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Carnot’s theorem for nonthermal stationary reservoirs
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Carnot’s theorem poses a fundamental limit on the maximum efficiency achievable from an engine that works
between two reservoirs at thermal equilibrium. We extend this result to the case of arbitrary nonthermal stationary
reservoirs, even with quantum coherence. In order to do this we prove that a single nonthermal reservoir is formally
equivalent to multiple equilibrium ones. Finally, we discuss the possibility of realizing an engine that works at
unit efficiency by exploiting quantum coherence present in the reservoir.
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I. INTRODUCTION

For almost two centuries, Carnot’s theorem has consti-
tuted one of the cornerstones of thermodynamics, setting a
fundamental bound on the efficiency of any heat-to-work
conversion process. It states that all reversible engines working
between two reservoirs at temperatures TC and TH have the
same efficiency ηC = 1 − TC

TH
. No engine working between

two reservoirs at thermal equilibrium can have an efficiency
greater than that. Here the efficiency is defined as the ratio
between W , the work performed by the engine, and QH , the
heat extracted from the hotter reservoir.

In this paper we generalize Carnot’s theorem to a more
general setting in which the reservoirs are not in thermal
equilibrium (and thus TC and TH cannot be defined). In
the field of quantum thermodynamics, examples of such
nonthermal reservoirs can be found, for example, in the study
of engines with strongly coupled [1] or quantum coherent
[2] reservoirs. While in the following we concentrate on
this kind of microscopic example, it is noteworthy that,
in general, most of the engines present in our everyday
world actually extract energy from nonequilibrium environ-
ments (e.g., all living being extracting energy from ATP
molecules).

This paper is structured as follows: in Sec. II we start
by introducing our approach to heat engines, which we then
use in Sec. III to rederive the standard Carnot’s theorem. In
Sec. IV we prove a general equivalence theorem, stating that a
nonthermal reservoir is formally equivalent to a collection of
equilibrium ones at different temperatures. This result is used
in Sec. V to prove a generalized version of Carnot’s theorem,
valid for general nonthermal reservoirs. In Sec. VI this theorem
is tested against some previously known results. Finally, using
the developed theory, in Sec. VII, we discuss the possibility
of realizing an engine exploiting quantum coherence to work
at unit efficiency. Conclusions and perspectives are drawn in
Sec. VIII.

II. GENERAL THEORY

In developing our program we are immediately confronted
with the problem of defining what we mean by reservoir. In
order to keep our theory as general as possible, we consider the
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broadest possible definition of reservoir, that is, we consider a
reservoir to be a completely general physical system, with
the only constraint that its size and the strength of the
interaction with the external world (the engine in our case)
are such that its state is not affected noticeably by the time
evolution.

The generality of the above definition implies that we
disregard any a priori difference between a heat reservoir and
a work reservoir. The difference will only be a posteriori.
If our theory implies that it is possible to extract work by
coupling the engine with only one reservoir, we classify it as a
work reservoir. A typical example is an inverted system, such
that a higher-lying energy level has a larger population than a
lower-lying one. It is well known that energy can be extracted
from such systems without any need for a second reservoir
(e.g., a laser extracts energy from an inverted medium).

While the formalism we develop could be used to describe
such systems, it is not meaningful to define an efficiency in the
usual sense for them (by energy conservation W = QH and
thus η = 1). We thus disregard such systems because Carnot’s
theorem does not apply to them. When, in the following,
we talk about heat engines, we imply engines working with
reservoirs defined in such a sense.

To formulate our theory in a model-independent manner, we
adopt a slightly unusual approach to the study of heat engines.
Heat engines are normally studied taking into consideration
some of their degrees of freedom, evolving under the influence
of two (or eventually more) external reservoirs. Given that
an engine is, by definition, cyclical, after a cycle the engine
is back to its initial state while the reservoirs have slightly
evolved. We can thus model the action of the engine as an
operator coupling the reservoirs and allowing energy flows
between them (see Fig. 1 for a schematic representation of the
two approaches). This point of view will allow us to consider
arbitrary reservoirs, be they at thermal equilibrium or not,
and to optimize the efficiency of the engine over the space
of all the possible interaction operators (i.e., all the possible
engines).

In our theory, the reservoirs are thus dynamical objects and
we describe them in terms of their density operators ρH and ρC

and Hamiltonians HH and HC , whose eigenvalues we call EH

and EC . Given that the reservoirs can a priori be nonthermal,
the subscripts H (hot) and C (cold) have no direct implication
of their temperatures but, rather, are used to differentiate the
energy source (hot reservoir) and drain (cold reservoir). In
order to derive our main results, we restrict our attention to the
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FIG. 1. (Color online) Top: Standard approach in the study of heat
engines. The engine’s degrees of freedom evolve under the influence
of fixed reservoirs (e.g., through some form of Liouvillian operator
L). Bottom: The approach proposed in this paper. The reservoirs
represent the dynamical degrees of freedom of the theory, and they
evolve under the effect of coupling V (t) mediated by the engine.

case in which the initial states of the decoupled reservoirs are
time independent, that is,

[HC,ρC] = [HH,ρH ] = 0. (1)

The engine’s effective role is to couple the two reservoirs.
It can thus be described completely by a Hermitian time-
dependent coupling operator λV (t), where λ ∈ R and V (t)
is an operator over the tensor product of the Hilbert spaces
of the two reservoirs (without the time dependence the engine
would conserve the total energy of the reservoirs and thus
extract no work).

In the definition of reservoir we chose, it is explicitly
required that its state does not change in any significant way
during the interaction with the engine. For this reason, to
recover the usual thermodynamic results with our approach,
we have to consider the limit of vanishing interaction λ → 0,
thus developing the theory of the first nonvanishing order in λ.
This limit is well defined because the efficiency, which is given
by the ratio between work and heat fluxes, will not depend on
λ.

In the interaction picture, the Liouville equation for the
system, up to the second order, takes the form

ρ̇(t) = iλ[ρ(0),Ṽ (t)] − λ2
∫ t

0
[[ρ(0),Ṽ (τ )],Ṽ (t)]dτ, (2)

where Ṽ (t) = eit(HH +HC )V (t)e−it(HH +HC ) is the perturbation
in the interaction picture and ρ(0) = ρH ⊗ ρC is the initial
density matrix. In order to calculate the heat flow from
reservoir j = {C,H }, we can use the quantum version of the
first law of thermodynamics [3]. The total internal energy of
reservoir j is given by

Uj = Tr(ρ(t)Hj ), (3)

and thus its time variation is

U̇j = Tr(ρ(t)Ḣj ) + Tr(ρ̇(t)Hj ). (4)

The two terms on the right-hand side of Eq. (4) can be iden-
tified, respectively, as the exchanged work and heat, making
Eq. (4) a quantum version of the first law of thermodynamics.
The interested reader is invited to read Ref. [3] and references
therein for a discussion of the relevance of this identification. In
our case the Hamiltonian of the reservoirs is time independent
and thus they exchange no mechanical work. The exchanged
heat, which in the present case is equal to the total energy
variation, can thus be calculated as

Q̇j (t) = −Tr(ρ̇(t)Hj ), (5)

where we have chosen the convention that Qj is positive
if heat is extracted from the reservoir. Inserting Eq. (2) into
Eq. (5) we have

Q̇j (t) = −iλTr([ρ(0),Ṽ (t)]Hj )

+ λ2
∫ t

0
Tr([[ρ(0),Ṽ (τ )],Ṽ (t)]Hj )dτ, (6)

where the first term on the right-hand side vanishes due to
Eq. (1). Formally integrating Eq. (6) up to final time tf , chosen
to be a multiple of the engine period, we obtain the total amount
of heat exchanged with each reservoir,

Qj = λ2

2
Tr([[ρ(0),M],M]Hj ), (7)

where

M =
∫ tf

0
Ṽ (t)dt, (8)

and we have exploited the fact that, using the Jacobi identity
and the fact that the initial states of the decoupled reservoirs
are time independent [Eq. (1)], we have, for ∀t1,t2,

Tr([[ρ(0),Ṽ (t1)],Ṽ (t2)]Hj ) = Tr([[ρ(0),Ṽ (t2)],Ṽ (t1)]Hj ).

(9)

The net balance of energy between the two reservoirs gives the
total work extracted by the engine,

W = QH + QC. (10)

Introducing indexes (p,q) over the energy eigenstates of the
cold reservoir and (m,n) over the eigenstates of the hot one,
and noticing that, because of Eq. (1), ρC and ρH can be made
diagonal in such a basis, we can rewrite Eq. (7) elementwise
as

QC = λ2
∑

m,n,p,q

∣∣Mnq
mp

∣∣2(
ρm

Hρ
p

C − ρn
H ρ

q

C

)
E

p

C,

(11)
QH = λ2

∑
m,n,p,q

∣∣Mnq
mp

∣∣2(
ρm

Hρ
p

C − ρn
H ρ

q

C

)
Em

H .

Exploiting the hermiticity of M (|Mnq
mp| = |Mmp

nq |), we can
rewrite Eq. (11) summing only over states such that Em

H > En
H ,
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thus obtaining

QC = λ2
∑

m,n,p,q

Em
H > En

H

∣∣Mnq
mp

∣∣2(
ρm

H ρ
p

C − ρn
H ρ

q

C

)(
E

p

C − E
q

C

)
,

(12)
QH = λ2

∑
m,n,p,q

Em
H > En

H

∣∣Mnq
mp

∣∣2(
ρm

H ρ
p

C − ρn
H ρ

q

C

)(
Em

H − En
H

)
.

Equation (12) gives a self-contained, model-independent
description of energy exchanges in a general heat engine.
The explicit dependence over the Hamiltonian spectrum makes
this formalism particularly adapted to the study of the engine
efficiency at the ultimate quantum limit [4–6].

III. STANDARD CARNOT’S THEOREM

It is interesting to note that the standard Carnot’s theorem
can be easily derived from Eq. (12), by choosing properly
normalized thermal distributions for the reservoirs

ρm
H = e−Em

H /TH
/
ZH, ρ

p

C = e−E
p

C/TC
/
ZC, (13)

with TH � TC . In order to have the engine extract heat from
the hot reservoir (QH � 0), from Eq. (12) we need to have the
condition

ρm
Hρ

p

C − ρn
H ρ

q

C � 0, (14)

verified at least for some values of (m,n,p,q) (please refer to
Appendix for a detailed justification of this important point).
Using the reservoirs in Eq. (13), Eq. (14) becomes

E
q

C − E
p

C

Em
H − En

H

� TC

TH

. (15)

Writing down the engine efficiency using Eqs. (10) and (12),
we have

η = W

QH

= 1 + QC

QH

(16)

= 1 −

∑
m,n,p,q

Em > En

∣∣Mnq
mp

∣∣2(
ρm

Hρ
p

C − ρn
H ρ

q

C

)(
E

q

C − E
p

C

)
∑

m,n,p,q

Em > En

∣∣Mnq
mp

∣∣2(
ρm

Hρ
p

C − ρn
Hρ

q

C

)(
Em

H − En
H

) .

It is easy to verify that any value of (m,n,p,q) that does not
satisfy Eq. (14) lowers the overall efficiency η. We can thus
rewrite Eq. (16) as

η � 1 −

∑′
m,n,p,q

Em > En

∣∣Mnq
mp

∣∣2(
ρm

H ρ
p

C − ρn
Hρ

q

C

)(
E

q

C − E
p

C

)
∑′

m,n,p,q

Em > En

∣∣Mnq
mp

∣∣2(
ρm

Hρ
p

C − ρn
H ρ

q

C

)(
Em

H − En
H

) ,

(17)

where the prime over the sum symbol means that we sum only
over indexes such that Eq. (14) is satisfied.

By construction, each term in the sum in the numerator of
Eq. (17) obeys the inequality in Eq. (15). We can thus fix a
lower bound on each of the terms and obtain Carnot’s result,

η � 1 − TC

TH

. (18)

If all the transitions take place between almost-equilibrium
states, the left-hand side of Eq. (14) tends toward 0 and
Eqs. (15) and (18) become equalities. This is independent
from the chosen engine interaction M

nq
mp, because each term

|Mnq
mp|2(ρm

H ρ
p

C − ρn
Hρ

q

C) in Eq. (12), being present in both QC

and QH , simplifies in Eq. (18). That is, consistently with the
usual formulation of Carnot’s theorem, we find that any engine
working between states almost at equilibrium attains Carnot
efficiency,

ηC = 1 − TC

TH

(19)

(a similar approach to the Carnot efficiency has recently been
proposed in Ref. [5]). The fact that we can prove Carnot’s
theorem from our formalism is not surprising, because systems
at thermal equilibrium [like the reservoirs in Eq. (13)] are
known to obey it. This is a good consistency check for our
approach.

IV. RESERVOIR EQUIVALENCE THEOREM

If the reservoirs’ distributions differ from thermal equi-
librium ones, we cannot in general define a temperature for
them, and thus Eq. (18) does not apply. In this section we
prove a reservoir equivalence theorem that we use in Sec. V
to establish a generalized form of Carnot’s theorem, valid for
arbitrary nonthermal reservoirs.

We start by rewriting the sum in Eq. (12) as a sum over
all the possible transitions between pairs of states in each
reservoir:

QC = λ2
∑

m → n

Em > En

∑
p→q

∣∣Mnq
mp

∣∣2(
ρm

H ρ
p

C − ρn
Hρ

q

C

)(
E

p

C − E
q

C

)
,

(20)
QH = λ2

∑
m → n

Em > En

∑
p→q

∣∣Mnq
mp

∣∣2(
ρm

H ρ
p

C − ρn
Hρ

q

C

)(
Em

H − En
H

)
.

From Eq. (20), we see that the heat flow between the two
reservoirs is composed of the sum over all the possible pairwise
interactions, coupling a transition in the cold reservoir (from p

to q) and a transition in the hot one (from m to n). This means
that, modulo a renormalization of the density operator (which
only amounts to a redefinition of the engine interaction M

nq
mp),

the heat flow between two reservoirs with multiple levels (and
thus multiple transitions) is formally equivalent to the flow
between multiple reservoirs, each one with only two levels (and
thus only one transition). A single engine working between the
cold and the hot reservoirs is thus equivalent to a set of different
engines, each one working between two reservoirs composed,
respectively, of the two-level systems made of the levels (p,q)
and (m,n).

This point is important for us because a two-level system
with arbitrary level populations ρ0 and ρ1 and level energies
E0 and E1 can always be considered in thermal equilibrium
for a certain effective temperature Teff. This is due to the
elementary calculus result that, given two arbitrary points in
the Cartesian plane, there is always an exponential function
connecting them (see Fig. 2 for a schematic illustration). The
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FIG. 2. An arbitrary two-level system, with level populations ρ0

and ρ1 and level energies E0 and E1, can always be considered
in thermal equilibrium for a certain effective temperature Teff . This
temperature is positive if the lower-lying level population is higher
(left) and negative otherwise (right).

effective temperature Teff, which can be positive or negative,
is thus given by the equation

ρ1

ρ0
= e−(E1−E0)/Teff . (21)

From the two remarks above we obtain one of our main
results: An arbitrary time-independent reservoir is formally
equivalent to a collection of equilibrium subreservoirs com-
posed of two-level systems, each one characterized by its
effective equilibrium temperature given by Eq. (21).

Given that a reservoir is usually made up of many identical
subsystems (e.g., the molecules of a gas), each transition will
be highly degenerate. Through Eq. (21) this will give rise
to many identical two-level systems, leading to subreservoirs
roughly of the same size (in terms of the number of subsystems
and thus of the number of available transitions) of the original
ones. It is important to note that the equivalence is purely
formal; these subreservoirs are only mathematical objects,
useful abstractions. We are not suggesting that the reservoir is
phisically divided into multiple pieces. It is also important
to remember that the hypothesis that the initial states are
stationary states of the decoupled reservoirs [Eq. (1)] is
required for the theorem to hold.

V. GENERALZED CARNOT’S THEOREM

From the theorem proven in the previous section, the
generalization of Carnot’s theorem we are looking for follows
quite naturally. Being a nonthermal reservoir equivalent to
a collection of equilibrium subreservoirs, an engine working
between two of them is in fact formally equivalent to one
operating between two sets of equilibrium subreservoirs, each
one with its own effective temperature. The engine couples
pairs of subreservoirs, one from the cold side and the other
from the hot one, extracting work from them (see Fig. 3 for a
schematic illustration in the case of two reservoirs composed
of three-level systems). We now have a system that can be
described using only thermal reservoirs and we can thus easily
find an upper bound to its efficiency using the standard Carnot
theorem and the tools we develop in Sec. III. Using Eq. (21)

FIG. 3. (Color online) An engine working between two nonther-
mal reservoirs is formally equivalent to an engine working between
two sets of thermal sub-reservoirs.

we can define the effective, transition-dependent temperatures
for each pair of levels as

T
qp

C = (
E

q

C − E
p

C

)/
log

ρ
p

C

ρ
q

C

,

(22)

T mn
H = (

Em
H − En

H

)/
log

ρn
H

ρm
H

,

and, following the standard Carnot theorem or, better, its trivial
expansion to the case of multiple reservoirs, we obtain the
following upper bound on the efficiency of energy extraction
from the nonthermal reservoirs:

η � 1 − min
(
T

qp

C

)
max

(
T mn

H

) , (23)

where the minimum and the maximum are taken, respectively,
over all the pairs of levels in the cold (p,q) and hot (m,n)
reservoirs.

In particular, the engine described by an operator M
nq
mp,

whose only nonzero elements have indexes (m̃,ñ) and (p̃,q̃)
that satisfy

T m̃ñ
H = max

(
T mn

H

)
, T

q̃p̃

C = min
(
T

qp

C

)
, (24)

couples only pairs of transitions corresponding to the lowest
and highest temperature; that is, it works only between the
coldest and the hottest reservoir. It will thus obey Eq. (23) and
it can saturate the inequality if all the transitions take place
between almost-equilibrium states, as explained in Sec. III.

In order to write Eq. (23) we made two supplementary
hypotheses: all the effective temperatures are positive and
all the effective temperatures of the hot reservoir are hotter
than those of the cold one. If the first hypothesis is violated,
it could be possible to construct an engine extracting work
from a single reservoir; if the second is violated, we could
extract work from bidirectional heat flows. In both cases, while
our formalism is completely apt for studying them, the usual
definition of efficiency is not well suited (see the discussion
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about work reservoirs in Sec. II) and thus it is meaningless to
apply Carnot’s theorem, and we thus ignore these possibilities.
We have proved that the determination of the upper bound of
the efficiency can be reduced to the calculation of the extrema
of the effective temperatures in the two reservoirs.

While we consider in the following only examples con-
cerning systems with discrete spectra, the same procedure can
be generalized to the generic continuum case. The effective
temperatures in each reservoir will then form two-dimensional
surfaces and their extrema can be located by usual analytic or
numerical methods.

VI. APPLICATION TO A KNOWN CASE

In the final part of this paper, we apply the theory just
developed to study the efficiency that can be obtained from
reservoirs presenting some amount of quantum coherence.
This case was treated in a paper by Scully and coworkers [2].
In this paper they showed how, given a reservoir consisting of
a thermal gas of three-level atoms with a certain amount of
quantum coherence between the quasidegenerate two lower
levels, it is possible to build an engine with an efficiency
greater than the one given by Carnot’s theorem. In order to do
that, they devised a photo-Carnot engine whose working fluid
is composed of photons, which uses the thermal three-level
quantum coherent atom gas as a hot reservoir and a generic
reservoir at the same temperature, but without coherence, as
a cold one. We show how our theory allows us to find the
same results in a completely model-independent way (that is,
without any need of devising an actual engine).

Following Ref. [2] we define a thermal, quantum coherent
system as a system whose density matrix has diagonal elements
given by thermal populations and some nonzero off-diagonal
terms. The coherent gas is thus described by the density matrix

ρφ =
⎛
⎝Pa 0 0

0 Pb ρbce
iφ

0 ρbce
−iφ Pc

⎞
⎠ , (25)

where the diagonal elements are the thermal populations of the
three states. In the following we consider the degenerate case
Pb = Pc, in order to satisfy Eq. (1) and be able to apply our
equivalence theorem, and we call � the energy gap between the
higher level and the lower two. In the limit of high temperature
and small coherence, Scully and coworkers find an efficiency
for the photo-Carnot engine depending on the phase between
the two coherent levels, given by

ηφ = −Paρbc cos(φ)

Pb(Pb − Pa)
, (26)

where, given the two reservoirs at the same temperature, we
would expect a zero efficiency in the absence of coherence.
To apply our theory we diagonalize the density matrix in
Eq. (25), obtaining the eigenvalues [Pa,Pb − ρbc,Pb + ρbc].
The thermal, coherent gas, is thus equivalent to a fully
incoherent, but nonthermal gas. Applying Eq. (22), we find the

following three effective temperatures for the hot reservoir,

T ab
H = �/ log

(
Pb − ρbc

Pa

)
,

T ac
H = �/ log

(
Pb + ρbc

Pa

)
, (27)

T bc
H = 0,

while for the incoherent, cold reservoir, we have a single,
equilibrium temperature,

TC = �/ log

(
Pb

Pa

)
. (28)

Substituting Eqs. (27) and (28) into Eq. (23), we obtain the
maximal efficiency given by

η � 1 −
log

(
Pb−ρbc

Pa

)
log

(
Pb

Pa

) , (29)

which, in the high-temperature (Pb � Pa) and small-coherence
(ρbc � 1) regime, reduces to

η � Paρbc

Pb(Pb − Pa)
, (30)

that is, the maximum of Eq. (26) [actually, following the
calculations in Ref. [2], but without making any simplifying
approximation, we would find the optimal efficiency exactly as
in Eq. (29)]. We have thus proved that our theory can correctly
predict, in a model-independent way, the maximal efficiency
of the photo-Carnot engine. Moreover, we have shown that the
efficiency found in Ref. [2] is indeed optimal for the chosen
cold and hot reservoirs.

VII. UNIT EFFICIENCY ENGINE

While proving the results in the previous section, we stum-
bled on a rather unexpected result. One of the temperatures
in Eq. (27), corresponding to the transition between the two
coherent degenerate levels, is equal to 0. This seems to imply
that, switching the two reservoirs, that is, using the coherent
reservoir as the cold one, it should be possible to conceive an
engine working at unit efficiency [the TC in Eq. (23) is equal
to 0 and thus η = 1].

Initially puzzling, this turns out to be a generic feature
of reservoirs with degenerate, coherent levels. Two coherent
degenerate levels are generally described by a density matrix
of the form

ρc = 1

2

(
1 σ

σ 1

)
, (31)

which, after diagonalization, yields an effective zero temper-
ature, as can be seen from Eq. (22), because the energies are
equal while the populations are different.

The physical origin of such seemingly unphysical behavior
is easy to understand. The entropy of ρc is always lower than
that of the fully incoherent density matrix

ρi = 1

2

(
1 0
0 1

)
. (32)

Since all the states in such a degenerate subspace have the
same energy, the reservoir can act as a perfect entropy drain,
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absorbing entropy but not energy from the engine as it evolves
from ρc to ρi . We thus predict the possibility of realizing
an engine with unit efficiency, extracting work from a single
reservoir and dissipating entropy by destroying coherence in a
second, coherent reservoir. The maximal efficiency of such an
engine would be independent of the strength of the coherence
σ , but the work extractable from it would depend on the total
amount of coherence that is burned by the engine. A simple
application of the second law of thermodynamics gives the
upper bound

W � THM	S, (33)

where M is the total number of pairs of levels whose coherence
is utilized to extract work W and 	S is the entropy difference
between ρi and ρc. While such predictions of high efficiencies
might seem to violate the usual Carnot bound, this is not the
case. In fact, as stated above, we are considering the efficiency
of work extraction from reservoirs already in a nonthermal
state. In order to compare these results with the ones obtained
for thermal reservoirs, we should also consider the processes
needed to bring the reservoirs out of thermal equilibrium in the
first place. Illuminating discussions in the case of the photo-
Carnot engine can be found in Refs. [7] and [8].

The above construction is rather formal, but there are simple
and well-known systems that implement the mechanism
described. Without entering into detailed calculations, which
are beyond the scope of this paper, we can note that a laser
without inversion [9] driven by a thermal field can indeed
behave as a unit efficiency engine. If the active medium is
composed of coherent, degenerate 
 atoms, whose upper level
is at an energy high enough to be able to neglect its thermal
occupation, such a system effectively extracts energy (in the
form of laser radiation) from the thermal reservoir (the thermal
field) with unit efficiency, while destroying the coherence of
the 
 atoms.

It is also interesting to note that destroying coherence
between degenerate levels is not the only way to eliminate
entropy without losing energy. A number of investigations
have indeed shown, exploiting the links between thermody-
namics and information theory [10–16], that if information is
somehow extracted from the system, it is possible to obtain an
engine working at unit efficiency.

VIII. CONCLUSIONS AND PERSPECTIVES

In the present paper we have introduced a new approach to
study of the efficiency of thermal engines that allows us to treat
general nonthermal and quantum coherent reservoirs. We have
proved that our approach gives the same result as the canonical
one when applied to thermal situations (Sec. III) and yields
the right result when applied to the only case of a nonthermal
reservoir thoroughly studied in the literature (Sec. V). While
the formalism we developed differs in many respects from
what is usually done in standard thermodynamics, the fact
that it is able to give the right results in all known situations
vindicates the correctness of our approach.

As applications we reproduced the results originally derived
in Ref. [2] and then showed the possibility of realizing an
engine with unit efficiency that exploits quantum coherence.

The aforementioned results were derived using rather
formal methods. It will be an interesting challenge to identify
and study physical systems in which such results can be tested
and applied.
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APPENDIX: PROOF OF EQUATION (14)

In Sec. III we claimed that, in order to have an engine that
extracts heat from the hot reservoir, we need to have

ρm
Hρ

p

C − ρn
H ρ

q

C > 0, (A1)

at least for some value of the indexes (m,n,p,q). Here we give
a detailed justification of this point.

Following what is done in Sec. III we can write the heat
fluxes from the two reservoirs as

QC = λ2
∑

m,n,p,q

Em
H > En

H

∣∣Mnq
mp

∣∣2(
ρm

Hρ
p

C − ρn
H ρ

q

C

)(
E

p

C − E
q

C

)
,

QH = λ2
∑

m,n,p,q

Em
H > En

H

∣∣Mnq
mp

∣∣2(
ρm

Hρ
p

C − ρn
H ρ

q

C

)(
Em

H − En
H

)
,

(A2)

and we assume the reservoirs to be thermal,

ρm
H = e−Em

H /TH
/
ZH , ρ

p

C = e−E
p

C/TC
/
ZC, (A3)

with TH > TC . The explicit form we derived for QC and QH

in Eq. (A2) allows us to write the heat fluxes between the reser-
voirs and the engine as a sum over different channels, indexed
by the 4-tuple (m,n,p,q). If we examine the contribution of
each channel to QC and QH , we realize that, in order for the
channel to extract some heat from the reservoirs, we need two
conditions to be fulfilled:

(1) at least one of the two contributions has to be positive;
and

(2) if only one contribution is positive, its norm has to be
bigger than the norm of the other.

If these two conditions are not fulfilled, the channel is
effectively dissipating work into the reservoirs and, thus,
lowering the overall efficiency. In order to have an engine
extracting some work, we thus need these two conditions to
be fulfilled at least for some channel.

In the rest of this Appendix we prove that any channel
fulfilling the two conditions has QH > 0 and QC < 0, and
thus it verifies Eq. (A1). We prove this by showing that any
other possibility leads to contradiction.
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1. Q H > 0 and QC > 0

Having both contributions from Eq. (A2) positive would
imply

ρm
Hρ

p

C − ρn
H ρ

q

C > 0 (A4)

and

E
p

C − E
q

C > 0. (A5)

Yet, using the reservoirs in Eq. (A3), Eq. (A4) implies

E
q

C − E
p

C

Em
H − En

H

>
TC

TH

, (A6)

which is never verified, as the left-hand side is negative. We
have thus proved that it is not possible for an engine to extract
heat from both reservoirs.

2. Q H < 0 and QC > 0

This would imply, from Eq. (A2),

ρm
H ρ

p

C − ρn
Hρ

q

C < 0. (A7)

Condition (2) thus imposes the following inequality:

E
q

C − E
p

C > Em
H − En

H . (A8)

From Eqs. (A7) and (A8), using the reservoirs in Eq. (A3), we
obtain the relation

1 <
E

q

C − E
p

C

Em
H − En

H

<
TC

TH

, (A9)

which is also never verified. We have thus proved that it is not
possible for an engine to work by extracting heat from the cold
reservoir.

3. Q H < 0 and QC < 0

This case would trivially violate condition (1), as both
contributions are negative.
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