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Tsallis distributions and 1/ f noise from nonlinear stochastic differential equations
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(Received 7 June 2011; revised manuscript received 24 September 2011; published 22 November 2011)

Probability distributions that emerge from the formalism of nonextensive statistical mechanics have been
applied to a variety of problems. In this article we unite modeling of such distributions with the model
of widespread 1/f noise. We propose a class of nonlinear stochastic differential equations giving both the
q-exponential or q-Gaussian distributions of signal intensity, revealing long-range correlations and 1/f β behavior
of the power spectral density. The superstatistical framework to get 1/f β noise with q-exponential and q-Gaussian
distributions of the signal intensity is proposed, as well.
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I. INTRODUCTION

Stationary stochastic processes and signals are prevalent
across many fields of science and engineering. Many complex
systems show large fluctuations of macroscopic quantities that
follow non-Gaussian, heavy-tailed, power-law distributions
with the power-law temporal correlations, scaling, and the
(multi-)fractal features [1–3]. The power-law distributions,
scaling, self-similarity, and fractality are sometimes related
both with the nonextensive statistical mechanics [4–8] and
with the power-law behavior of the power spectral density, i.e.,
1/f β noise (see, e.g., Refs. [3,9–11], and references herein).

There exist a number of systems, involving long-range
interactions, long-range memory, and anomalous diffusion,
that possess anomalous properties in view of traditional
Boltzmann-Gibbs statistical mechanics. Nonextensive statis-
tical mechanics represents a consistent theoretical background
for the investigation of some properties, like fractality, mul-
tifractality, self-similarity, long-range dependencies, and so
on, of such complex systems [6–8]. Concepts related with
nonextensive statistical mechanics have found applications
in a variety of disciplines, including physics, chemistry,
biology, mathematics, economics, informatics, and the inter-
disciplinary field of complex systems (see, e.g., Refs. [12–14]
and references herein).

The nonextensive statistical mechanics framework is based
on the entropic form [4,6]

Sq = 1 − ∫ +∞
−∞ [p(z)]qdz

q − 1
, (1)

where p(z) is the probability density of finding the system with
the parameter z. Entropy (1) is an extension of the Boltzmann-
Gibbs entropy SBG = − ∫ +∞

−∞ p(z) ln p(z)dz, which restores
from Eq. (1) at q = 1 [6,7].

By applying the standard variational principle on
entropy (1) with the constraints

∫ +∞
−∞ p(z)dz = 1 and

∫ +∞
−∞ z2[p(z)]qdz∫ +∞

−∞ [p(z)]qdz
= σ 2

q , (2)
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where σ 2
q is the generalized second-order moment [15–17],

one obtains the q-Gaussian distribution density

p(z) = A expq(−Bz2). (3)

Here expq(·) is the q-exponential function defined as

expq(x) ≡ [1 + (1 − q)x]
1

1−q

+ , (4)

with [(. . .)]+ = (. . .) if (. . .) > 0, and zero otherwise. Asymp-
totically, as x → ∞, expq(x) ∼ x−λ, where λ = (q − 1)−1,
i.e., we have the power-law distribution. The (more) gener-
alized entropies and distribution functions are introduced in
Refs. [18,19].

Statistics associated to Eqs. (1)–(4) has been successfully
applied to phenomena with the scale-invariant geometry, like
in low-dimensional dissipative and conservative maps [20,21],
anomalous diffusion [22], turbulent flows [23], Langevin
dynamics with fluctuating temperatures [24–26], long-range
many-body classical Hamiltonians [27], and financial systems
[28,29].

For the modeling of distributions of the nonextensive
statistical mechanics, nonlinear Fokker-Planck equations
and corresponding nonlinear stochastic differential equations
(SDEs) [22,30] and SDEs with additive and multiplicative
noises [31,32], with multiplicative noise only [33], and with
fluctuating friction forces [26] have been proposed. However,
the exhibition of the long-range correlations and 1/f β noise
has not been observed.

The phrases “1/f noise,” “1/f fluctuations,” and “flicker
noise” refer to the phenomenon, having the power spectral
density at low frequencies f of signals of the form S(f ) ∼
1/f β , with β being a system-dependent parameter. Signals
with 0.5 < β < 1.5 are found widely in nature, occurring
in physics, electronics, astrophysics, geophysics, economics,
biology, psychology, language, and even music [34–38] (see
also references in Ref. [10]). The case of β = 1, or “pink
noise”, is the one of the most interesting. The widespread
occurrence of processes exhibiting 1/f noise suggests that
a generic, or at least mathematical, explanation of such
phenomena might exist.

One common way for describing stochastic evolution and
properties of complex systems is by means of generalized
stochastic differential equations of motion [39–41]. These
nondeterministic equations of motion are used in many
systems of interest, such as simulating the Brownian motion in
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statistical mechanics, fundamental aspects of synergetics and
biological systems, field theory models, the financial systems,
and in other areas [2,39,42,43].

The purpose of this article is to model together both the
Tsallis distributions and 1/f noise using the same nonlinear
stochastic differential equations. The superstatistical approach
for modeling of such processes is proposed, as well.

We considered a class of nonlinear stochastic differential
equations giving the power-law behavior of the probability
density function (PDF) of the signal intensity and of the
power spectral density (1/f β noise) in any desirably wide
range of frequency. Modification of these equations by
introduction of an additional parameter yields Brownian-like
motion for small values of the signal and avoids power-law
divergence of the signal distribution, while preserving 1/f β

behavior of the power spectral density. The PDF of the signal
generated by modified SDEs is q-exponential or q-Gaussian
distribution of the nonextensive statistical mechanics. The
superstatistical framework using a fast dynamics with the
slowly changing parameter described by nonlinear stochastic
differential equations can retain 1/f β behavior of the power
spectral density as well. When the PDF of the rapidly changing
variable is exponential or Gaussian, we obtain q-exponential
or q-Gaussian long-term stationary PDF of the signal,
respectively.

II. NONLINEAR STOCHASTIC DIFFERENTIAL
EQUATION GENERATING ASYMPTOTICALLY

POWER-LAW SIGNALS WITH 1/ f β NOISE

Starting from the point process model, proposed and
analyzed in Refs. [9,44–48], the nonlinear SDEs generating
processes with 1/f β noise are derived [10,49,50]. The general
expression for the proposed class of Itô SDEs is

dx = σ 2
(
η − 1

2λ
)
x2η−1dt + σxηdW. (5)

Here x is the signal, η �= 1 is the power-law exponent of
the multiplicative noise, λ defines the behavior of stationary
probability distribution, and W is a standard Wiener process
(the Brownian motion).

The nonlinear SDE (5) has the simplest form of the
multiplicative noise term, σxηdW . Equations with multi-
plicative noise and with the drift coefficient proportional
to the Stratonovich drift correction for transformation from
the Stratonovich to the Itô stochastic equation [51] generate
signals with the power-law distributions [10]. Equation (5)
is such an equation. Therefore, the relationship between the
exponents in the drift term, 2η − 1, and in the noise term, η, of
these equations follows from the requirement of modeling the
signals with the power-law distributions. More reasoning of the
correlation of these exponents, and of the type of equations like
Eq. (5), in general, have been given in Refs. [9,10,49,50,52,53].

On the other hand, the simple transformation of the variable,
y = xα , gives an equation of the same type Eq. (5) only with
different parameters, σ ′ = ασ , η′ = (η − 1)/α + 1, and λ′ =
(λ − 1)/α + 1. For example, for α = 1 − η with η �= 1 we get
η′ = 0, i.e., an equation for the variable y having additive noise
and nonlinear drift, well known in econophysics and finance
SDE to describe the Bessel process [43]. Thus, the observable

x may be a function of another variable y, described by a
simpler SDE with additive noise.

Nonlinear SDE, corresponding to a particular case of Eq. (5)
with η = 0, i.e., with linear noise and nonlinear drift, was
considered in Ref. [54]. It has been found that if the damping
decrease with increasing |x|, then the solution of such a
nonlinear SDE has long correlation time. The connection of the
power spectral density of the signal generated by SDE (5) with
the behavior of the eigenvalues of the corresponding Fokker-
Planck equation was analyzed in Ref. [55]. This connection
was generalized in Ref. [56] where it has been shown that
1/f β noise is equivalent to a Markovian eigenstructure power
relation.

In order to obtain a stationary process and avoid the
divergence of a steady-state PDF the diffusion of stochastic
variable x should be restricted at least from the side of
small values, or Eq. (5) should be modified. The Fokker-
Planck equation corresponding to SDE (5) with restrictions
of diffusion of stochastic variable x gives the power-law
steady-state PDF

P (x) ∼ x−λ (6)

with the exponent λ, when the variable x is far from the ends
of the diffusion interval. The simplest choice of the restriction
is the reflective boundary conditions at x = xmin and x = xmax.
Exponentially restricted diffusion with the steady-state PDF

P (x) ∼ 1

xλ
exp

[
−

(
xmin

x

)m

−
(

x

xmax

)m]
(7)

is generated by the SDE

dx = σ 2

[
η − 1

2
λ + m

2

(
xm

min

xm
− xm

xm
max

)]
x2η−1dt + σxηdW

(8)

obtained from Eq. (5) by introducing the additional terms.
In Refs. [9,50] it was shown that SDE (5) generates signals

with power spectral density

S(f ) ∼ 1

f β
, β = 1 + λ − 3

2(η − 1)
. (9)

in a wide interval of frequencies. SDE (5) exhibits the
following scaling property: changing the stochastic variable
from x to a scaled variable x ′ = ax changes the time scale of
the equation to t ′ = a2(1−η)t leaving the form of the equation
unchanged. This scaling property is one of the reasons for the
appearance of the 1/f β power spectral density.

For λ = 3 we get that β = 1 and SDE (5) should give signal
exhibiting 1/f noise. One example of the equation (8) with
λ = 3, m = 1, σ = 1, and η = 5/2 is

dx =
[

1 + 1

2

(
xmin

x
− x

xmax

)]
x4dt + x5/2dW. (10)

Note that η = 5/2 corresponds to the simplest point process
model with the Brownian motion of the interevent time τk in
the events space (k space) [9,49,50],

dτk = σdWk. (11)

Consequently, the simple point process model may provide
one possible reasoning of use of the strongly nonlinear
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FIG. 1. (Color online) (a) Steady-state PDF P (x) of the signal generated by Eq. (10) with xmin = 1 and xmax = 1000. The dashed (green)
line is the analytical expression for the steady-state PDF. (b) Power spectral density S(f ) of the same signal. The dashed (green) line shows the
slope 1/f .

multiplicative SDEs for modeling of long-range correlated
systems.

Comparison of numerically obtained steady-state PDF and
the power spectral density with analytical expressions is
presented in Fig. 1. For the numerical solution we use the
Euler-Marujama approximation with the variable step of inte-
gration, transforming the differential equations to difference
equations [49,50]. We see good agreement of the numerical
results with the analytical expressions. A numerical solution
of the equations confirms the presence of the frequency region
for which the power spectral density has 1/f β dependence.
The width of this region can be increased by increasing the
ratio between the minimum and the maximum values of the
stochastic variable x. In addition, the region in the power
spectral density with the power-law behavior depends on
the exponent η: if η = 1, then this width is zero; the width
increases by increasing the difference |η − 1| [55].

The numerical analysis of the proposed SDE (5) reveals the
secondary structure of the signal composed of peaks or bursts,
corresponding to the large deviations of the variable x from
the proper average fluctuations [10]. Bursts are characterized
by power-law distributions of burst size, burst duration, and
interburst time.

III. STOCHASTIC DIFFERENTIAL EQUATIONS
GIVING q-DISTRIBUTIONS

The power spectral density of the form 1/f β is determined
mainly by power-law behavior of the coefficients of SDEs (5)
and (8) at large values of x � xmin. Changing the coefficients at
small x, the spectrum preserves the power-law behavior. In ad-
dition, the Fokker-Planck equation corresponding to SDE (5)
gives the steady-state PDF with power-law dependence on
x as does the q-exponential function for large x. Therefore,
SDE (5) can be modified to yield generalized canonical
distributions of nonextensive statistical mechanics.

A. q-exponential distribution

The modified stochastic differential equation

dx = σ 2
(
η − 1

2λ
)
(x + x0)2η−1dt + σ (x + x0)ηdW (12)

with the reflective boundary condition at x = 0 was considered
in Ref. [10]. The Fokker-Planck equation corresponding to
SDE (12) for x � 0 gives the q-exponential steady-state PDF

P (x) = λ − 1

x0

(
x0

x + x0

)λ

= λ − 1

x0
expq(−λx/x0),

q = 1 + 1/λ. (13)

The addition of parameter x0 restricts the divergence of the
power-law distribution of x at x → 0. Equation (12) for
small x 	 x0 represents the linear additive stochastic process
generating the Brownian motion with the steady drift, while
for x � x0 it reduces to the multiplicative SDE (5). This
modification of the SDE retains the frequency region with
1/f β behavior of the power spectral density.

Comparison of numerically obtained steady-state PDF and
power spectral density with analytical expressions is presented
in Fig. 2. We see a good agreement of the numerical results
with the analytical expressions. Numerical solution confirms
the presence of the frequency region where the power spectral
density has 1/f β dependence. The lower bound of this
frequency region depends on the parameter x0.

B. q-Gaussian distribution

The stochastic differential equation

dx = σ 2(η − 1
2λ

)(
x2 + x2

0

)η−1
xdt + σ

(
x2 + x2

0

)η/2
dW,

(14)

in contrast to all other equations analyzed in this article,
allows negative values of x. This equation was introduced in
Refs. [57–59]. The simple case of η = 1 is used in the model of
return in Ref. [33]. Note that η = 1 does not give 1/f β power
spectral density. The Fokker-Planck equation corresponding
to SDE (14) gives a q-Gaussian steady-state PDF

P (x) = �
(

λ
2

)
√

πx0�
(

λ−1
2

)
(

x2
0

x2
0 + x2

) λ
2

= �
(

λ
2

)
√

πx0�
(

λ−1
2

) expq

(
−λ

x2

2x2
0

)
,

q = 1 + 2/λ. (15)
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FIG. 2. (Color online) (a) Steady-state PDF P (x) of the signal generated by Eq. (12). The dashed (green) line is the analytical q-exponential
expression (13) for the steady-state PDF. (b) Power spectral density S(f ) of the same signal. The dashed (green) line shows the slope 1/f . The
parameters used are λ = 3, η = 5/2, x0 = 1, and σ = 1.

The addition of parameter x0 restricts the divergence of the
power-law distribution of x at x → 0. Equation (14) for
small |x| 	 x0 represents the linear additive stochastic process
generating the Brownian motion with the linear relaxation,
while for x � x0 it reduces to the multiplicative SDE (5). This
modification of the SDE, even the introduction of negative
values of the stochastic variable x, does not destroy the
frequency region with 1/f β behavior of the power spectral
density.

Comparison of the numerically obtained steady-state PDF
and the power spectral density with analytical expressions is
presented in Fig. 3. Good agreement of the numerical results
with the analytical expressions is found. Numerical solution
confirms the presence of the frequency region where the power
spectral density has 1/f β dependence.

IV. SUPERSTATISTICS AND 1/ f β NOISE

Many nonequilibrium systems exhibit spatial or temporal
fluctuations of some parameter. There are two time scales:
The scale in which the dynamics is able to reach a stationary
state and the scale at which the fluctuating parameter evolves.
A particular case is when the time needed for the system to
reach stationarity is much smaller than the scale at which
the fluctuating parameter changes. In the long-term, the
nonequilibrium system is described by the superposition of

different local dynamics at different time intervals, which
has been called superstatistics [24,60–63]. The superstatistical
framework has successfully been applied to a widespread
range of problems, such as interactions between hadrons
from cosmic rays [25], fluid turbulence [26,64–66], granular
material [67], electronics [68], and economics [69–74].

In this article we will consider the case when the fluctuating
parameter x̄ evolves according to earlier-introduced SDE (8).
The parameter x̄ changes slowly and can by taken as a constant
through a period of time T . Due to the scaling properties of
Eq. (5), mentioned in Sec. II, the characteristic time scale in
Eq. (5) decreases as a power of x. In order to avoid short
time scales and rapid changes of the parameter x̄, the possible
values of x̄ should be restricted from above. If the maximum
value of the parameter x̄ is x̄max, then the time T during which
the parameter x̄ changes slowly decreases with increase of
x̄max. Within time scale T the signal x has local stationary
PDF ϕ(x|x̄). The long-term stationary PDF of the signal x is
determined as

P (x) =
∫ ∞

0
ϕ(x|x̄)p(x̄)dx̄. (16)

We can expect that at small frequencies ω 	 T −1 the spectrum
of the signal x is determined mainly by the driving SDE.
Therefore, we can get the distribution P (x) determined by
Eq. (16) and 1/f β power spectral density in a wide region
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FIG. 3. (Color online) (a) Steady-state PDF P (x) of the signal generated by Eq. (14). The dashed (green) line is the analytical
q-Gaussian expression (15) for the steady-state PDF. (b) Power spectral density S(f ) of the same signal. The dashed (green) line shows
the slope 1/f . The parameters used are λ = 3, η = 5/2, x0 = 1, and σ = 1.

051125-4



TSALLIS DISTRIBUTIONS AND 1/f NOISE FROM . . . PHYSICAL REVIEW E 84, 051125 (2011)

of frequencies. Using the superstatistical approach, from
SDE (8) with the exponential restriction of diffusion, it is
possible to obtain the Tsallis probability distributions.

A. q-exponential distribution

In order to obtain q-exponential long-term PDF of the signal
x we will consider the local stationary PDF conditioned to
value of the parameter x̄ in the form of exponential distribution

ϕ(x|x̄) = x̄−1 exp(−x/x̄). (17)

A Poissonian-like process with slowly diffusing time-
dependent average interevent time was considered in Ref. [53].
The mean x̄ of the distribution ϕ(x|x̄) obeys SDE with
exponential restriction of diffusion,

dx̄ = σ 2

[
η − λ

2
+ 1

2

x0

x̄
− 1

2

x̄

x̄max

]
x̄2η−1dt+ σ x̄ηdW, (18)

where x0 is a parameter describing exponential cutoff of the
steady-state PDF of x̄ at small values of x̄ and the parameter
x̄max � x0 leads to exponential cutoff at large values of x̄.
When x̄ 	 x̄max the influence of the exponential cutoff at large
values of x̄ is small. Neglecting x̄max, the steady-state PDF
from the Fokker-Planck equation corresponding to Eq. (18) is

p(x̄) = 1

x0�(λ − 1)

(
x0

x̄

)λ

exp

(
−x0

x̄

)
. (19)

Using Eqs. (16), (17), and (19), we get that for x 	 x̄max

the long-term stationary PDF of signal x is the q-exponential
function

P (x) = λ − 1

x0

(
x0

x + x0

)λ

= λ − 1

x0
expq(−λx/x0),

q = 1 + 1/λ. (20)

Comparison of numerically obtained long-term PDF and
power spectral density with analytical expressions is presented
in Fig. 4. A numerical solution confirms the presence of the
frequency region where the power spectral density has 1/f β

dependence. In addition, the long-term PDF of the signal
deviates from the q-exponential function (20) only slightly.

B. q-Gaussian distribution

In order to obtain the q-Gaussian long-term PDF of the
signal x we will consider the local stationary PDF conditioned
to the value of the parameter x̄ in form of the Gaussian
distribution,

ϕ(x|x̄) = 1√
πx̄

exp(−x2/x̄2). (21)

The standard deviation of x in the distribution ϕ(x|x̄) is
proportional to the parameter x̄. The fluctuating parameter
x̄ obeys SDE with exponential restriction of diffusion (8) with
the parameter m = 2,

dx̄ = σ 2

[
η − λ

2
+ x2

0

x̄2
− x̄2

x̄2
max

]
x̄2η−1dt + σ x̄ηdW, (22)

where x0 is the parameter describing the exponential cutoff of
the steady-state PDF of x̄ at small values of x̄, whereas the
parameter x̄max(�x0) leads to the exponential cutoff at large
values of x̄. When x̄ 	 x̄max, the influence of the exponential
cutoff at large values of x̄ is small. Neglecting x̄max the steady-
state PDF from the Fokker-Planck equation corresponding to
Eq. (22) is

p(x̄) = 1

x0�
(

λ−1
2

)
(

x0

x̄

)λ

exp

(
−x2

0

x̄2

)
. (23)

From Eqs. (16), (21), and (23) we obtain that for x 	 x̄max the
long-term stationary PDF of the signal x is q-Gaussian, i.e.,

P (x) = �
(

λ
2

)
√

πx0�
(

λ−1
2

)
(

x2
0

x2
0 + x2

) λ
2

= �
(

λ
2

)
√

πx0�
(

λ−1
2

) expq

(
−λ

x2

2x2
0

)
,

q = 1 + 2/λ. (24)

Comparison of the numerically obtained long-term PDF
and the power spectral density with analytical expressions is
presented in Fig. 5. Numerical solution confirms the presence
of the frequency region where the power spectral density has
1/f β dependence. In addition, the long-term PDF of the signal
deviates only slightly from the q-Gaussian function (24). In
contrast to Sec. III B, the superstatistical approach yields 1/f β

power spectral density only for the absolute value |x| of the
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FIG. 4. (Color online) (a) Long-term PDF P (x) of the signal generated by Eqs. (17) and (18). The dashed (green) line is the analytical
expression (20) for the long-term PDF. (b) Power spectral density S(f ) of the same signal. The dashed (green) line shows the slope 1/f . The
parameters used are λ = 3, η = 5/2, x0 = 1, σ = 1, and x̄max = 103.
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FIG. 5. (Color online) (a) Long-term PDF P (x) of the signal generated by Eqs. (21) and (22). The dashed (green) line is the analytical
expression (24) for the long-term PDF. (b) Power spectral density of the same signal. The dashed (green) line shows the slope 1/f . The
parameters used are λ = 3, η = 5/2, x0 = 1, σ = 1, and x̄max = 103.

signal. Since the signs of two consecutive values of x are
uncorrelated, the spectrum of the signal x itself in the same
frequency region is almost flat.

V. DISCUSSION

Common characteristics of complex systems include long-
range interactions, long-range correlations, (multi-)fractality,
and non-Gaussian distributions with asymptotic power-law
behavior. The nonextensive statistical mechanics, which is a
generalization of the Boltzmann-Gibbs theory, is a possible
theoretical framework for describing these systems. However,
long-range correlations and 1/f β noise has not been observed
in previously used models giving distributions of the nonex-
tensive statistical mechanics. The joint reproduction of the
distributions of nonextensive statistical mechanics and 1/f

noise, presented in this article, extends understanding of the
complex systems.

Modeling of the concrete systems by use of nonlinear
SDEs is not the goal of this article. However, relation of
the models and obtained results with some features of the

financial systems can be pointed out. Equations with multi-
plicative noise are already used to model financial systems,
e.g., the well-known 3/2 model of stochastic volatility [75].
There is empirical evidence that trading activity, trading
volume, and volatility are stochastic variables with long-range
correlations [2,42,43,75–78]. This key aspect, however, is
not accounted for in the widely used models. On the other
hand, the empirical findings of the PDF of the return and
other financial variables are successfully described within
the nonextensive statistical framework [12,28,29]. The return
has a distribution that is very well fitted by q-Gaussians,
only slowly becoming Gaussian as the time scale approaches
months, years, and longer times. Another interesting statistic
that can be modeled within the nonextensive framework
is the distribution of volumes, defined as the number of
shares traded. Modeling of some properties of the financial
systems using the point process models and SDEs have been
undertaken in Refs. [52,58,59,79]. Equations presented in this
article incorporating long-range correlations, 1/f β noise, and
q-Gaussian distributions suggest deeper comprehension of
these processes.
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