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Generalized superstatistics, i.e., a “statistics of superstatistics,” is proposed. A generalized superstatistical
system comprises a set of superstatistical subsystems and represents a generalized hyperensemble. There exists
a random control parameter that determines both the density of energy states and the distribution of the
intensive parameter for each superstatistical subsystem, thereby forming the third, upper level of dynamics.
Generalized superstatistics can be used for nonstationary nonequilibrium systems. The system in which a
supercritical multitype age-dependent branching process takes place is an example of a nonstationary generalized
superstatistical system. The theory is applied to pair production in a neutron star magnetosphere.
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I. INTRODUCTION

A large variety of complex nonequilibrium systems exhibit
spatiotemporally inhomogeneous dynamics. Such systems are
often characterized by hierarchical structures of dynamics. The
hierarchy can be formed by the decomposition of the system
dynamics into different dynamics on different spatiotemporal
scales, which are largely separated from each other. In
this case, the statistical properties of the system can be
effectively described by a superposition of several statistics,
or a “superstatistics.”

Superstatistics has been formulated in Ref. [1] to consider
nonequilibrium systems with a stationary state and intensive
parameter fluctuations. Some preliminary concepts have been
anticipated earlier in Refs. [2–4]. Superstatistical systems are
characterized by the existence of an intensive parameter β

that fluctuates on a much larger time scale than the typical
relaxation time of the local dynamics. If a given system can
be thought of as a collection of many small spatial cells,
then the inverse temperature in a cell is typically taken as
such a parameter. However, more general interpretations of
the intensive parameter are possible. Sufficient time scale
separation between two relevant dynamics within the complex
system allows one to qualify superstatistics as a form of slow
modulation [5].

Superstatistics is applicable to various complex systems.
Its applications include, among others, cosmic-ray energy
spectra and electron-positron pair annihilation [6,7], the world
line representations of Feynman propagators for spin-0 and
spin-1/2 particles [8], an extension of the random matrix
theory covering systems with mixed regular-chaotic dynamics
[9–11], nonstationary dynamical processes with time-varying
multiplicative noise exponents [12], Markovian systems with-
out detailed balance [13], a mesoscopic approach to the
problem of Brownian motion [14], models of the metastatic
cascade in cancerous systems [15], complex networks [16],
ecosystems driven by hydroclimatic fluctuations [17], pattern-
forming systems [18], solar flares [19], share price fluctuations
[20–23], the statistics of train departure delays [24], wind
velocity fluctuations [25], and many interesting applications
in hydrodynamic turbulence [23,26–30].
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Let us suppose for a while that we have a complex
nonequilibrium system described by superstatistics. One of the
main problems is the determination of the distribution f (β) of
the intensive parameter β. It can be found using the maximum
entropy principle [31]. Moreover, f (β) can be considered
as a function of a set of additional control parameters {λi},
f = f (β,{λi}) [32]. These parameters emerge as Lagrange
multipliers determined by maximizing the Boltzmann-Gibbs-
Shannon entropy of f (β,{λi}) under certain constraints. Let
us revert to the parameter β. In each cell of the superstatistical
system, we have the Gibbs canonical distribution ρG(E|β) =
e−βE/Z(β), where Z(β) is the partition function. This distri-
bution can be obtained by maximizing the Boltzmann-Gibbs-
Shannon entropy associated with a normalized distribution
ρ(E|β), where β is the Lagrange multiplier corresponding to
the mean energy constraint. We see that, in general, both β

and {λi} have a similar nature. However, in superstatistics, β

fluctuates, but the control parameters are constant.
We can pose the following question: What statistics appears

in the case of fluctuating control parameters? The aim of this
paper is to develop the generalization of the Beck-Cohen super-
statistics that allows one to properly consider such fluctuations.
These form a separate, upper level of dynamics, thus leading
to multiscale superstatistics. The possible existence of such
superstatistics has been presumed in Ref. [31].

This paper is organized as follows. In Sec. II generalized
superstatistics is developed. In Sec. III supercritical multitype
age-dependent branching processes are considered as an
example of generalized superstatistical systems. In Sec. IV
generalized superstatistics is applied to electron-positron pair
production in a neutron star magnetosphere and the particle
energy distribution is calculated. In Sec. V the main results are
summarized.

II. GENERALIZED SUPERSTATISTICS

Let us consider a nonequilibrium system that consists
of a set of nonequilibrium subsystems described by their
superstatistics. This system can be referred to as a “generalized
superstatistical system.” Let us define a random variable ξ that
determines the properties of each nonequilibrium superstatisti-
cal subsystem. The role of ξ in determining the properties of the
subsystems is similar to that of β in determining the properties
of the cells that constitute a superstatistical subsystem. In other
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words, ξ is a control parameter, which determines the form of
the superstatistical distribution for each subsystem. Here, we
do not restrict ourselves to considering ξ as a scalar random
variable. In principle, ξ is allowed to be a multidimensional
random vector. The distribution of ξ is characterized by a
probability density c(ξ ), which is normalized,

∫
c(ξ )dξ = 1.

We can look at the generalized superstatistical system
using the hyperensemble approach [33]. Developed in the
context of nonequilibrium systems, this approach is consistent
with the standard theory of equilibrium statistical physics
[34]. Superstatistics can be considered as the theory of
hyperensembles [35]. Each superstatistical subsystem of the
system represents a hyperensemble, i.e., a mixture of canonical
ensembles. In turn, the system as a whole can be described
by a mixture of the hyperensembles corresponding to the
subsystems. In other words, the generalized superstatistical
system represents a “generalized hyperensemble,” i.e., an
ensemble of hyperensembles.

There are three levels of dynamics in the system under
consideration: The first level is the level of fast dynamics in a
cell. The second level is the level of superstatistical dynamics
in a subsystem. The existence of an additional dynamics de-
scribed by ξ forms the third level in the hierarchy of dynamics
and allows us to refer to the statistics of the generalized
superstatistical system as a “generalized superstatistics,” i.e.,
a statistics of superstatistics.

Consider a superstatistical subsystem of the generalized su-
perstatistical system. Let �(E|ξ ) be a nondecreasing function
representing the number of states with energy less than E. The
random variable ξ determines the density of energy states for
the subsystem,

g(E|ξ ) = ∂�(E|ξ )

∂E
.

The inclusion of the density of states in the superstatistical
description is significant [36]. When writing d�(E|ξ ) in
integrals, we will imply integration over E so that d�(E|ξ ) =
g(E|ξ )dE. The Gibbs canonical distribution for each cell of
the subsystem is

ρG(E|β,ξ ) = e−βE

Z(β|ξ )
, (1)

where

Z(β|ξ ) =
∫

e−βE d�(E|ξ )

is the partition function. By analogy with the approach used in
Ref. [32], we do not include the density of states in the defini-
tion of the energy distribution (1); therefore, the normalization
condition is

∫
ρG(E|β,ξ )d�(E|ξ ) = 1. We also assume that ξ

determines the distribution f (β|ξ ) of the intensive parameter
β. This distribution is normalized,

∫
f (β|ξ )dβ = 1. Note that

g(E|ξ ) and f (β|ξ ) are not necessarily statistically dependent
variables. These will change independently if we choose ξ =
(ξ1,ξ2), with ξ1 and ξ2 being independent random variables,
and set g(E|ξ ) = g(E|ξ1) and f (β|ξ ) = f (β|ξ2).

The superstatistical distribution for the subsystem is given
by

ρ(E|ξ ) =
∫

ρG(E|β,ξ )f (β|ξ )dβ, (2)

with the normalization condition being
∫

ρ(E|ξ )d�(E|ξ ) = 1.
If ξ is a nonrandom vector, then this distribution reduces to the
ordinary superstatistical distribution [1]. By averaging Eq. (2)
over the fluctuating ξ , we immediately obtain the generalized
superstatistical distribution

σ (E) =
∫

ρ(E|ξ )g(E|ξ )c(ξ )dξ, (3)

which is normalized,
∫

σ (E)dE = 1.

III. BRANCHING PROCESSES

Now the following question arises: Do there exist any
nonequilibrium systems, whether stationary or not, that can
be described by generalized superstatistics?

Let us consider a many-particle system composed of
particles of n types. Each type-i particle, which will also
be denoted by Ti , 1 � i � n, has a random lifetime with a
probability distribution function Gi(τ ). In other words, Gi(τ )
is the probability that the lifetime of a given type-i particle
does not exceed τ . At the end of its life the particle decays into
a random number of particles of several types. Specifically, at
the moment of its decay the particle produces ωj � 0 type-j
particles of age zero, 1 � j � n:

Ti →
n∑

j=1

ωjTj . (4)

Thus we have a multitype age-dependent branching process,
the so-called multitype Sevast’yanov process [37].

The transformation (4) is described by the generating
function

hi(τ,x) =
∑

ω

pω
i (τ )xω1

1 · · · xωn

n ,

where pω
i (τ ) is the conditional probability of the transfor-

mation (4) given that the particle decays at age τ , ω =
(ω1, . . . ,ωn) is an n-dimensional vector with non-negative in-
teger components ωj , and x = (x1, . . . ,xn) is an n-dimensional
vector with complex components xj such that |xj | � 1. If
x1 = · · · = xn = 1, we will write x = 1. The normalization
condition reads hi(τ,1)=1.

The mean number of type-j particles that appear upon the
decay of a type-i particle is given by

Aij =
∫ ∞

0
aij (τ )dGi(τ ), (5)

where

aij (τ ) = ∂hi(τ,x)

∂xj

∣∣∣∣
x=1

is the same mean given that the particle decays at age τ . We will
assume that the n × n matrix A = ‖Aij‖ with components 0 �
Aij < ∞ is irreducible, or indecomposable, i.e., the index set
{1, . . . ,n} cannot be divided into two disjoint nonempty sets S1

and S2 such that Aij = 0 for all i ∈ S1 and all j ∈ S2 (see, e.g.,
Ref. [38] for details). Moreover, we will also assume that the
Perron root of A, i.e., the maximum positive real eigenvalue of
A, is greater than one. Thus we deal with the indecomposable
supercritical branching process [39]. Physically, this means
that, first, a particle of a given type potentially has descendants,
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either direct or distant, of any type and, second, the number of
particles in the system, on average, progressively increases.

We see that the whole system is composed of n subsystems,
the ith subsystem comprising type-i particles. Obviously, the
subsystems interact with each other in the sense that the decay
of a particle in one subsystem leads to the creation of particles
in other subsystems. The number of particles both in the whole
system and in the subsystems is not constant and changes with
time. Thus we have a nonstationary nonequilibrium situation.

Let μ(t) = [μ1(t), . . . ,μn(t)] be an n-dimensional vector
with non-negative integer components. Each μj (t) is a random
variable that yields the number of particles in the j th
subsystem at time t . The age-dependent branching process
is characterized by a set of generating functions

Fi(t,x) =
∑

ω

P ω
i (t)xω1

1 · · · xωn

n , (6)

where P ω
i (t) is the conditional probability that μ(t) = ω given

that there is one particle in the ith subsystem and none in
the other subsystems at time zero. The generating functions
Fi(t,x) (6), 1 � i � n, satisfy a system of nonlinear integral
equations [37]. Essential for us here is the probabilistic nature
of the number of particles both in the whole system and in
each subsystem. In general, we cannot predict a priori what
the number of particles is in each subsystem at a given time, but
instead we can focus on the average behavior of the generalized
hyperensemble.

The mean number of particles in the j th subsystem at time
t given that the branching process has started with one type-i
particle at time zero is

Aij (t) = ∂Fi(t,x)

∂xj

∣∣∣∣
x=1

.

To analyze the long-run behavior of these means, let us define
the Laplace-Stieltjes transforms

Lij (α) =
∫ ∞

0
e−ατ dGij (τ ),

where

Gij (t) =
∫ t

0
aij (τ )dGi(τ ). (7)

Let λ(α) be the Perron root of the n × n matrix L(α) =
‖Lij (α)‖. Choose an α such that λ(α) = 1 and define an
n-dimensional left eigenvector v = (v1, . . . ,vn) of L(α) with
positive real components vj that satisfy

vj =
n∑

i=1

viLij (α).

Then the asymptotic behavior of the mean numbers of particles
is expressed as

Aij (t) ∼ Civjwje
αt , t → ∞, (8)

where

wj =
∫ ∞

0
e−ατ [1 − Gj (τ )]dτ (9)

and Ci is a positive constant [40]. Interestingly, Aij (t) behaves
in a similar way for each subsystem. Since we consider the

supercritical case, α always exists and is positive. Therefore,
the mean number of particles in each subsystem increases
exponentially. Note that the existence of a positive α is
equivalent to the condition that the Perron root of A is greater
than one [39,40].

In the long-term run, the limiting probability that a given
particle belongs to the ith subsystem can be written as

πi = viwi∑n
j=1 vjwj

. (10)

Note that πi is independent of the type of the primary particle
with which the branching process has started. Moreover,
nonstationary though the situation is, the limiting probability
is stationary.

The limiting age distribution for the ith subsystem is

Li(τ ) =
∫ τ

0 e−αu[1 − Gi(u)]du∫ ∞
0 e−αu[1 − Gi(u)]du

. (11)

It is found by dividing the ith subsystem into two subsystems,
the first comprising the type-i particles that decay at age u � τ

and the second comprising the rest, and applying the technique
described above to the new system. Equation (11) yields the
probability that a randomly chosen type-i particle decays at
age u � τ . In the case of a single type of particles, Li(τ )
reduces to the limiting age distribution for the one-dimensional
supercritical Sevast’yanov process [41], which coincides with
the classical age distribution for the one-dimensional super-
critical Bellman-Harris process when the probability pω

i (τ ) is
independent of τ , pω

i (τ ) = pω
i [42,43].

Now we can calculate the particle energy distribution.
Consider a type-i particle of age τ . In general, its energy
can be considered as a random variable characterized by a
conditional probability density wi(E|τ ). More specifically, the
probability that the energy of a type-i particle of age τ lies in
a small interval dE around E is wi(E|τ )d�i(E), where �i(E)
is the number of energy states with energy less than E. The
normalization condition is

∫
wi(E|τ )d�i(E) = 1. The energy

probability density for the ith subsystem becomes

ρi(E) =
∫ ∞

0
wi(E|τ )dLi(τ ), (12)

with the normalization condition being
∫

ρi(E)d�i(E) = 1.
The described system can be considered as a generalized

superstatistical system. The control parameter ξ is a discrete
random variable that takes on values {1, . . . ,n} and yields the
number of the subsystem to which a randomly chosen particle
belongs. In other words, ξ corresponds to the particle type. It
has the discrete probability distribution {π1, . . . ,πn}, where πi

is given by Eq. (10). It remains to find the distribution fi(β)
of the fluctuating parameter β for each subsystem. Let

g(s) = L[f (x)](s) =
∫ ∞

0
e−sxf (x) dx

be the Laplace transform of a function f (x), with
f (x) = L−1[g(s)](x) being the corresponding inverse Laplace
transform. The energy distribution for the ith subsystem can
be expressed as

ρi(E) = L

[
fi(β)

Zi(β)

]
(E),
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where Zi(β) is the partition function. Then

fi(β) = Zi(β)L−1[ρi(E)](β).

IV. AN EXAMPLE: PAIR PRODUCTION IN A NEUTRON
STAR MAGNETOSPHERE

New nonstationary cosmic radio sources associated with
neutron stars, viz., intermittent pulsars [44] and rotating radio
transients (RRATs) [45], have been discovered recently. The
essential feature of these sources is their long “silence,” when
we do not observe any radio emission from them. Since an
electron-positron plasma outflowing from the magnetosphere
of a neutron star is responsible for the observable radio
emission, the plasma generation can be switched off for some
time. In this case, the absorption of a high-energy photon in
the inner neutron star magnetosphere triggers nonstationary
cascade pair production [46], which, in turn, results in the
formation of a “lightning” [47]. Such lightnings can manifest
themselves as radio bursts from RRATs [48]. In a lightning,
we deal with an ultrarelativistic electron-positron plasma. The
properties of the emission from electrons and positrons are
determined by their energies. Therefore, it is important to find
the energy distribution of particles. This can be done using
generalized superstatistics.

Let us characterize the energy of a charged particle, either an
electron or a positron, by its Lorentz factor γ (τ ). The particle is
efficiently accelerated by a longitudinal electric field E‖ so that
γ (τ ) eventually reaches a stationary value γ0, which is ∼108

in a vacuum neutron star magnetosphere [49]. The electron
and positron of each produced pair, though ultrarelativistic,
initially have Lorentz factors much less than γ0. At the initial
stage of acceleration γ (τ ) increases linearly with time, γ (τ ) ≈
E‖τ . Here, we use a dimensionless system of units (see, e.g.,
Ref. [48]). By contrast, when t approaches τ0 = γ0/E‖, the
radiation forces come to the fore, and a need arises to use
the Dirac-Lorentz equation to consider the particle dynamics
properly [49–51].

Thus, we can define two types of particles: A type-1 particle
can be efficiently accelerated by the electric field since the
radiation friction is negligible. A type-2 particle, in contrast
to a type-1 particle, is not accelerated by the electric field
because of the electrodynamic self-action effects and has the
constant Lorentz factor γ0. In the former case the particle does
not efficiently produce secondary pairs, but in the latter case it
does at a rate Q [46]. Note that the plasma generation, along
with the accompanying radio emission, is not suppressed even
in ultrahigh magnetar magnetic fields [52,53]. The Lorentz
factors of type-1 and type-2 particles as functions of their ages
become

γ1(τ ) = E‖τ, 0 � τ < τ0, (13a)

γ2(τ ) = γ0, 0 � τ < ∞. (13b)

The particles of each produced pair, though moving
independently of each other, can conveniently be considered as
a whole, and type-1 and type-2 pairs, which will be denoted by
T1 and T2, respectively, are defined by analogy with individual
particles.

Now we can write the following transformations:

T1 → T2,

T2 → T1 + T2.

The generating functions are

h1(τ,x) = x2,

h2(τ,x) = x1x2,

where x = (x1,x2). The 2 × 2 matrix a = ‖aij‖ becomes ( 0 1
1 1 ).

The lifetime distribution functions are

G1(τ ) = θ (τ − τ0), (14a)

G2(τ ) = 1 − e−2Qτ , (14b)

where θ (x) is the Heaviside function. The matrix A defined
by Eq. (5) coincides with a and is indecomposable since
its off-diagonal elements are positive. The Perron root of A

is equal to (1 + √
5)/2 and greater than 1. Therefore, we

deal with the indecomposable supercritical two-type branching
process.

Now we should find a proper value of α as described after
Eq. (7). Interestingly, we can do this without directly finding
the Perron root of L(α). We have recently shown [46] that pair
production in the system under consideration is asymptotically
described by the equation

dN(t)

dt
= 2QeffN (t), (15)

where N (t) is the number of electron-positron pairs at time t ,
Qeff = N eff

τ0
/2τ0 is the effective pair production rate, and N eff

τ0

satisfies

N eff
τ0

= ln Nτ0 − ln N eff
τ0

,

where Nτ0 = 2Qτ0 is the number of particles created by a
fully accelerated particle in time τ0. Note that N eff

τ0
can be

equivalently expressed through the Lambert function W (x)
(see, e.g., Ref. [54] for its definition) as

N eff
τ0

= W
(
Nτ0

)
and hence is positive since W (x) is positive for any pos-
itive x. From Eq. (15) it follows that the total number of
electron-positron pairs in the system increases exponentially.
Comparing Eq. (15) to Eq. (8) yields

α = 2Qeff, (16)

which is positive, as it must be in the supercritical case.
The energy of any type-1 particle is less than γ0, while that

of any type-2 particle is γ0. Therefore, it is natural to choose
the following density of states for the subsystems:

g1(γ ) = 1 − θ (γ − γ0), (17a)

g2(γ ) = δ(γ − γ0), (17b)
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where δ(x) is the delta function. We see from Eq. (13) that the
energies of particles are nonrandom functions of their ages,
hence the conditional energy distributions have the form

w1(γ |τ ) = δ[γ − γ1(τ )], (18a)

w2(γ |τ ) = 1. (18b)

Using Eqs. (11), (12), (14), and (18), we obtain the energy
distributions for the subsystems:

ρ1(γ ) = α

E‖

e−αγ/E‖

1 − e−ατ0
, (19a)

ρ2(γ ) = 1. (19b)

The corresponding intensive parameter distributions are

f1(β) = δ

(
β − α

E‖

)
,

f2(β) = δ(β).

Let us find the probability distribution of the random control
parameter ξ that corresponds to the type of a randomly chosen
particle. From Eqs. (9) and (14) we have

w1 = 1 − e−ατ0

α
, (20a)

w2 = 1

α + 2Q
. (20b)

The components of the left eigenvector v = (v1,v2) of

L(α) =
(

0 e−ατ0(
1 + α

2Q

)−1 (
1 + α

2Q

)−1

)

can be chosen as follows:

v1 = 1, (21a)

v2 = 1 + α

2Q
. (21b)

Using Eqs. (10), (16), (20), and (21), we obtain the
probability πξ that a randomly chosen particle is of type ξ ,
ξ = 1,2:

π1 = 1 − α

2Q
, (22a)

π2 = α

2Q
. (22b)

Note that π2 may be interpreted as the probability that the
particle significantly contributes to pair production.

Finally, Eqs. (3), (16), (17), (19), and (22) allow us to obtain
the generalized superstatistical distribution

σ (γ ) = α

2Q
δ(γ − γ0) + [1 − θ (γ − γ0)]

α

E‖
e−αγ/E‖ , (23)

which represents the energy distribution of ultrarelativistic
electrons and positrons.

The particle energy distribution in the neutron star magne-
tosphere cannot be observed directly. Moreover, it is unclear
how to infer the particle energy distribution for RRATs from
currently available observational data. On the one hand, it is
difficult to detect radio emission from RRATs because of its
sporadic nature, and one has to carry out single-pulse searches,
which require significant radio telescope resources with long
observation times [55,56]. On the other hand, it is unclear
how the form of the distribution correlates with the properties
of radio emission. Although the parameters of an electron-
positron plasma generated in the RRAT magnetosphere imply
the possibility of the efficient generation of radio emission
[47,48], the detailed mechanism is unknown at the moment.
Therefore, the distribution (23) is a theoretical prediction.

V. CONCLUSION

I have developed generalized superstatistics, i.e., a statistics
of superstatistics. Based on the concept of fluctuating control
parameters, it is defined for a generalized superstatistical
system, which consists of a set of nonequilibrium super-
statistical subsystems. Such a system can be considered
as a generalized hyperensemble, i.e., an ensemble of hy-
perensembles. A fluctuating control parameter, which may
be a multidimensional random vector, determines the form
of the superstatistical distribution for each subsystem. In
general, it determines not only the distribution of the intensive
parameter but also the density of energy states. In a generalized
superstatistical system, there appears the third, upper level
in the hierarchy of dynamics besides two levels that exist
in each superstatistical subsystem. Interestingly, generalized
superstatistics can be applied to nonstationary nonequilibrium
systems. As an example of a nonstationary generalized
superstatistical system, I have studied the system in which
the supercritical multitype Sevast’yanov process takes place.
In this system, the transformation of particles of several
types occurs, and the number of particles both in the whole
system and in each subsystem increases exponentially. In
addition, I have considered an astrophysical application of
generalized superstatistics and obtained the energy distribution
of ultrarelativistic electrons and positrons produced in a
neutron star magnetosphere. I have found the probability that
a randomly chosen particle significantly contributes to the
production of secondary electron-positron pairs.

It seems interesting to find general principles that might
allow us to obtain the distribution of both the intensive
parameter and the control parameter. Note that in the case
of ordinary superstatistics, the main approach to finding
the intensive parameter distribution is maximizing either a
generalized entropy or the Boltzmann-Gibbs-Shannon entropy
under certain constraints [30–35,57]. I believe that the same
approach might be used in the case of generalized superstatis-
tics. However, this problem requires a separate study.
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