

As a result, Eq. (13) is unable to describe the correct shape
of the experimental Brillouin profile of a system close to the
relaxation. In particular, I (ks ,ω) given by Eq. (13) is a broader
spectral distribution than that described by Eq. (2), which is
rigorously calculated at k = ks (defined by the experimental
geometry).

We can make an attempt to reproduce the experimental
I (ks ,ω), putting into Eq. (13) only the component of the
distribution cs(ω) which satisfies the relation cs = ωs/ks . From
Eq. (14) we obtain

ωs = ks

√
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s,∞ − c2
s,0

1 + ω2
s τ

2
. (15)

Equation (15) produces only two real solutions for ωs :

ωs = ±cs,0ks

√√√√S +
√

S2 + 1

(cs,0ksτ )2
. (16)

This is exactly the same result which was obtained within the
generalized-hydrodynamic approach [1] [see Eq. (4)]. As a
result, the function �′(ω) in Eq. (13) assumes the value

�′(ω)k=ks
= �s = � + 1
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1 + ω2
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2
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Finally, Eq. (13) is reduced to

I (ks,ω) =
〈
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s

)2 , (18)

which is equivalent to Eq. (7), describing the spectrum of a
damped harmonic oscillator without any contribution from the
Mountain mode.

IV. COMPARISON AND DISCUSSION

In Fig. 1 we plot, as an example, the dynamical structure
factors for a simulated system calculated in agreement with
Eqs. (2) and (13), at three different temperatures.

The following assumptions have been made throughout the
calculations: γ = 1, ρ = 1000 kg m−3, k = 2.221×107 m−1,
υ l(T ) = (8×10−6 + 10−7T ) m2 s−1, v0(T ) = (1400 + 0.5T )
m s−1, v∞(T ) = v0(T ) + 700 m s−1. A single Debye process
has been assumed with an Arrhenius temperature dependence
of the relaxation time, τ (T ) = τ 0exp(–�H/RT), where R is
the gas constant, �H = −18×103 J mole−1 is the activation
enthalpy and τ 0 = 10−13 s. The calculated dependence of the
hypersonic velocity is presented in the inset of the same figure,
together with its limit behaviors at low and high frequencies.
The inflection point of the cs(T ) curve clearly indicates the
temperature at which the spectral density will be affected by

FIG. 1. Calculated spectrum for the simulated system with γ = 1
at three different temperatures (see text for details). Inset: calculated
temperature dependence of the hypersonic velocity.
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(a)

(b)

FIG. 2. (a) Frequency dependence of the function cs(ω), calcu-
lated through Eq. (13) for T = 313 K under the assumption of a
single Debye process (see text for further details). The dashed line
represents the value of the sound velocity at the wave vector ks ,
calculated through Eq. (14). (b) k dependence of cs(ω). The dashed
line represents the sound velocity at the wave vector ks , calculated
through Eq. (14).

the relaxation phenomenon. Figure 1 unambiguously shows
how the predictions of the two approaches almost perfectly
match at temperatures far enough from the relaxation. In
contrast, at temperatures close to the relaxation, the spectral
distribution given by Eq. (13) becomes definitely broader than
that produced by Eq. (2).

In Fig. 2(a) we report the frequency dependence of the
function cs(ω), calculated through Eq. (14), at T = 313 K.
The dashed line represents the value of the sound velocity at
the wave vector ks , calculated through Eq. (15) and relation
cs = ωs/ks . In Fig. 2(b), we report the k dependence of the
same quantity cs(ω). The dashed line represents the sound
velocity at the wave vector ks , calculated through Eq. (15).
The value of ks corresponds to the point where the dashed line
intercepts the cs(ω) curve. The plot shows unambiguously that
the function cs(ω) in Eq. (13) is also a function of k, and clearly
demonstrates that Eq. (13) cannot correspond to the spectral
profile calculated at a fixed k value.

The above reported comparison between the hydrodynam-
ics and the memory-function approaches refers to a system for
which Cp = Cv .

However, Eq. (13) can be easily modified in order to include
thermal diffusion. To obtain this result, the memory function
should be rewritten as

M(k,t) = υl,0k
2δ(t) + (

c2
s,∞k2 − γ

〈
ω2

0

〉)
exp

(
− t

τ

)
+ (γ − 1)

〈
ω2
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〉
exp(−χk2t), (19)

which leads to the following expressions for the quantities
M ′(k,ω) and M ′′(k,ω):

M ′(k,ω) =
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0
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ω.

In principle, Eq. (13) with Eq. (20) can be used to fit
experimental data taking into account all the contributions
to damping of the adiabatic density fluctuations. However, the
arguments about its inability to reproduce the correct behavior
close to a relaxation still remain valid.

In Fig. 3, we report the isotropic experimental [11,12]
spectrum, Ivv, of a polyethylene glycol aqueous solution
together with the fitting results with the convolution of Eqs. (2)
and (13) with the instrumental resolution function. Both the
fitting procedures involve the determination of the values
of six independent parameters. In the case of Eq. (1) the
parameters are γ , �1 = cs,0

2cs
−2τ−1, �s , RC , RB , and ωs .

In adopting Eq. (13) the free parameters are γ , �, � =
cs,∞2 − cs,0

2, 〈ω2
0〉, ω0, and τ . In both cases, the thermal

diffusion contribution is considered within the instrumental
resolution. It was shown [11,12] that the system exhibits a
relaxation which, at temperature = 298 K indicated in Fig. 3,
takes place on a time scale of 14ps. It is quite evident that, while
Eq. (2) is able to reproduce the experimental spectrum, Eq. (13)
fails in reproducing the correct decay at large ω values [11,12].
In addition, the estimated relaxation time value turns out to
be 2.4 ps which is much lower than the result obtained by the
analysis of a set of data over a wide temperature range [11,12].

FIG. 3. Circles: Experimental Brillouin spectrum (molecular
weight 400, monomer molar fraction x′ = 0.8) at temperature
T = 298 K (see Refs. [11] and [12] for details). Continuous line:
Eq. (1). Dashed line: Eq. (12).
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Finally, the descriptions of the dynamic structure factor
related to adiabatic density fluctuations, as obtained from
generalized hydrodynamics Eq. (2) and from generalized
damped harmonic oscillator Eq. (13) are not equivalent.
The generalized-hydrodynamic formalism correctly describes
the experimental situation where only fluctuations preserv-
ing the exchanged wave-vector selection rule contribute to
the spectrum. On the contrary, the expression given in
Eq. (13) is not the correct S(ks ,ω) since it contains spectral
components at k �=ks . However, these two approaches become
indistinguishable when no relaxation process takes place or
when the system is investigated at frequencies largely different
from the relaxation frequency. The indications from models
based on Eq. (13) become consistent with those from Eq. (2)
only when the condition k = ks is preserved. In such a case,
however, Eq. (13) assumes the same form of Eq. (7) which
describes only the Brillouin doublet profile. Any fitting of
the experimental spectrum with such model will require the
addition of a further unshifted term. From a practical point of
view, the experimental data are often fitted with Eq. (7) plus
a Lorentzian centered at ω = 0. Even if such a procedure can
appear able to satisfactorily fit the experimental data, it has no
advantage over Eq. (2). Furthermore, it introduces an unnec-
essary inconsistence since the theoretical spectral distribution
obtained in such a way has an undefined first moment.

V. CONCLUDING REMARKS

We want to stress that the divergence between the different
approaches is not related to the adoption of different models,

i.e., different memory functions. The same memory functions
have been used in both cases. The difference originates
from the incorrect use of Eq. (13) when it is adopted to
describe the full experimental spectral profile. In fact, the
differences between the models disappear when the correct
components are taken from Eq. (13). The price to pay
is that we lose any description of the central unshifted
contribution.

Contrary to the common belief, there is no way to extract
information about any relaxation process by means of the full
spectrum analysis of a single experimental structure factor
at a fixed ks value, irrespective of the assumptions taken in
different models [5–8]. The values of ωs(ks) and �s(ks) are
the only information that can be obtained by such a procedure.
The acquisition of data over a wide k range and the subsequent
fitting with a suitable model of relaxation are mandatory
for extracting nonmisleading information about any process
taking place in the system.

We remark that we are not claiming that the memory-
function approach is wrong. We are simply asserting that the
approach is able to produce only the spectral contributions
from density fluctuations at constant entropy. This limitation
stems from Eq. (5), which describes density as a function of
time only, disregarding any dependence on the temperature.
The correct spectrum resulting from the memory-function
approach is represented by Eq. (18). Any attempt for repro-
ducing the full experimental spectral features by Eq. (13)
is wrong and reflects a misleading interpretation of this
equation.
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