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Thermodynamic theory of phase transitions in driven lattice gases

Punyabrata Pradhan and Udo Seifert
II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart D-70550, Germany

(Received 28 July 2011; revised manuscript received 18 October 2011; published 28 November 2011)

We formulate an approximate thermodynamic theory of the phase transition in driven lattice gases with
attractive nearest-neighbor interactions. We construct the van der Waals equation of state for a driven system
where a nonequilibrium chemical potential can be expressed as a function of density and driving field. A
Maxwell’s construction leads to the phase transition from a homogeneous fluid phase to the coexisting phases of
gas and liquid.
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I. INTRODUCTION

Macroscopic properties of systems in equilibrium are
described by thermodynamic potentials, like entropy or free
energy, which can be derived from the microscopic properties
through the Boltzmann distribution. The ultimate triumph of
this formalism lies in describing phase transitions, arguably
the most interesting phenomena known to occur in various
interacting many-particle systems.

A phase transition can also occur in a system with a
nonequilibrium steady state (NESS) that exhibits a steady
current. However, driven systems have so far resisted attempts
to construct a general formalism similar to that in equilibrium
[1]. Understandably, studies in this direction have focused on
getting insights from simple model systems [2–8]. One such
model for systems having a NESS is the driven lattice gas
(DLG) [9], which has become a paradigm in nonequilibrium
statistical physics, analogous to the paradigmatic Ising model
or equilibrium lattice gas (ELG). Although the DLG has been
studied extensively in the last couple of decades and the various
properties concerning the nonequilibrium phase transitions are
fairly well known [10,11], a thermodynamic theory is still
missing even for this one of the simplest models of driven
interacting many-particle systems.

In this paper we formulate an approximate thermodynamic
theory that not only captures various macroscopic properties
but also describes the phase transition in the driven lattice
gases with attractive interactions. We construct a mean-field
(MF) van der Waals equation of state for a driven system
with a chemical potential μ(n,E) expressed as a function of
density n and driving field E. The quantity μ is identified
using the concept of equalization of an intensive variable,
like equilibrium chemical potential, for a driven system kept
in contact with the corresponding nondriven one. Then we
use the Maxwell’s construction, familiar in equilibrium for
constructing a concave (or convex) thermodynamic potential to
describe the phase-coexistence, to explain the phase transition
from a homogeneous fluid phase to the coexisting phases of
gas and liquid. Our theory is in remarkable agreement with the
numerical observations.

II. MODEL

We consider a model, introduced earlier in Ref. [12], of
two lattice gases, one driven with volume V1 and the other
nondriven with volume V2, exchanging particles through a

small contact at Ṽ1 and Ṽ2, respectively. The energy H of the
two systems combined is given by H = K1

∑
η(r1)η(r1

′) +
K2

∑
η(r2)η(r2

′) where sums are over nearest-neighbor sites
with r1,r1

′ ∈ V1 and r2,r2
′ ∈ V2, K1 and K2 the interaction

strengths of the pair potentials among particles in systems 1
and 2, respectively, and η(r) the occupation variable taking
values only 1 or 0 given the site r is occupied or unoccupied,
respectively. We choose the jump rate w(C ′|C) from a configu-
ration C to C ′ according to the local detailed balance condition
[9]: The jump rate for a particle from a site r to its unoccupied
nearest neighbor r′ obeys w(C ′|C) = w(C|C ′) exp[−�H +
E(x ′ − x)] where �H = H (C ′) − H (C), E is the driving field
along the x direction, and x and x ′ are x components of r and
r′ (kBT = 1, kB the Boltzmann constant, T temperature). We
consider two-dimensional systems with periodic boundaries
in both directions and choose E = E1 when r,r′ ∈ V1, and
E = 0 otherwise. Also, we confine ourselves to the cases
where the combined system is particle-hole symmetric with
K1 = K2 = K and consists of particles with attractive inter-
action of strength K < 0. For E1 = 0, the combined system,
an equilibrium lattice gas, has the Boltzmann distribution.
However, for E1 �= 0, there is a current in system 1 in the
steady state with a probability distribution unknown in general.

III. MEAN-FIELD THEORY

Defining the quantity wα′α as the conditional average of the
jump rate of a particle from system α to system α′ if a contact
site in system α is occupied and the corresponding contact site
in system α′ is unoccupied with α, α′ = 1, 2 and α �= α′, we
get

n
(c)
1

(
1 − n

(c)
2

)
w21 = n

(c)
2

(
1 − n

(c)
1

)
w12, (1)

where n(c)
α is density at the contact site in system α. We define

the conditional average, which will be useful later:

〈η̂α〉η ≡
4∑

η̂α=0

η̂αP
(
η̂α|η(c)

α = η
)
, (2)

where η̂α ≡ ∑4
i=1 ηnn

α,i is the sum over variable ηnn
α,i , the

occupation variable at the ith nearest-neighbor site to the
contact site in system α, η = 0 or 1, and P (η̂α|η(c)

α ) is
the conditional probability of η̂α given a fixed value of η(c)

α ,
the occupation variable at the contact site in system α. Now
we use a mean-field (MF) approximation for the conditional
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jump-rate wα′α ≈ exp[−(Kα′ 〈η̂α′ 〉0 − Kα〈η̂α〉1)/2], where the
quantity in the round brackets in the exponent is the conditional
average of difference in energy between the final and the initial
configurations, given that a particle jumps from system α to
system α′. Therefore we get from Eq. (1)

n2

1 − n2
eK2(〈η̂2 〉1 +〈η̂2 〉0 )/2 = n1

1 − n1
eK1(〈η̂1 〉1 +〈η̂1 〉0 )/2. (3)

Here we have implicitly assumed that correlations between the
two systems across the contact are negligibly small and con-
sequently n(c)

α ≈ nα where nα is the bulk density in system α.
Finally, putting K1 = K2 = K and then taking logarithm, Eq.
(3) can be rewritten in the following more illuminating form:

ln

(
n2

1 − n2

)
+ K

2
(〈η̂2〉1 + 〈η̂2〉0 )

= ln

(
n1

1 − n1

)
+ K

2
(〈η̂1〉1 + 〈η̂1〉0 ), (4)

which constitutes the basis of the following analysis. Now one
can readily identify the left-hand side of Eq. (4) as the chemical
potential μ2 ≡ ln[n2/(1 − n2)] + K(〈η̂2〉1 + 〈η̂2〉0 )/2 of an
equilibrium system, in this MF approximation, with density
n2 and interaction strength K .

Recent studies of DLGs have revealed a simple thermody-
namic structure where, in a large parameter space and to a good
approximation, one could define an intensive variable, like
equilibrium chemical potential, that equalizes upon contact
[12]. At this point, we use this concept of assigning the
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FIG. 1. (Color online) Top panel: Simulation results for a 20 × 20
system 1 in contact (in the 2 × 2 contact region) with a 250 × 250
equilibrium system 2, a particle reservoir. Integrated compressibility
Iχ ≡ ∫ μ

μ0
(∂〈N1〉/∂μ′) dμ′ (squares) and integrated fluctuation Iσ ≡∫ μ

μ0
(σ 2

N1
) dμ′ (circles) as a function of chemical potential μ for

a driven system (red points) with K = −1, E = 6 as well as an
equilibrium one (blue points) with K = −1 where the systems are
in contact with equilibrium reservoirs with the same respective K .
Bottom panel: The MF results where driven and the corresponding
equilibrium case are compared [see main text after Eq. (10)]. All
curves obtained in the fluid phase.

chemical potential μ of the equilibrium system 2, on the
mean-field level, to the driven system 1. We verify it by check-
ing the fluctuation-response relation ∂〈N1〉/∂μ = σ 2

N1
where

∂〈N1〉/∂μ is the compressibility and σ 2
N1

= (〈N2
1 〉 − 〈N1〉2)

is the fluctuations in particle-number N1 of driven system 1,
which is in contact with a particle reservoir equilibrium system
2. This fluctuation relation is indeed remarkably well satisfied
as seen in the top panel of Fig. 1.

IV. VAN DER WAALS EQUATION OF STATE

The above observation leads us to identify the right-hand
side of Eq. (4), on the mean-field level, as the chemical
potential μ(n,E) for a driven system with density n and driving
field E, i.e.,

μ(n,E) = ln

(
n

1 − n

)
+ K

2
(〈η̂〉1 + 〈η̂〉0), (5)

where we drop the subscript of the occupation variable η̂.
The dependence of μ on E enters through the conditional
average of η̂, which can be written explicitly in terms of the
nearest-neighbor correlation u ≡ 〈η(r)η(r′)〉, with r and r′ two
nearest-neighbor sites,

〈η̂〉1 = 〈η(c)η̂〉
P (η(c) = 1)

; 〈η̂〉0 = 〈(1 − η(c))η̂〉
P (η(c) = 0)

, (6)

where P (η(c)) is the probability of the occupation variable
η(c) at the contact site. Now using P (η(c) = 1) ≈ n, P (η(c) =
0) ≈ (1 − n), 〈η(c)η̂〉 ≈ 4u+ where u+ ≡ (u‖ + u⊥)/2 the
average nearest-neighbor correlations in the bulk with u‖
and u⊥ the nearest-neighbor correlations respectively along
and perpendicular to the direction of the driving field E,
and finally defining the average nearest-neighbor correlation
function c+(n,E) ≡ (u+ − n2), we obtain from Eq. (5)

μ(n,E) = ln

(
n

1 − n

)
+ 2KM(n,E), (7)

where the function M(n,E) is defined as

M(n,E) =
[

2n + c+(n,E)(1 − 2n)

n(1 − n)

]
. (8)

The quantities u‖, u⊥, and u+ depend on E. Note that, in
deriving Eqs. (7) and (8), we have used that the density, and
the quantities u‖ and u⊥, are approximately equal to those in
the bulk. Equation (7) is the desired van der Waals equation of
state for a DLG, developed in this paper. When c+ = 0, i.e.,
ignoring nearest-neighbor correlations, Eq. (7) reduces to the
usual MF expression of μ for an ELG [13].

The van der Waals equation of state notably does not
have any free parameter. To demonstrate that Eq. (7) indeed
explains various features of DLGs, we assume a physically
motivated approximate form of c+(n,E) where we use
c+(n,0) > c+(n,E), for any n �= 0,1, as substantiated in Fig. 2.
This relation is expected on the ground that the driving
field acts as an extra noise to break nearest-neighbor bonds
[14]. For sufficiently small |K|, μ(n,E) is a monotonically
increasing function of n (the condition for nonmonotonicity
is discussed later). For n < 1/2, since c+(n,0) > c+(n,E), the
second term in the square bracket of Eq. (8) is positive and
greater in equilibrium than in nonequilibrium. Since K < 0,
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FIG. 2. (Color online) Nearest-neighbor correlation function
c+(n,E) for DLG and ELG compared as a function of density n

for K = −1 and −0.5. Note that c+(n,E) < c+(n,0). The magenta
and sky-blue lines are plotted, for K = −0.5 and −1, using the
functional form of Eq. (10). Inset: Scaled c+(n,0) and c+(n,E)
are reasonably well collapsed on each other by using the approximate
form of c+(n,E) � A(E)c+(n,0) where A(E = 6) � 0.6 in both the
cases.

we therefore get μ(n,E) > μ(n,0) for a given n. It implies
that, if a driven system 1 with density n1 is in contact with the
corresponding nondriven equilibrium system 2 with density n2

where n1,n2 < 1/2, the steady-state densities will be such that
n1 < n2. For n1,n2 > 1/2, this would be exactly the opposite,
i.e., n1 > n2. For n1 = n2 = 1/2, equalization of the chemical
potential μ(1/2,E) = μ(1/2,0) implies that densities of a
driven and the corresponding nondriven system in contact
would indeed be the same. These results, which are derived
above using the concept of equalization of a chemical potential
for driven systems, are now verified in simulations presented
in Fig. 3 where we plot the density n1 of a driven system in
contact with the corresponding nondriven system with density
n2 for various K . Note that they are expectedly consistent with
the particle-hole symmetry.
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FIG. 3. (Color online) Density n1 of a 20 × 20 driven system
as a function of density n2 of the 250 × 250 equilibrium reservoir
for various interaction strengths (particle exchange through a 2 × 2
contact region). The simulations (points) are compared with the MF
theory (lines), which is obtained using a particular choice of c+(n,0)
as given in Eq. (10) and A(E) = 0.6, which corresponds to E = 6, as
estimated in Fig. 2. Note that, in the simulations for K < Kc � −1.30
as well as in the MF theory for K < KMF

c � −1.22, there is a jump
in the density n1 when the reservoir density reaches n2 = 1/2.

V. PHASE TRANSITION

Now we describe the phase transition, observed in the
simulations, in terms of the thermodynamic potential μ,
analogous to the description of the phase transitions in terms
of the free energy in equilibrium. As mentioned before, for
sufficiently large |K|, μ can be a nonmonotonic function of
n. This is unphysical as one expects that, with increase in the
density n2 (or equivalently μ2) of the equilibrium system 2,
the density n1 should also increase. Here the nonmonotonicity
of μ is the signature of the phase transition occurring below a
critical value of K < KMF

c . This is verified in the simulations
in Fig. 3 where we plot the density n1 of a strongly driven
system 1, with E1 = 6, as a function of density n2 of the
nondriven system 2. For K < Kc � −1.3, there is a jump in
the density n1. The size of the jump goes to zero continuously
as K tends to Kc from below. The criticality condition in the
MF approximation is given by (dμ/dn) = 0, i.e.,

1

n(1 − n)
= −2K

dM

dn
. (9)

For any specific form of c+(n,E), the critical KMF
c can be found

as a solution of K from Eq. (9). Generically, at K = KMF
c and

n = 1/2, (dM/dn) has a minimum touching the minimum in
the function 1/{n(1 − n)}, i.e., the left-hand side of Eq. (9).
Therefore, writing [dM/dn]n=1/2 = 2[1 − 4c+(1/2,E)], we
obtain from Eq. (9) the critical interaction strength KMF

c (E) =
−1/[1 − 4c+(1/2,E)]. Now, using c+(n,0) > c+(n,E), we
get KMF

c (E) > KMF
c (0), which has been observed in our

simulations here as well as in simulations in the past [9,10].
Since the equalization of an intensive variable can be related
to the existence of a generalized free energy f (n,E) [6,12], we
get μ(n,E) = ∂f/∂n and therefore f (n,E) = ∫ n

n0
μ(n′,E) dn′.

When μ is a nonmonotonic function of n, f (n,E) would not
be concave. But concavity of f (n,E) could be restored by the
usual Maxwell’s construction, and the jump δn in the density
can be determined accordingly (Fig. 4). Since c+(n,E) is
symmetric around n = 1/2 due to the particle-hole symmetry,
one can see from Eqs. (7) and (8) that μ(n,E) is antisymmetric
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FIG. 4. (Color online) The van der Waals equation of state:
Chemical potential μ as a function of density n. The curve for
μ develops a kink for K < KMF

c (E = 6) � −1.22. The size of
the jump in density in the coexistence phase is obtained by using
the Maxwell’s construction (see the black curve). We have taken
c(n,E) = A(E)c(n,0) [see Eq. (10) and the text below] with A(E) =
0.6, which corresponds to E = 6 (Fig. 2).
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around n = 1/2. So the line μ′ = μ(n = 1/2,E) gives equal
areas that are bounded by the line and the μ(n,E) curve.
The two density values, where the line μ′ = μ(n = 1/2,E)
intersects the curve μ(n,E) at the left and the right, correspond
to the densities in the liquid and gas phase, respectively.

We illustrate the above analysis by taking an approximate
form of the equilibrium correlation function

c+(n,0) � n(1 − n) + 1 −
√

1 + 4(e−K − 1)n(1 − n)

2(e−K − 1)
. (10)

This form can be obtained using approximation of a dynamical
mean-field theory [15]. Then we assume, for simplicity,
c+(n,E) = A(E)c+(n,0) where 0 < A(E) � 1 with A(0) = 1
in equilibrium (Fig. 2). In this special case, using Eq. (7), the
chemical potential μ is plotted as a function of density n for
various values of K in Fig. 4 with a specific choice of A(E) =
0.6 as estimated in Fig. 2. Note that the chosen value of A(E)
corresponds to a strongly driven system with E = 6 since the
driving field is much larger than the interaction strengths. The
kink in μ appears at KMF

c (E = 6) � −1.22, which indicates
the onset of the phase transition. We also obtain the equilibrium
MF value KMF

c (E = 0) � −1.62. Evidently, both values are
quite near to the corresponding known values [10], Kc � −1.3
in strongly driven case and Kc � −1.76 in equilibrium. In
Fig. 3 we plot the density n1 of the driven system 1 as a
function of the density n2 of the nondriven system 2 where
simulations and the MF theory agree quite well, except near
the transition region. Moreover, as another validation of the
MF theory developed here, in the bottom panel of Fig. 1 we
plot the integrated compressibility Iχ vs. chemical potential μ

obtained from the MF theory in the fluid phase with K = −1
(i.e., K < KMF

c ), where driven and equilibrium cases are
compared. The MF results, without any fitting parameter, are
again in good agreement with the corresponding simulation
results.

VI. SUMMARY

In conclusion, we have given an approximate thermody-
namic theory that captures various properties of paradigmatic
driven lattice gases with attractive nearest-neighbor interac-
tions remarkably well and, in particular, gives a consistent
description of the phase transition from the homogeneous fluid
phase to the coexisting phases of liquid and gas. Essentially,
we have obtained a formalism to calculate a part of a putative
nonequilibrium free energy that governs the phase transition
observed in various simulations. It still remains to be seen
whether and how the long-range correlations observed in these
systems [10,16], but so far ignored in our analysis, affect this
thermodynamic theory of the phase transition.

Importantly, our study opens up the possibility of ther-
modynamic characterization of driven systems, in general, as
the theory can in principle be extended to these systems that
exchange a conserved quantity upon contact. However, the
challenge in such an extension actually lies in choosing a suit-
able contact dynamics so that equalization of a thermodynamic
variable occurs.

ACKNOWLEDGMENT

We thank R. K. P. Zia and R. Ramsperger for discussions.

[1] G. L. Eyink, J. L. Lebowitz, and H. Spohn, J. Stat. Phys. 83,
385 (1996); S. Sasa and H. Tasaki, ibid. 125, 125 (2006);
Y. Oono and M. Paniconi, Prog. Theor. Phys. Suppl. 130, 29
(1998).

[2] L. Bertini, A. D. Sole, D. Gabrielli, G. Jona-Lasinio, and
C. Landim, Phys. Rev. Lett. 87, 040601 (2001); 94, 030601
(2005).

[3] B. Derrida, J. L. Lebowitz, and E. R. Speer, Phys. Rev. Lett. 89,
030601 (2002); 87, 150601 (2001).

[4] K. Hayashi and S. Sasa, Phys. Rev. E 68, 035104
(2003).

[5] P. L. Garrido, S. Goldstein, and J. L. Lebowitz, Phys. Rev. Lett.
92, 050602 (2004).

[6] E. Bertin, O. Dauchot, and M. Droz, Phys. Rev. Lett. 96,
120601 (2006); E. Bertin, K. Martens, O. Dauchot, and M.
Droz, Phys. Rev. E 75, 031120 (2007); K. Martens and
E. Bertin, J. Stat. Mech. (2011) P09012.

[7] S. Henkes, C. S. O’Hern, and B. Chakraborty, Phys. Rev. Lett.
99, 038002 (2007).

[8] H-Q. Wang and N. Menon, Phys. Rev. Lett. 100, 158001 (2008).

[9] S. Katz, J. L. Lebowitz, and H. Spohn, J. Stat. Phys. 34, 497
(1984).

[10] B. Schmittmann and R. K. P. Zia, Phys. Rep. 301, 45 (1998);
R. K. P. Zia, J. Stat. Phys. 138, 20 (2010).

[11] R. Dickman, Phys. Rev. A 38, 2588 (1988); J. Krug, J. L.
Lebowitz, H. Spohn, and M. Q. Zhang, J. Stat. Phys. 44, 535
(1986); N. C. Pesheva, Y. Shnidman, and R. K. P. Zia, ibid. 70,
737 (1993).

[12] P. Pradhan, C. P. Amann, and U. Seifert, Phys. Rev. Lett. 105,
150601 (2010); P. Pradhan, R. Ramsperger, and U. Seifert, Phys.
Rev. E 84, 041104 (2011).

[13] S. K. Ma, Statistical Mechanics (World Scientific, Singapore,
2004), p. 466.

[14] C. C. Hill, R. K. P. Zia, and B. Schmittmann, Phys. Rev. Lett.
77, 514 (1996).

[15] J. Marro and R. Dickman, Nonequilibrium Phase Transitions in
Lattice Models (Cambridge University Press, Cambridge, 1999).

[16] J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev.
Chem. 45, 213 (1994); P. L. Garrido, J. L. Lebowitz, C. Maes,
and H. Spohn, Phys. Rev. A 42, 1954 (1990).

051130-4

http://dx.doi.org/10.1007/BF02183738
http://dx.doi.org/10.1007/BF02183738
http://dx.doi.org/10.1007/s10955-005-9021-7
http://dx.doi.org/10.1143/PTPS.130.29
http://dx.doi.org/10.1143/PTPS.130.29
http://dx.doi.org/10.1103/PhysRevLett.87.040601
http://dx.doi.org/10.1103/PhysRevLett.94.030601
http://dx.doi.org/10.1103/PhysRevLett.94.030601
http://dx.doi.org/10.1103/PhysRevLett.89.030601
http://dx.doi.org/10.1103/PhysRevLett.89.030601
http://dx.doi.org/10.1103/PhysRevLett.87.150601
http://dx.doi.org/10.1103/PhysRevE.68.035104
http://dx.doi.org/10.1103/PhysRevE.68.035104
http://dx.doi.org/10.1103/PhysRevLett.92.050602
http://dx.doi.org/10.1103/PhysRevLett.92.050602
http://dx.doi.org/10.1103/PhysRevLett.96.120601
http://dx.doi.org/10.1103/PhysRevLett.96.120601
http://dx.doi.org/10.1103/PhysRevE.75.031120
http://dx.doi.org/10.1088/1742-5468/2011/09/P09012
http://dx.doi.org/10.1103/PhysRevLett.99.038002
http://dx.doi.org/10.1103/PhysRevLett.99.038002
http://dx.doi.org/10.1103/PhysRevLett.100.158001
http://dx.doi.org/10.1007/BF01018556
http://dx.doi.org/10.1007/BF01018556
http://dx.doi.org/10.1016/S0370-1573(98)00005-2
http://dx.doi.org/10.1007/s10955-009-9884-0
http://dx.doi.org/10.1103/PhysRevA.38.2588
http://dx.doi.org/10.1007/BF01011309
http://dx.doi.org/10.1007/BF01011309
http://dx.doi.org/10.1007/BF01053593
http://dx.doi.org/10.1007/BF01053593
http://dx.doi.org/10.1103/PhysRevLett.105.150601
http://dx.doi.org/10.1103/PhysRevLett.105.150601
http://dx.doi.org/10.1103/PhysRevE.84.041104
http://dx.doi.org/10.1103/PhysRevE.84.041104
http://dx.doi.org/10.1103/PhysRevLett.77.514
http://dx.doi.org/10.1103/PhysRevLett.77.514
http://dx.doi.org/10.1146/annurev.pc.45.100194.001241
http://dx.doi.org/10.1146/annurev.pc.45.100194.001241
http://dx.doi.org/10.1103/PhysRevA.42.1954

