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Non-Markovian diffusion over a potential barrier in the presence of periodic time modulation
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The diffusive non-Markovian motion over a single-well potential barrier in the presence of a weak sinusoidal
time modulation is studied. We found nonmonotonic dependence of the mean escape time from the barrier on a
frequency of the periodic modulation that is analogous to the stochastic resonance phenomenon. The resonant
increase of diffusion over the barrier occurs at the frequency inversely proportional to the mean first-passage time
for the motion in the absence of the time modulation.
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I. INTRODUCTION

The response of complex nonlinear systems on periodic
external fields may have features that are absent for linear
systems. The very famous example of such features is the
stochastic resonance phenomenon [1], when the response
of the nonlinear system on the harmonic perturbation is
resonantly activated under some optimal level of a noise. The
resonant activation of the system occurs when the frequency
of the modulation is near the Kramers escape rate of the
transitions from one potential well to another. The stochastic
resonance phenomenon has been found and studied in many
physical systems, such as a ring laser [2], magnetic systems [3],
optical bistable systems [4], and others (see, for example,
the reviews [5] and [6]). Since its discovery in 1980, the
phenomenon still attracts much interest. In this respect one
can also mention the works of Refs. [7–9]. The prototype of
the stochastic resonance studies is a model of overdamped
motion between potential wells of the bistable system. The
frequency of the transitions between wells is given by the
famous Kramers rate, and the stochastic resonance is achieved
when a frequency of an external periodic modulation is of the
order of the Kramers rate.

In the present paper we study diffusion over a single-well
potential barrier by the presence of a periodic time modulation.
The diffusion over the barrier is generated by a colored
noise whose statistical properties are related to the retarded
dissipative properties of the nonlinear system. Following this
conception, we address the problem of the stochastic resonance
phenomenon to the many-body systems where the stochastic
and damped features of the macroscopic modes of motion
are related to each other through the fluctuation-dissipation
theorem. It is also important that the macroscopic dynamics
in the many-body systems may be essentially non-Markovian.
The manifestation of the memory effects in the macroscopic
dynamics is, for instance, the coexistence of the first- and
zero-sound excitations in a Fermi liquid [10]. Here the memory
effects appear because of the Fermi-surface distortion and
depend on the relaxation time. Thus we are going to study
a new aspect of the many-body dynamics, namely, how
the correlation time of the colored noise [11–13], measuring
the relative strength of memory effects in the motion of the
system, influence the first-passage time distribution and escape
rate over the barrier by the presence of periodic external
field. In the case of a piecewise linear potential barrier, one
can get an exact analytical result for the mean first-passage

time problem [14–16]. The effect of a colored noise on the
stochastic resonance has been also studied in Refs. [17–19].
In Ref. [19] it was shown that the stochastic resonance in
overdamped bistable systems is suppressed by growth of a
correlation time of the colored noise.

Note that for the dissipative dynamics, the colored noise
has been investigated within different approaches. In this
respect one can mention the dissipative diabatic model [20,21],
linear response theory [22–24], and the generalized Langevin
theory (see Refs. [25–27] and references therein). As is shown
in Ref. [28], for the case of large-amplitude dynamics, the
memory effect significantly influences the trajectory of motion
as well as the dissipative characteristics at sufficiently large
values of relaxation time. From the point of view of the
fluctuation-dissipation theorem, it is of great interest to extend
the investigation of the large-amplitude motion to the case
of diffusive non-Markovian motion when the colored random
force is taken into consideration. In the present paper we use
the generalized Langevin theory [25,26] and apply such an
approach to the study of the barrier overcome by the presence
of the external drawing field.

The paper is organized as follows. In Sec. II we set a
basic Langevin equation of motion for diffusive motion over a
potential barrier in the presence of sinusoidal time modulation.
In Sec. III A the unperturbed path of the model system is
considered. The time-modulated diffusion is discussed in
Sec. III B. Finally, the main conclusions of the paper are given
in Sec. IV.

II. DIFFUSIVE MOTION OVER A POTENTIAL BARRIER

We start from a quite general Langevin formulation of
the problem of diffusive overcoming of a potential barrier in
the presence of a harmonic perturbation Vext(t) = αsin(ωt).
We restrict our analysis to the one-dimensional case. The
generalization to the multidimensional collective dynam-
ics can be obtained in a straightforward way (see, e.g.,
Refs. [25,29,30]). The one-dimensional and non-Markovian
Langevin equation in the presence of a harmonic perturbation
reads

Mq̈(t) = −∂Epot

∂q
−

∫ t

0
κ(t − t ′)q̇(t ′)dt ′ + ξ (t) + αsin(ωt),

(1)
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FIG. 1. Landscape of potential energy Epot(q) of Eq. (2).

where q is the dimensionless coordinate, M is the mass, κ(t −
t ′) is the memory kernel, and ξ (t) is the random force. The
potential energy Epot is schematically shown in Fig. 1 and
presents a single-well barrier formed by a smoothing joining
at q = q∗ of the potential minimum oscillator with the inverted
oscillator:

Epot = 1
2Mω2

A(q − qA)2, q � q∗,

= Epot,B − 1
2Mω2

B(q − qB)2, q > q∗. (2)

A noise term ξ (t) in Eq. (1) is assumed to be Gaussian
distributed with zero mean and correlation function related to
a memory kernel κ(t − t ′) of a retarded friction force:

〈ξ (t) ξ (t ′)〉 = T κ(t − t ′). (3)

Below we assume that the memory kernel is given by

κ(t − t ′) = κ0exp

(
− |t − t ′|

τ

)
, (4)

where τ is a correlation time.

III. NUMERICAL CALCULATIONS

In the numerical calculations, we have measured all quan-
tities of the dimension of energy in units of the temperature
of the system E0 = T , quantities of the dimension of time
in units of t0 = √

M/T , and quantities of the dimension
of frequency in units of ω0 = √

T/M . For the system’s
parameters, qA, q∗, qB, ωA, ωB, Epot,B, and κ0, we have
adopted the values

qA = 1, q∗ = 1.2, qB = 1.6, ωA = 6.75,
(5)

ωB = 9.59, Epot,B = 5.15, κ0 = 1920,

which are widely used under model diffusionlike studies of
fission of highly excited atomic nuclei (see Ref. [28]).

A. Unperturbed diffusion over the barrier

In the beginning we investigated the non-Markovian dif-
fusive dynamics for the infinitely slow (ω = 0) modulation
and calculated a first-passage time distribution. For that, the
Langevin equation (1) was solved numerically by generating
a bunch of the trajectories, all starting at the potential well
(point A in Fig. 1) and having the initial velocities distributed
according to the Maxwell-Boltzmann distribution. First we
studied the diffusive dynamics (1)–(4) in terms of first-passage
time distribution. Note that we apply here the first-passage time
distribution to the simplest case of one-dimensional motion
only. In a general case of many-dimensional dynamics, the
transition path sampling technique [31] or the action method
[32] can be used to sample the trajectories of collective motion
in many-dimensional space.

In Fig. 2 the mean first-passage time is presented as a
function of the correlation time τ . An increase of the mean
first-passage time tmfpt with the relaxation time τ means that
memory effects in the Langevin dynamics (1) hinder the
diffusion over the barrier. A non-monotonic growth of the
mean first-passage time is caused by a transition (occurring at
τ ≈ 0.007) from the nearly Markovian regime of the diffusion
(1) to the regime where the memory effects are quite important.
As far as the memory effects become stronger and stronger
(τ → ∞), the value of tmfpt reaches a finite limit. Here the
hindrance of the escape over the barrier is caused by the
renormalization of the ordinary conservative force in Eq. (1)
that obtains an additional contribution from the time-retarded
force:

−κ0

∫ t

0
exp

(
− |t − t ′|

τ

)
q̇(t ′)dt ′ → −κ0[q(t) − qA],

(6)
τ → ∞.

In the opposite limit of quite small values of correlation
time τ , the hindrance is exclusively due to an usual friction:

−κ0

∫ t

0
exp

(
− |t − t ′|

τ

)
q̇(t ′)dt ′ →−κ0τ q̇(t), τ → 0. (7)

FIG. 2. Mean first-passage time tmfpt of the non-Markovian
diffusion process (1)–(4) vs the correlation time τ .
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In the intermediate case, the hindrance is defined by both the
friction and the additional elastic force,

−κ0

∫ t

0
exp

(
− |t − t ′|

τ

)
q̇(t ′) dt ′

= −γ (t,τ ) q̇(t) − C(t,τ ) q(t), (8)

where the effective friction coefficient γ (t,τ ) may be quite
well approximated by

γ (t,τ ) ≈ κ0τ

1 + (κ0/M)τ 2
, t 
 τ. (9)

The stiffness parameter C(t,τ ) in Eq. (8) grows from 0 to κ0

with the growth of τ .
Secondly, we measure the diffusion dynamics (1)–(4)

through an escape rate R(t) characteristics. The escape rate
over the barrier is defined as

R(t) = − 1

P (t)

dP (t)

dt
, (10)

where P (t) is the survival probability, i.e., the probability of
finding the system on the left from the top of the barrier up to
time t :

P (t) = N (t)/N0. (11)

Here N (t) is the number of trajectories not reaching the
top of the barrier up to time t and N0 is the total number of
trajectories involved in the calculations. In Fig. 3 is plotted
the typical time behavior of the escape rate R(t) for quite
small, τ = 0.005, and fairly large, τ = 0.026, values of the
correlation time.

It is seen from Fig. 3 that initially the escape is affected by
transient effects, when the survival probability P (t) deviates
strongly from the exponential form. With time the escape
process becomes more and more stationary, giving rise to
the corresponding saturation rate R(t) (10), establishing the
quasistationary probability flow over the barrier. Qualitatively,
one can describe the typical time evolution of the escape rate
as

R(t) = R0(1 − e−t/ttran ). (12)

FIG. 3. Time dependence of the escape rate R(t) (10) of the non-
Markovian diffusion process (1)–(4) calculated for the cases of quite
small τ = 0.005 and fairly large τ = 0.026 values of the correlation
time.

FIG. 4. Saturation value R0 of the escape rate (10)–(12) vs the
strength τ of the memory effects in the non-Markovian diffusion
process (1)–(4). The dotted line represents the Kramers result (13)
for the escape rate calculated with the τ -dependent friction coefficient
of Eq. (9).

In both cases a duration of the transient period ttran is almost
the same (ttran ≈ 50) for quite weak and fairly large memory
effects in the diffusion process. However, a saturation value
R0 of the escape rate is significantly different because of the
memory effect for the large values of the correlation time τ .

In Fig. 4 we showed how the value R0 (12) depends on the
size of the memory effects in the diffusive dynamics (1). The
dotted line in Fig. 4 represents the famous Kramers result for
the escape-rate value in a quasistationary regime [33],

RKr = ωA

2π

(√
1 +

[
γ (τ )

2MωB

]2

− γ (τ )

2MωB

)
exp

(
− Epot,B

T

)
,

(13)

where the τ -dependent friction coefficient γ (τ ) is given by
Eq. (9).

We see that the memory effects significantly suppress the
value of the escape rate in the saturation regime of probability
flow over the potential barrier. Initially (i.e., at relatively
small values of the correlation time τ ) the suppression is
mainly caused by the growing role of the usual friction in the
non-Markovian diffusion (1)–(4) [see also Eqs. (8) and (9)].
As seen from Fig. 4, in this case the escape rate at saturation
R0 (12) may be quite well approximated by the Kramers
formula (13). On the other hand, at relatively large correlation
times τ , the effect of the friction on the diffusion over the
barrier is negligibly weak and the escape rate’s suppression
appears exclusively due to the additional conservative force
[see Eq. (8)]. As a result, the stationary value of the escape
rate deviates substantially from the Kramers escape rate (13) at
the fairly strong memory effects in the diffusive motion across
the barrier.

B. Diffusion over the barrier in the presence of a
periodic modulation

Now we study the diffusion over the barrier (1)–(4) in
the presence of the external harmonic force. We assume that
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FIG. 5. Mean first-passage time tmfpt of the non-Markovian
diffusion process (1)–(4) is given as a function of the frequency
ω of the harmonic time perturbation at two values of the correlation
time τ = 0.005 (lower curve) and τ = 0.026 (upper curve).

the amplitude α of the force αsin(ωt) in Eq. (1) is so small
(α = 0.05) that reaching the top of the barrier is still caused
exclusively by the diffusive nature of the process.

In Fig. 5 we calculated the typical dependencies of the
mean first-passage time tmfpt on the frequency ω of the external
harmonic force. The calculations were performed for the weak,
τ = 0.005 (lower curve in Fig. 5), and strong, τ = 0.026
(upper curve in Fig. 5), memory effect on the non-Markovian
diffusive motion over the barrier.

In both cases the mean first-passage time tmfpt nonmono-
tonically depends on the frequency of the perturbation that
is characteristic of the stochastic resonance phenomenon
observed in a number of different physical systems. From
Fig. 5 one can conclude that diffusion over the potential barrier
in the presence of the harmonic time perturbation is maximally
accelerated at some definite resonant frequency ωres of the
perturbation,

ωres ≈ 1.5

tmfpt(ω = 0)
(14)

(see also Figs. 2 and 4). In fact, the quantity tmfpt(ω = 0)
presents the characteristic time scale for the diffusion dynam-
ics (1). In the case of adiabatically slow time variations of
the harmonic force, ωtmfpt(ω = 0) � 1 and t < tmfpt, one can
approximately use α · sin(ωt) ≈ α · ωt and the diffusion over
the barrier is slightly accelerated. As a result of that, the mean
first-passage time tmfpt(ω) is smaller than the corresponding
unperturbed value tmfpt(ω = 0). The same feature is also
observed at the fairly large modulation frequencies. Thus,
in the case of ωtmfpt(ω = 0) 
 1, the harmonic perturbation
αsin(ωt) may be treated as a random noise term with zero
mean value and variance α2. Such a new stochastic term will
lead to additional acceleration of the diffusion over the barrier.

The existence of the resonant regime (14) in the periodically
modulated diffusion process (1) is even more clearly visible in
the escape-rate characteristics of the process. We have plotted
in Fig. 6 the time evolution of the escape rate (10) found for
the resonant frequency ωres (14) (curve 1 in Fig. 6), the quite

FIG. 6. Time dependencies of the escape rate R (10) for the
periodically modulated diffusion over the barrier (1)–(4) ) are shown
at the resonant frequency ωres ((14) (curve 1), fairly smaller frequency
ω = ωres/10 (curve 2), and quite larger frequency ω = 10ωres (curve
3) of the periodic modulation. The dependencies were calculated for
the memory time τ = 0.01.

smaller frequency ω = ωres/10 (curve 2 in the Fig. 6), and the
quite larger frequency ω = 10ωres (curve 3 in Fig. 6) of the
modulation.

Again, at very slow (ω = ωres/10) and fast (ω = 10ωres)
perturbations, the escape rate R(t) looks very similar to the
corresponding unperturbed value R(t,ω = 0) (compare Figs. 3
and 6). In other words, the initial transient period in the time
evolution of the escape rate is followed by the stationary
regime, when the escape subsequently saturates with time.
Contrary to that, the escape rate shows complex time behavior
as long as the periodic modulation occurs at the resonant
frequency (ω = ωres) (see curve 1 in Fig. 6). This resonant
regime of the modulated diffusion is essentially nonstationary
when the system remains excited during quite long time. We
checked such a feature for the larger number of trajectories
and longer time intervals used to calculate the escape rate
characteristics (10).

IV. CONCLUSIONS

In the present study we have investigated how model
non-Markovian diffusion over the single-well parabolic barrier
is affected by external periodic time modulation. We have
calculated both the mean first-passage time tmfpt and the escape
rate R(t) over the barrier. These two quantities have been
found to be sensitive to the relative size of memory effects in
the diffusive dynamics (1)–(4), measured by the correlation
time τ . Thus we have demonstrated that the memory effects
hinder the escape over the barrier (see Figs. 2 and 4). In
contrast to the motion in the presence of usual friction force,
the hindrance of the escape occurs due to the Markovian
friction and additional conservative components (8) of the
retarded time force in Eq. (1). Having calculated the mean
first-passage time tmfpt for different values of the frequency
ω of the modulation, we have found that the sinusoidal
perturbation accelerates the diffusion over the barrier (see
Fig. 5). The maximal (resonant) acceleration is achieved at
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ω = ωres, where ωres is inversely proportional to the mean
first-passage time in the absence of the modulation (14). We
have seen that a value of the resonant activation over the barrier
tmfpt(ω = ωres)/tmfpt(ω = 0) remains practically the same for
the quite weak as well as for the fairly strong memory effects in
the diffusive dynamics. It has been observed that the diffusive

dynamics (1)–(4) in the resonant activation regime (14) has
the peculiarity, reflecting in the complex time behavior of
the escape rate R(t) (see Fig. 6). Importantly, the absence
of the escape rate’s saturation with time implies the essentially
transient character of the events of the first passage at the top
of the potential barrier.
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