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Long-range steady-state density profiles induced by localized drive
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We show that the presence of a localized drive in an otherwise diffusive system results in steady-state density
and current profiles that decay algebraically to their global average value, away from the drive in two or higher
dimensions. An analogy to an electrostatic problem is established, whereby the density profile induced by a
driving bond maps onto the electrostatic potential due to an electric dipole located along the bond. The dipole
strength is proportional to the drive, and is determined self-consistently by solving the electrostatic problem.
The profile resulting from a localized configuration of more than one driving bond can be straightforwardly
determined by the superposition principle of electrostatics. This picture is shown to hold even in the presence of
exclusion interaction between particles.
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I. INTRODUCTION

The effect of a local perturbation on the steady-state density
profile of systems of interacting particles has been studied
in a wide variety of contexts. When a system under thermal
equilibrium conditions is perturbed by a localized external
potential, the equilibrium density is changed only locally under
generic conditions. This is a result of the fact that as long as
the system is not at a critical point, it is characterized by
a finite correlation length. This is not necessarily the case
in driven systems where detailed balance is not satisfied [1].
Algebraically decaying correlations in the steady-state profiles
have been found in a number of boundary driven models
such as the symmetric simple exclusion process (SSEP) [2],
interface growth models [3], and transport models in one and
higher dimensions [4–6].

A natural question is what happens when the drive is
localized not on the boundaries but in the bulk. In a recently
studied model of a one-dimensional SSEP it was shown that
the presence of a single driving bond (battery) in the bulk
does not generate any algebraic density profile in the steady
state [7]. The density profile away from the battery was found
to be linear with a slope inversely proportional to the system
size, albeit with a discontinuity at the location of the battery.

In the present paper we consider the effect of driving bonds
localized in a finite region in an infinitely large many body
system. We demonstrate that under rather generic conditions
a localized drive in an otherwise equilibrium system in
dimensions higher than one, results in a steady-state density
profile with an algebraically decaying tail. This is done by
first studying the case of noninteracting particles diffusing on
a d-dimensional lattice with a directional drive along a single
bond (battery). We then generalize the results to arbitrary
localized configurations of driving bonds, and to the case of
particles with exclusion interaction.

In the case of noninteracting particles with a single driving
bond, we show that the density profile can be mapped onto
the electrostatic potential generated by an electric dipole
located at the driving bond, whose strength can be calculated
self-consistently. Thus, for example, in d = 2 dimensions, the
density profile decays as 1/r at distance r away from the
driving bond, in all directions except the one perpendicular to

the drive, where it decays as 1/r2. More interestingly, other
localized configurations of driving bonds result in different
power-law profiles. In this case the density profile can be
determined by a linear superposition of the profiles generated
by each driving bond. For example, when the electric dipoles
corresponding to two driving bonds form a quadrupole, the
density profile generically decays as 1/r2 while in some
specific directions it decays as 1/r4, at large distances. The
correspondence to the electrostatic problem still holds when
local exclusion is switched on. The only difference is in the
dipole strength which, unlike the noninteracting case, can not
be determined self-consistently. In the interacting case, our
results thus generalize the one-dimensional situation studied
in [7] and show that for d � 2, the density profile decays
algebraically away from the battery.

The rest of the paper is organized as follows. In Sec. II,
we discuss in detail the system of non-interacting particles. In
Sec. III, we show that most of the results derived for non-
interacting particles apply also for particles with exclusion
interactions. At the end, in Sec. IV, we conclude with a sum-
mary and a brief discussion about the potential applications of
our results.

II. NON-INTERACTING PARTICLES

We start with the simple case of noninteracting particles
diffusing in a medium with a single driving bond. As an
illustration we consider explicitly the d = 2 case. Generaliza-
tion to arbitrary dimensions is straightforward. We consider
a two-dimensional square lattice of L × L sites with peri-
odic boundary conditions. There are N = ρV noninteracting
particles where V = L2 is the number of sites and ρ is the
global average density of particles. Each particle performs an
independent random walk in continuous time. A particle at site
�r ≡ (m,n) �= (0,0) can hop to any of the neighboring sites with
rate 1. We introduce a localized drive by setting the hopping
rate across the bond (0,0) → (1,0) to be (1 − ε) with ε � 1
[see Fig. 1(a)]. In the absence of the localized drive (ε = 0),
detailed balance holds and the system reaches a steady state
with a flat density profile with density ρ at each site. When
the localized drive ε is switched on, it manifestly violates
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FIG. 1. (Color online) (a) Bond configuration with a single driv-
ing bond (0,0) → (1,0) and hopping rate e = (1 − ε). Everywhere
else the rate is 1. The ⊕ and � symbols denote the sign of the electric
charge. The symbol � represents the magnetic flux coming out of
the plane, and ⊗ represents the flux going in. (b) A configuration
of closed loop of driving bonds generating no electric charges. The
magnetic flux through the central plaquette is four times larger than
that of the other four neighboring plaquettes.

the detailed balance and induces a global modification of the
steady-state density profile.

Let φ(m,n,t) denote the average density of particles
at site (m,n) at time t . Its time evolution can be eas-
ily written down by counting the incoming and outgoing
moves from each site. For sites (m,n) �= {(0,0),(1,0)}, it
is easy to see φ(m,n,t) satisfies the standard diffusion
equation, ∂tφ(m,n,t) = ∇2φ(m,n,t), where ∇2 is the dis-
crete Laplacian: ∇2φ(m,n) = φ(m + 1,n) + φ(m − 1,n) +
φ(m,n + 1) + φ(m,n − 1) − 4φ(m,n). The evolution equa-
tions are slightly different for the two special sites (0,0) and
(1,0) connecting the driving bond: ∂tφ(0,0,t) = ∇2φ(0,0,t) +
εφ(0,0,t) and ∂tφ(1,0,t) = ∇2φ(1,0,t) − εφ(0,0,t). It is use-
ful to write these evolution equations in a combined form by
introducing Kronecker delta symbols. For brevity, let us also
denote �r = (m,n), �0 = (0,0) and �e1 = (1,0). In the long time
limit the system approaches a time independent steady-state
φ(�r) satisfying

∇2φ(�r) = −εφ(�0)(δ�r,�0 − δ�r,�e1 ) (1)

for all �r . Here δ�r,�r ′ is the Kronecker delta function. It is
instructive to first note the formal resemblance of (1) with
the Poisson equation (lattice version) of the 2D electrostatic
problem and resistor network driven by a battery [8]. One
identifies φ(�r) as the electrostatic potential and the right-hand
side (rhs) of (1) is identified with two point charges of equal
strength but of opposite signs sitting, respectively, at the
two ends of the driving bond. Thus we have effectively a
dipole sitting on the weak bond. However, unlike in standard
electrostatics the charge strength εφ(�0) has to be determined
self-consistently. Interestingly, φ(�r) in Eq. (1) is also analogous
to the potential of a resistor network with a battery connected
to the two ends of the driving bond. Here however, the driving
potential is externally imposed, and not self-consistently
determined.

While the density profile is calculable for any finite L,
we consider for simplicity the thermodynamic limit L → ∞,
N → ∞ with density per site ρ = N/V fixed. The exact
solution of (1) at any �r can be expressed in terms of the lattice
Green’s function G(�r,�r0) which is the Coulomb potential due
to a single point charge of unit strength at �r0, that satisfies
∇2G = −δ�r,�r0 . Using the superposition principle one obtains
the solution

φ(�r) = ρ + εφ(�0)[G(�r,�0) − G(�r,�e1)]. (2)

The constant φ(�0) can be determined self-consistently by sub-
stituting �r = �0 in (2). This gives φ(�0) = ρ/{1 − ε[G(�0,�0) −
G(�0,�e1)]}. Then by evaluating the lattice Green’s function for
an infinite square [9], one finds φ(�0) = ρ/(1 − ε/4).

To determine the large distance behavior of the solution, one
can use the continuum approximation under which the Green’s
function behaves as G(�r,�r0) ≈ − 1

2π
ln |�r − �r0|, for large |�r −

�r0|. Substituting in (2), one finds that the density in (2) decays
for large r algebraically as

φ(�r) = ρ − εφ(�0)

2π

�e1 · �r
r2

+ O

(
1

r2

)
. (3)

This density profile also leads to a nontrivial current profile.
The average particle current density, away from the drive, is
�j (�r) = −∇φ(�r) and it decays for large r as

�j (�r) = εφ(�0)

2π

1

r2

[
�e1 − 2(�e1 · �r)�r

r2

]
+ O

(
1

r3

)
. (4)

In the electrostatic analog, �j (�r) is precisely the electric field
generated by the dipole.

Due to the superposition principle, the above analysis
can be readily generalized to the case of arbitrary localized
configuration of the driving bonds. For example, consider a
case of two driving bonds with rates (1 − ε) each, one from
(0,0) to (1,0) and the other from (0,0) to (−1,0), while the
rates across the rest of the bonds in the lattice are fixed to be 1
in both ways:

· · · (−2,0)
1
�
1

(−1,0)
1−ε

�
1

(0,0)
1−ε

�
1

(1,0)
1
�
1

(2,0) · · · .

It is again easy to see that the steady-state density φ(�r) now
satisfies

∇2φ(�r) = −εφ(�0)(2δ�r,�0 − δ�r,�e1 − δ�r,−�e1 ). (5)

In the electrostatic analog, the rhs of (5) corresponds to two
oppositely oriented adjacent dipoles on the x axis, constituting
a quadrupole charge configuration (− + +−) in the continuum
limit. Using the two-dimensional Coulomb potential and the
superposition principle, it is easy to see that the density profile
at large distance r now decays as

φ(�r) = ρ − εφ(�0)

2π

[
1

r2
− 2

( �e1 · �r
r2

)2]
+ O

(
1

r4

)
, (6)

with φ(�0) = ρ/(1 − ε/2). Consequently, the particle current
density (or equivalently the electric field of the quadruple)
�j (�r) decays as r−3 for large r .

In the case of an arbitrary configuration of n driving bonds,
one uses the superposition principle to express the steady-state
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profile in terms of the dipole strengths of the n dipoles. Using
the exact expression for the Green’s function on square lattice
[9] a set of linear equations determining these strengths are
obtained, which can be readily solved.

The existence of biased bonds does not necessarily imply
a breakdown of detailed balance. Localized configurations of
biased bonds may preserve detailed balance with respect to
a localized potential V (�r). For example, consider the case
where all incoming links to the site (0,0) are with rates
(1 − ε) each and the rates across the rest of the links in the
lattice are fixed to be 1. It is easy to verify that the rates
satisfy detailed balance with respect to the localized poten-
tial V (�r) = − ln(1 − ε) δ�r,�0. Consequently, the steady-state
density has the Gibbs-Boltzmann form φ(�r) ∝ exp[−V (�r)]
leading to a flat density profile everywhere except at the
origin.

It is interesting to note that in d = 2 dimension the analogy
to an electrostatic problem can be extended to introduce a
magnetic field as well. In a general two-dimensional setting
let eij denote the hopping rate from site i to its nearest neighbor
site j . This link creates a pair of oppositely directed flux lines
centered on the two plaquettes that share this link. The flux
is perpendicular to the plaquettes, with, say, the flux to the
left of the link points up [see Fig. 1(a)]. The magnitude of
the field generated by the (ij ) bond is given by H = ln ( eij

eji
).

The total flux through each plaquette is given by the sum of the
fluxes generated by each of its links. A necessary and sufficient
condition for detailed balance to hold is the vanishing of the
total magnetic field, as defined above, on all plaquettes. This
is a direct consequence of the Kolmogorov criterion [10,11].
In that case, the density profile outside the driven region is
flat resulting in a vanishing electric field, as follows from
the Boltzmann measure. However when the magnetic field
is nonzero, the steady state is a nonequilibrium one, and
the density profile created by the driving bonds typically
decays algebraically. On the other hand, bond configurations
which result in vanishing electric field and nonvanishing
magnetic field has a flat density profile. An example of such
configuration is given in Fig. 1(b).

Another interesting density profile pattern emerges when
one applies a global bias, say in the x direction, in addition to
the localized drive. Consider again noninteracting particles
in d = 2, where a particle from any site (m,n) hops to a
neighboring site with rate 1 in the north, west, and south
directions, while with rate (1 + μ) to the eastern neighbor.
Thus, μ � 0 denotes the global bias. In addition, there is the
driving bond from (0,0) → (1,0) where the hopping rate is set
to be (1 + μ − ε) with 0 � ε � 1. Proceeding as before, in the
steady state, φ(�r) is found to satisfy

−μ[φ(�r) − φ(�r − �e1)] + ∇2φ(�r) = −εφ(�0)(δ�r,�0 − δ�r,�e1 ),

(7)

where �r − �e1 ≡ (m − 1,n) and ∇2 is the discrete Laplacian as
before. The solution can be expressed as

φ(�r) = ρ + εφ(�0)[g(�r,�0) − g(�r,�e1)], (8)

where the Green’s function g(�r,�r0) satisfies

−μ[g(�r,�r0) − g(�r − �e1,�r0)] + ∇2g(�r) = −δ�r,�r0 . (9)

The solution can be obtained using Fourier transformation.
Setting (X,Y ) ≡ �r − �r0, one finds that for large X, Y

g(X,Y ) � 1√
4πμX

e−μY 2/4X, X > 0 (10)

� eμX

√
4πμ |X| e−μY 2/4|X|, X < 0. (11)

These results have a nice interpretation as the solution of a
diffusion equation where X plays the role of “time” and Y

the distance traveled from the origin. It can be directly seen
from (9) which, for large (X,Y ), can be approximated by its
continuum version: −μ∂Xg + ∂2

Xg + ∂2
Y g = 0. For large X >

0, neglecting the term ∂2
X, one indeed obtains an analog of

diffusion equation μ∂Xg = ∂2
Y g with μ playing the role of

friction coefficient and X > 0 being the time variable and
hence one obtains the standard diffusive propagator in (10) for
X > 0. In contrast, for negative X, one can no longer interpret
directly in terms of the diffusion equation in which the time is
always a positive variable. However, upon making a change of
variable X → −X′ and substituting g(X,Y ) = e−μX′

h(X′,Y )
one gets μ∂X′h = ∂2

X′h + ∂2
Y h. This leads to the result (11) for

X < 0. Substituting this result for the Green’s function in (8)
one obtains a density profile φ(x,y) that is highly anisotropic.
For example, for y = 0 and as x → +∞, the density decays
algebraically to ρ as x−3/2 while in the direction opposite
to the bias x → −∞, the density decays exponentially. In
the y direction, for fixed x, the density falls off rapidly as
∼exp(−μy2/4|x|).

The 2D results obtained above for noninteracting particles,
with or without global bias, can be easily generalized to
arbitrary dimensions. Indeed, the solution in (2) holds for
arbitrary dimensions d, except that the Green’s function
G(�r,�r0) depends on d. In the continuum limit, the Couloumb
potential G(�r,�r0) behaves, for large |�r − �r0|, as |�r − �r0|−(d−2)

for d > 2, as − 1
2π

ln |�r − �r0| for d = 2 and as − 1
2 |�r − �r0|

for d = 1. Hence, the dipole potential and consequently
the density profile φ(�r) decays as r−(d−1) for large r in
d � 2. In d = 1, the dipole potential has a discontinuity at
x = 0, thus giving rise to a discontinuous density profile:
φ(x) = ρ − (ε/2) φ(0) sgn(x), in full accordance with [7]. The
results for quadrupoles and higher multipoles can similarly
be generalized to arbitrary dimensions. The analogy to a
magnetic field discussed earlier is, however, restricted only
to two dimensions.

III. PARTICLES WITH EXCLUSION INTERACTIONS

We now show that most of the results derived above for
noninteracting particles in presence of a localized drive carry
through when the hard core interaction between the particles is
switched on. We consider a symmetric exclusion process on a
2D square lattice where each site can hold at most one particle.
Our results are easily generalizable to arbitrary dimensions.
From any occupied site (m,n) the particle attempts to hop to
any of its neighboring sites with rate 1 and actually hops there
provided the target site is empty. As in the noninteracting case,
we introduce the localized drive across the bond (0,0) → (1,0)
where the attempted hopping rate is (1 − ε) with ε � 1. It is
useful to first associate an occupation variable τ (�r,t) with
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FIG. 2. (Color online) The algebraic decay of the density profile
away from the driving bond in the positive x direction.

every site �r: τ (�r,t) = 1 if the site �r is occupied at time t and is
zero if it is empty at t . Clearly the average density is φ(�r,t) =
〈τ (�r,t)〉. It is again easy to write down the time evolution
equation of φ(�r,t) by counting the incoming and outgoing
rates from each site. In this case the equation analogous to (1)
is

∇2φ(�r) = −ε〈τ (�0)[1 − τ (�e1)]〉(δ�r,�0 − δ�r,�e1 ), (12)

where φ(�0) in (1) is replaced by C = 〈τ (�0)[1 − τ (�e1)]〉. While,
unlike in the noninteracting case, we cannot determine this
prefactor self-consistently, the electrostatic analogy to a dipole
(albeit with an unknown strength εC) still holds. Thus, at long
distances, one still obtains a long-ranged algebraic decay of
the density profile

φ(�r) = ρ − εC

2π

�e1 · �r
r2

+ O

(
1

r2

)
. (13)

Consequently, the particle current density (equivalently the
electric field due to the dipole) �j (�r), decays at large distances
as in the noninteracting case (4), up to an overall multiplicative
constant. In a similar way, one can also arrange the driving
bonds so as to generate a quadrupole or multipole configu-

rations of charges giving rise to an algebraic decay of the
density profile with varying exponents depending on the charge
configurations.

A numerical evidence of the profiles in (3) and (13) is shown
in Fig. 2 where the difference of density from ρ is plotted
against the distance from the driving bond in the positive
x direction. The simulation is performed on a 200 × 200
lattice with ε = 1 and initial uniform density ρ = 0.6. The
straight lines denote the theoretical results in (3) and (13) with
the value of φ(0) calculated using ρ and ε, and C = 〈τ (0)
[1 − τ (�e1)]〉 = 0.3209 determined independently from the
Monte Carlo simulation.

IV. SUMMARY

We have demonstrated that in diffusive systems, both with
and without interparticle exclusion interaction, localized drive
can give rise to algebraically decaying density profiles at large
distances. The problem of determining the density profile is
mapped onto an electrostatic problem where each driving
bond is represented by an electric dipole whose strength is
determined self-consistently by the electric potential generated
on the driving bond. The density profile of the driven system is
then given by the electrostatic potential created by the charge
distribution. An analogous quantity to the magnetic field is
also identified in two dimensions. Apart from its general
implications for driven nonequilibrium systems, our result may
be applicable to a variety of physical setups such as resistor
networks driven by a battery, local shear induced in fluids,
growing interfaces with a defect, and many others.
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