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Interface-roughening phase diagram of the three-dimensional Ising model
for all interaction anisotropies from hard-spin mean-field theory
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The roughening phase diagram of the d = 3 Ising model with uniaxially anisotropic interactions is calculated
for the entire range of anisotropy, from decoupled planes to the isotropic model to the solid-on-solid model,
using hard-spin mean-field theory. The phase diagram contains the line of ordering phase transitions and, at lower
temperatures, the line of roughening phase transitions, where the interface between ordered domains roughens.
Upon increasing the anisotropy, roughening transition temperatures settle after the isotropic case, whereas the
ordering transition temperature increases to infinity. The calculation is repeated for the d = 2 Ising model for the
full range of anisotropy, yielding no roughening transition.
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I. INTRODUCTION

The ordering phase transition in a crystal precipitates the
formation of macroscopic domains, differently ordered with
respect to each other. The interface between such domains
incorporates static and dynamic phenomena of fundamental
and applied importance. Of singular importance is the oc-
currence of yet another phase transition, distinct from the
ordering phase transition, which is the interface roughening
phase transition [1,2]. The roughening phase transition is
well studied with the three-dimensional Ising model, in the
so-called solid-on-solid limit, in which the interactions along
one spatial direction (z) are taken to infinite strength, while the
interactions along the x and y spatial directions remain finite.
In this case, due to the infinite interactions, the ordering phase
transition moves to infinite temperature and is not observed.
A study of the system with finite interactions, where both
ordering and roughening phase transitions should distinctly be
observed, had not been done.

In our current study, hard-spin mean-field theory [3,4],
which has been qualitatively and quantitatively successful
in frustrated and unfrustrated magnetic ordering problems
[3–18], is used to study ordering and roughening phase
transitions in the three-dimensional (d = 3) Ising model for
the entire range of interaction anisotropies, continuously from
the solid-on-solid limit to the isotropic system to the weakly
coupled-planes limit. The phase diagram is obtained in the
temperature and interaction anisotropy variables, with separate
curves of ordering and roughening phase boundaries. The
method, when applied to the anisotropic d = 2 Ising model,
yields the lack of roughening phase transition.

II. HARD-SPIN MEAN-FIELD THEORY

Hard-spin mean-field theory has been introduced as a
self-consistent theory that conserves the hard-spin (|s| = 1)
condition, indispensable to the study of frustrated systems
[3,4]. This method is almost as simply implemented as usual
mean-field theory, but brings considerable qualitative and
quantitative improvements. Hard-spin mean-field theory has

yielded, for example, the lack of order in the undiluted
zero-field triangular-lattice antiferromagnetic Ising model and
the ordering that occurs either when a uniform magnetic field
is applied to the system, giving a quantitatively accurate
phase diagram in the temperature versus magnetic field
variables [3–6,9,10], or when the system is sublattice-wise
quench-diluted [17]. Hard-spin mean-field theory has also
been successfully applied to complicated systems that exhibit
a variety of ordering behaviors, such as three-dimensionally
stacked frustrated systems [3,7], higher-spin systems [8],
and hysteretic d = 3 spin glasses [18]. Furthermore, hard-
spin mean-field theory shows qualitative and quantitative
effectiveness for unfrustrated systems as well, such as being
dimensionally discriminating by yielding the no-transition of
d = 1 and improved transition temperatures in d = 2 and
3 [5,18].

We have therefore applied hard-spin mean-field theory to
the global study of the roughening transition in the anisotropic
d = 3 Ising model. [We have also found that no roughening
phase transition is seen in d = 2 (Sec. IV).] The uniaxially
anisotropic d = 3 Ising model is defined by the Hamiltonian

− βH = Jxy

xy∑
〈ij〉

sisj + Jz

z∑
〈ij〉

sisj , (1)

where, at each site i of a d = 3 cubic lattice with periodic
boundary conditions, si = ±1. The first sum is over nearest-
neighbor pairs of sites along the x and y spatial directions, and
the second sum is over the nearest-neighbor pairs of sites along
the z spatial direction. The interactions are ferromagnetic,
Jxy,Jz > 0, except for the interaction between two of the
xy planes, which has the same magnitude as the other Jz

interactions but is antiferromagnetic: JA
z = −Jz < 0. This

choice is made in order to induce an interface when the
system is ordered. (An alternate approach would have been
to use a system without periodic boundary conditions along
the z direction, but with oppositely pinned spins at each edge.
However, this would have introduced a surface effect at the
pinned edges, modifying the magnetization deviations which
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would thereby not exclusively reflect the spreading of the
interface.)

For this system, the self-consistent equation of hard-spin
mean-field theory is

mi =
∑
{sj }

⎡
⎣

⎛
⎝∏

j

P (mj,sj )

⎞
⎠ tanh

⎛
⎝∑

j

Jij sj

⎞
⎠

⎤
⎦ , (2)

where the last sum is over the sites j that are nearest neighbor
to site i, and the first sum is over all states {sj } of the spins at
these nearest-neighbor sites. In Eq. (2),

P (mj,sj ) = 1
2 (1 + mjsj ) (3)

is, for local magnetization mj at site j , the probability of
having the spin value of sj . The coupled Eqs. (2) are solved
numerically for a 20 × 20 × 20 cubic system with periodic
boundary conditions, by iteration: A set of magnetizations is
substituted into the right-hand side of Eqs. (2), to obtain a new
set of magnetizations from the left-hand side. This new set is
then substituted into the right-hand side, and this procedure is
carried out repeatedly, converging to stable values of the mag-
netizations that are the solution of the equations. The resulting
magnetization values depend on the z coordinate only.

III. RESULTS: ORDERING AND ROUGHENING PHASE
TRANSITIONS IN d = 3

A series of curves for the magnetizations mi versus xy

layer number i are shown for different temperatures 1/Jxy , for
a given anisotropy Jz/Jxy in each panel of Fig. 1. For each
value of the anisotropy, the magnetizations mi are zero at high
temperatures and become nonzero below the ordering transi-
tion temperature TC . The ordering onset is seen in the upper

FIG. 1. (Color online) For the d = 3 anisotropic Ising model,
magnetizations mi versus xy layer-number i curves for different
temperatures 1/Jxy . Each panel shows results for the indicated
anisotropy Jz/Jxy . The curves in each panel, with decreasing
sharpness, are for temperatures 1/Jxy = 1, 3, 5, 6. In the upper
panels, the high-temperature curves coincide with the horizontal line
mi = 0.

FIG. 2. (Color online) Local magnetization data for the d =
3 anisotropic Ising model. The curves, starting from the high-
temperature side, are for anisotropies Jz/Jxy = 10, 5, 2, 1, 0.5, 0.2.
Upper panel: Magnetization absolute values |mb| away from the
interface as a function of temperature 1/Jxy , for different values
of the anisotropy Jz/Jxy . Lower panel: The deviation |mb| − |mi |
averaged over the system versus temperature 1/Jxy for different
anisotropies Jz/Jxy . This averaged deviation vanishes when the
interface is smooth. Note the qualitatively different low-temperature
behavior in the d = 2 case shown in Fig. 4.

panel of Fig. 2, where the magnetization absolute values |mb|
away from the interface are plotted as a function of temperature
1/Jxy , for different values of the anisotropy Jz/Jxy .

In Fig. 1, it is also seen that, at temperatures just below
TC , the interface between the mi ≷ 0 domains is spread over
several layers. It is also seen that below a lower, roughening-
transition temperature TR , the interface becomes localized
between two consecutive layers, reversing the sign of the
magnetization mi with no change in magnitude. This onset
is best seen in the lower panel of Fig. 2, where the deviation
|mb| − |mi | averaged over the system is plotted as a function
of temperature 1/Jxy for different anisotropies Jz/Jxy .

Thus, we have deduced the phase diagram, for all values
of the anisotropy Jz/Jxy and temperature 1/Jxy , as shown in
Fig. 3. The roughening transition is obtained by fitting the
averaged deviation curves (lower panel of Fig. 2) within the
range 〈|mb| − |mi |〉 = 0.01 to 0.04, to find the temperature
at which the averaged deviation reaches zero, meaning that
the interface becomes localized between two consecutive
layers, reversing the sign of the magnetization mb with no
change in magnitude. In Fig. 3 the ordering and roughening
phase transitions occur as two separate curves, starting in the
decoupled planes (Jz/Jxy = 0) limit and scanning at finite
temperature the entire range of anisotropies. The ordering
transition starts, for the decoupled planes limit Jz/Jxy = 0, at
1/Jxy = 3.12, to be compared with the exact result of 1/Jxy =
2.27. The ordering transition continues to 1/Jxy = 5.06,
to be compared with the precise [19] result of 1/Jxy = 4.51,
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FIG. 3. (Color online) For the d = 3 anisotropic Ising model, the
calculated phase diagram showing the disordered, ordered with rough
interface, and ordered with smooth interface phases. The squares
indicate the exact ordering temperatures from duality at Jz/Jxy = 0
and from Ref. [19] at Jz/Jxy = 1. The circle indicates the roughening
transition temperature for the solid-on-solid limit Jz/Jxy → ∞ [2].
The roughening transition is obtained by fitting the averaged deviation
curves (lower panel of Fig. 2) within the range 〈|mb| − |mi |〉 = 0.01
to 0.04, to find the temperature at which the averaged deviation
reaches zero, meaning that the interface becomes localized between
two consecutive layers, reversing the sign of the magnetization mb

with no change in magnitude.

for the isotropic case Jz/Jxy = 1. In the solid-on-solid limit
(Jz/Jxy → ∞), the ordering boundary goes to infinite temper-
ature. The roughening transition starts at 1/Jxy = 0 for Jz/Jxy

close to zero and settles to a finite temperature value before
the isotropic case. Thus, the roughening transition temperature
1/Jxy is 1.45 in the isotropic case Jz/Jxy = 1 and 1.62 in the
solid-on-solid limit Jz/Jxy → ∞, the latter to be compared
with the value of 2.30 ± 0.10 from Ref. [2].

FIG. 4. (Color online) For the d = 2 anisotropic Ising model,
the deviation |mb| − |mi | averaged over the system versus temper-
ature 1/Jxy for different anisotropies Jz/Jxy . The curves, starting
from the high-temperature side, are for anisotropies Jz/Jxy =
10, 5, 2, 1, 0.5, 0.2 . It is seen that the deviation does not vanish,
i.e., the interface does not localize, down to zero temperature. Thus, a
qualitatively different low-temperature behavior occurs, as compared
with the d = 3 case shown in the lower panel of Fig. 2.

FIG. 5. (Color online) For the d = 2 anisotropic Ising model, the
phase diagram showing the disordered phase and the ordered phase
with rough interface. The dashed curve is the exact ordering boundary
sinh(2Jx) sinh(2Jz) = 1 obtained from duality. No ordered phase with
smooth interface is found.

IV. RESULTS: ORDERING TRANSITIONS BUT NO
ROUGHENING TRANSITIONS IN d = 2

We have also applied our method to the anisotropic d = 2
Ising model, defined by the Hamiltonian

− βH = Jx

x∑
〈ij〉

sisj + Jz

z∑
〈ij〉

sisj , (4)

where, on a 20 × 20 square lattice with periodic boundary
conditions, the first sum is over nearest-neighbor pairs of sites
along the x spatial direction, and the second sum is over the
nearest-neighbor pairs of sites along the only other (z) spatial
direction.

The ordering phase transition is observed in d = 2 similarly
to the d = 3 case. However, the rough interface phase
continues to zero temperature, as seen in the |mb| − |mi |
curves in Fig. 4. Thus, no roughening phase transition occurs
in d = 2. The corresponding phase diagram is given in Fig. 5.
The ordering transition starts, for the decoupled lines limit
Jz/Jx = 0, at 1/Jx = 0, as expected for decoupled d = 1
systems. The ordering transition continues to 1/Jx =3.09,
to be compared with the exact result of 1/Jx = 2.27, for
the isotropic case Jz/Jx = 1. In the Jz/Jx → ∞ limit, the
ordering boundary goes to infinite temperature.

V. CONCLUSION

It seen that hard-spin mean-field theory yields a complete
picture of the ordering and roughening phase transitions for the
isotropic and anisotropic Ising models, in spatial dimensions
d = 3 and 2. This result attests to the microscopic efficacy of
the model. Future works, such as the effects of uncorrelated
and correlated (aerogel [20,21]) frozen impurities on the
roughening transitions, are planned.
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[12] G. B. Akgüç and M. Cemal Yalabık, Phys. Rev. E 51, 2636
(1995).

[13] J. E. Tesiero and S. R. McKay, J. Appl. Phys. 79, 6146 (1996).
[14] J. L. Monroe, Phys. Lett. A 230, 111 (1997).
[15] A. Pelizzola and M. Pretti, Phys. Rev. B 60, 10134 (1999).
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