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Macroscopic constraints for the minimum entropy production principle
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In an essential and quite general setup, based on networks, we identify Schnakenberg’s observables as the
constraints that prevent a system from relaxing to equilibrium, showing that, in the linear regime, steady states
satisfy a minimum entropy production principle. The result is applied to master equation systems, opening a
new path to a well-known version of the principle regarding invariant states. Moreover, with the aid of a simple
example, the principle is shown to conform to Prigogine’s original formulation. Finally, we discuss analogies
and differences with a recently proposed maximum entropy production principle.
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I. INTRODUCTION

The minimum entropy production principle (MINEP) as-
serts, using Klein and Meijer’s words [1], that “the steady
state is that state in which the rate of entropy production has the
minimum value consistent with the external constraints which
prevent the system from reaching equilibrium.” So worded, it is
reminiscent of the inferential method that provides ensembles
in equilibrium statistical mechanics, by maximization of
the Gibbs-Shannon entropy—a measure of ignorance of the
microstate of the system—under suitable constraints. In an
information-theoretic framework, constraints are pieces of
knowledge the observer gains from the measurement of certain
observables of the system, or macroscopic parameters that can
be experimentally controlled. In the extremization procedure
constraints are introduced through Lagrange multipliers [2].

Not exactly so for MINEP. Its first proof as a closed theorem
is attributed to Prigogine [3]. In Prigogine’s statement, owing
to the applied thermo-chemical setting, knowledge of the
nonequilibrium external constraints, such as temperature or
chemical potential gradients, is granted from the start. Further
generalizations of the principle always entail that constraints
can be read off the physical setup of the problem. So, in his
extension of the principle to density matrices [4], Callen recalls
that “Prigogine showed that in the steady state which is reached
when certain affinities are constrained to have definite values,
all unconstrained affinities assume the values which minimize
the entropy production function.”

However, the environmental influence on a system might
be a priori unknown, or difficult to decipher. In this paper
we do not assume previous knowledge of the nonequilibrium
constraints, or affinities. As uninformed observers, we look at
the system, measure its fluxes and local constitutive relations,
and ask which are the constraints that impede relaxation to
equilibrium.

A. Scope and plan of the paper

More specifically, this work addresses two technical ques-
tions: Which Lagrange multipliers should be introduced in the
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MINEP variational procedure? Which constraints are implic-
itly encoded in the transition rates of master equation systems?
For systems in the linear regime, the answer is found in
Schnakenberg’s theory of macroscopic observables [5], further
supporting the point of view that his construction identifies
the fundamental, experimentally accessible observables of
Non-Equilibrium Statistical Mechanics (NESM). When the
linear constitutive relations or probabilistic transition rates
are known or measurable, Schnakenberg’s affinities can be
explicitly calculated. For chemical reaction networks, it is
known that they coincide with chemical potential differences
[6]. For this reason his analysis has mainly found application
in biochemistry [7,8], where it plays an important role for
the comprehension of free energy transduction. Recently
it is finding growing applications to transport phenomena
and molecular motors [6,9–12]. These works show how the
seemingly rather formal theory makes direct contact with ex-
perimentally accessible problems in thermodynamics, such as
bounding maximum power efficiencies of nanomachines [12].

We first identify the underlying degrees of freedom that
are subject to constraints, spoiling the problem of its material
content and considering bare fluxes of “information” to achieve
the generality of equilibrium statistical mechanics [2]. For
systems consisting of a finite number of microstates, we iden-
tify Schnakenberg’s affinities [5] as the correct macroscopic
constraints. Schnakenberg introduced them for Markovian
systems whose evolution is dictated by a master equation, but
the construction can be generalized to any network of currents.
Affinities are defined as circuitations of nonconservative
forces. Along with their conjugate “mesh” currents, they
furnish a complete description of the steady state.

As for most, if not all, constructive variational principles
in NESM, the range of validity of the principle is the
linear regime. Notice that we will assume the linear regime
constitutive relations and not derive them from the principle
of least dissipation, as is done in classical textbooks on
nonequilibrium thermodynamics [13, Chaps. 4 and 5]. In
particular, we will not distinguish between the dissipation
function and the entropy production.

Schnakenberg’s network theory can be efficiently intro-
duced in an algebraic graph-theoretical fashion. We will
concisely provide all the necessary tools in Sec. II, in a
self-contained manner. For more details, good references are
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Biggs’s book [14] and Nakanishi’s [15]. The principle is
formulated in Sec. III, and then applied to Markovian master
equation systems. This yields a proof to the fact that the
steady state is a local minimum of the entropy production.
We thus obtain by a very different method a result previously
derived by Jiu-Li, Van den Broeck, and Nicolis [16], and more
recently rediscovered in the framework of Large Deviation
Theory by Maes and Netočný [17]. These earlier results are
discussed in Sec. IV, where the relationship with Prigogine’s
original statement of the principle is also discussed. In fact, it
turns out that the principle is perfectly adherent to Prigogine’s
formulation. The last subsection of Sec. IV is devoted to a
comparison of our result with a formulation of the maximum
entropy production principle due to P. Županović, D. Juretić,
and S. Botrić [18], which also deals with conservation laws,
and might appear to be in contradiction—at least nominally—
with ours, showing that the two principles are compatible.

We prosecute this introduction with a simple physical
example that should convey that circuitations are good
nonequilibrium constraints.

B. Circuitations as constraints

Consider the classical problem of heat diffusion in an
approximately one-dimensional inhomogenous conductive
rod, whose ends are put in contact with thermal reservoirs at
slightly different boundary temperatures, Tb � Ta , while the
body of the rod is isolated (see Ref. [19, §3.1] and references
therein). A temperature profile T (x) establishes. By Fourier’s
law the induced heat current through the rod is

j (x) = −k(x)∂T (x), (1)

where k(x) is the thermal conductivity at x ∈ [a,b] and ∂ = ∂
∂x

.
The identity

Tb − Ta +
∫ b

a

j (x)

k(x)
dx ≡ 0 (2)

is interpreted as a constraint on the currents, where we make
use of the equivalence symbol “≡” to impose constraints.
Independently of the particular evolution equation that the
heat current satisfies, the configuration is said to be steady if at
each point of the rod the influx of current balances the outflux,
∂j ∗(x) = 0, which implies j ∗(x) = const.

The same result can be obtained by a different route. Let us
define the local force as the right incremental ratio

a(x) = lim
δx→0+

T −1(x + δx) − T −1(x)

δx
, x ∈ [a,b). (3)

We assume that the system satisfies linear regime constitutive
equations, that is, that forces and currents are small and linearly
related:

a(x) = �(x)j (x). (4)

For this assumption to hold it is necessary that the temperature
profile is approximately constant and the temperature drop
between the extremities of the rod is sufficiently small with
respect to its length, in such a way that to first order one
can approximate the conjugate force as a(x) = −T −2

av ∂T (x),
x �= b, where Tav is the average value of the temperature

[19,20]. The local linear regime coefficient then reads �(x) =
T −2

av k(x)−1. The entropy production

σ =
∫ b

a

j (x)a(x) dx, (5)

is then a quadratic functional of the currents. We require σ to be
stationary, that is, δσ = 0, with respect to all possible current
profiles that are consistent with constraint (2). Introducing one
Lagrange multiplier λ, we calculate the variation

δ

δj (y)

[∫ b

a

�(x)j (x)2 dx − 2λ

∫ b

a

j (x)

k(x)
dx

]
= 0, (6)

leading to a uniform stationary current j ∗ = λT 2
av. The value

of the multiplier is fixed by substitution into Eq. (2):

j ∗ = T 2
avλ = (Tb − Ta)

[∫ b

a

k(x)−1 dx

]−1

. (7)

The above solution corresponds to a minimum of σ , and
it coincides with the steady configuration of currents. We
conclude that the steady state is the minimum of the entropy
production among nearby current profiles that are compatible
with the external constraint. Notice that, while in the NESM
literature “stationary” and “steady” are synonyms, we prefer
to use the former when referring to the extremal solution of
a variational problem, and the latter for a configuration of
currents that satisfies the continuity equation.

The problem of heat conduction and the minimum entropy
production principle in a rod has been widely debated [20,21],
with arguments revolving around the onset of the linear regime.
While the exact MINEP solution displays an exponential
dependence on the position, it can be shown that under
reasonable experimental conditions the deviations between the
rigorous MINEP temperature profiles and the steady profiles
are small. In this work we are not interested in the careful
identification of the range of validity of Eq. (4), but rather in
the forthcoming geometrical interpretation of the constraint
as a circuitation: So we will always assume that our systems
admit a well-defined linear regime.

At a steady state as much heat is absorbed by the colder
reservoir, as much has to be poured in by the hotter one. If
we ideally short-circuitate the rod, bringing the end points to
coincide, the linear system is mapped to a unicyclic system,
with a conserved heat flux through the whole ring. Due to the
discontinuity of T (x) at x = a, the affinity is not a conservative
field (i.e., it is not the derivative of some potential in all of its
domain). However, we can still integrate it to get the constraint∮

ring
a(x) dx ≡ 1

Ta

− 1

Tb

, (8)

which in the linear regime is equivalent to Eq. (2). When the
boundary temperatures coincide, that is, at equilibrium, the
affinity is indeed an exact form and the circulation vanishes.
Thus there exists a correspondence between “topological”
circuitations, nonconservative driving forces, and the onset
of nonequilibrium behavior.

Schnakenberg’s intuition was that circuitations of noncon-
servative fields are the fundamental observables that keep a
system out of equilibrium. We push this further claiming that,
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in the linear regime, they are the constraints to be imposed to
the MINEP procedure.

As soon as one abandons the one-dimensional case, one
incurs great difficulties. In particular, steadiness ∂j ∗ = 0 does
not imply a uniform current distribution, and one realizes that
the problem is of geometrical nature, involving differential
forms, topology, etc. However, on a discrete state space
Schnakenberg’s intuition can be efficiently put to work.

II. SCHNAKENBERG’S THEORY

J. Schnakenberg’s seminal paper [5] is mainly known for
the identification of the total entropy production (EP) of a
Markovian system, although that element was instrumental—
and actually inessential—to the formulation of a theory of
macroscopic observables as circuitations of local forces.

The theory is synthesized below, starting with a simple
example. We then introduce all the definitions and hypotheses
that are strictly necessary to the theory.

A. An example

Consider a discrete state space consisting of four states,
which exchange between one another some physical quantity,
be it mass, energy, charge, spin, etc., at certain rates. For sake
of abstractness, we will suppose that these physical quantities
are coded in bits, so that from the comparison of two nearby
snapshots of the system an observer will be able to measure
a certain flux of raw “information” at a certain time, as is
shown in Fig. 1(a). Here the states of the system are depicted
with vertices of a graph, and the channels of communication
with oriented edges e connecting the states. Currents je might
have positive or negative sign, according to the direction of
the flow—concordant or opposite to the edges’ orientations.
Notice that not all states need to be connected. We further
suppose that the currents are induced by some conjugate local
forces ae, which have the same sign, and finally we introduce
the EP,

σ [j,a] = j1a1 + j2a2 + j3a3 + j4a4 + j5a5. (9)

A comment is needed on the usage of the scale words.
Schnakenberg referred to je as a microscopic current, and to the
observables we are going to build as macroscopic. However,

FIG. 1. (a) Above: an oriented graph. Below: a spanning tree. (b)
Dotted: a generating chord. Below: its conjugate fundamental cycle.
(c) The same.

later developments in the stochastic thermodynamics of master
equation systems (see Ref. [22] and references therein) allow
us to identify single-trajectory analogs of thermodynamical
quantities, such as currents and entropy production, whose
averages over paths return je,σ, etc. This suggests to reserve
the word “microscopic” for this further layer, and to adopt
“mesoscopic” for je and ae, regardless of their spatial dimen-
sion.

The configuration of currents is steady if the total inflow at
the nodes is null, yielding the conservation laws

j ∗
4 = j ∗

1 , j ∗
2 = j ∗

3 , j ∗
1 + j ∗

5 = j ∗
2 , j ∗

3 − j ∗
4 = j ∗

5 . (10)

One of them is redundant. The others allow us to express all
of the steady currents in terms of, e.g., j ∗

1 and j ∗
3 . Replacing

the solution in the expression for the EP yields

σ [j ∗,a] = j ∗
1

A1︷ ︸︸ ︷
(a1 + a4 − a5) +j ∗

3

A3︷ ︸︸ ︷
(a2 + a3 + a5) . (11)

Overbraces are used to define the macroscopic forces or
affinities, which are conjugate to the fundamental currents
J1 = j ∗

1 and J3 = j ∗
3 . The affinities are sums of the local forces

along oriented cycles of the graph.
The linear regime constitutive relations are now assumed:

Currents and forces are related by ae = �ej
∗
e , with �e positive

local linear response coefficients. We obtain for the macro-
scopic forces

A1 = �1j
∗
1 + �4j

∗
4 − �5j

∗
5 =

L11︷ ︸︸ ︷
(�1 + �4 + �5) J1 + (

L13︷︸︸︷
−�5 )J3,

(12a)

A3 = �2j
∗
2 + �3j

∗
3 + �5j

∗
5 =

L33︷ ︸︸ ︷
(�2 + �3 + �5) J3 + (

L31︷︸︸︷
−�5 )J1.

(12b)

The right-hand side defines the macroscopic linear response
coefficients, which satisfy Onsager’s reciprocity relations.

We gather that the conservation laws at the nodes can be
used to express the EP in terms of a certain number of boundary
currents and of conjugate affinities, which are circuitations of
the local forces along oriented cycles of the graph. Assuming
the linear regime constitutive relations yields a symmetric
linear response matrix between affinities and fundamental
currents.

B. Graphs, cycles, fundamental sets

Consider now a finite microstate space V , with |V |
microstates labeled by i,j, . . ., which are pairwise connected
by |E| edges e in the edge set E of a graph G = (V,E). Assign
an arbitrary orientation to the edges, which is the choice of tip
and tail vertices; −e depicts the inverse edge. The incidence
matrix ∂ , with entries

∂e
i =

⎧⎨
⎩

+1, if
e← i

−1, if
e→ i

0, elsewhere
, (13)

contains all the information about the topology of the graph,
with the exception of irrelevant loops (edges whose tip and tail
coincide). Its rows are not independent, as each column adds
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up to zero. It is a basic graph-theoretical fact that if ∂ cannot be
arranged in blocks, then it has rank |V | − 1. The assumption,
to which we stick, corresponds to the choice of a connected
graph, i.e., a graph whose vertices can all be connected by
paths.

From a graphical viewpoint, cycles c are chains of edges
with no boundary: Each vertex it touches is the tip and the tail
of an equal number of edges of the cycle. To give an algebraic
characterization, notice that, by definition, cycles belong to the
kernel of ∂; they form the cycle space C. The dimension of C is
called the cyclomatic number. By the rank-nullity theorem, the
number of independent rows and the dimension of the kernel of
a matrix add to the number of its columns, rk∂ + null∂ = |E|.
Hence the cyclomatic number is

|C| = |E| − |V | + 1. (14)

Cycles are simple when they do not have multiple components,
overlapping edges, or crossings.1

Among all possible basis of C, we focus on fundamental
sets, which are so constructed (see Fig. 1). Let T ⊆ E be a
spanning tree of the graph, i.e., a maximal set of edges that
contains no cycles. Spanning trees enjoy several properties;
among others, they touch all the vertices and consist of
|V | − 1 edges. An edge eα that does not belong to the
spanning tree is called a chord. There are |C| chords. Adding
a chord to a spanning tree generates a simple cycle cα , which
can be oriented accordingly with the orientation of eα . The
fundamental set of cycles so generated can be proven to be
a basis for C. The proof roughly goes as follows: Any chord
belongs to a cycle. By construction, no two fundamental cycles
share a chord, so that they are necessarily independent. Finally,
a set of |C| independent vectors in C constitutes a basis.

This is the central technicality behind Schnakenberg’s
theory. Let us resume: Cycles of a graph form an integer vector
space; they span the kernel of the incidence matrix. Adding
chords to a spanning tree generates a basis of simple cycles cα .
The vector representative of a simple cycle has components

cα
e =

⎧⎨
⎩

+1, if e belongs to cycle cα

−1, if − e belongs to cycle cα

0 elsewhere.
(15)

A basis that is built out of a spanning tree is said to be a
fundamental set. Fundamental sets satisfy two very important
properties: (1) Each simple cycle comes along with a preferred
generating edge eα , called a chord, which belongs to the
complement of the tree; (2) each chord belongs only to the
cycle it generates.

C. Macroscopic observables

Let the mesoscopic currents je be real edge variables, anti-
symmetric by edge inversion, j−e = −je. Similarly defined are
the mescocopic forces ae, which are required to bear the same

1We adopt common jargon in graph theory, while Schnakenberg
coined the word quasicycles for cycles and referred to simple cycles
as, simply, cycles.

sign as their conjugate currents je. The entropy production is
the bilinear form

σ =
∑

e

jeae. (16)

In general, one will assume that currents and forces are
interdependent, in such a way that forces vanish when currents
vanish. Local linear regime holds when currents and forces are
linearly related in a local way (that is, edge by edge) by

ae = �eje, (17)

where �e = �−e is a positive symmetric edge variable. The
linear regime holds to first order for small currents and forces.
Notice that by reasons of symmetry the next leading order in
this expression is third order in the currents.

The collection of currents j ∗ is said to be steady when
Kirchhoff’s law is satisfied at each node,∑

e

∂e
i j

∗
e = 0, (18)

or in matrix notation simply ∂j ∗ = 0. Hence j ∗ belongs to the
kernel of ∂ and can be decomposed in a basis of fundamental
cycles

j ∗ =
∑

α

Jαcα. (19)

In particular, since chord eα belongs only to cycle cα , the
macroscopic internal current Jα coincides with the current
jeα

flowing along chord eα . Replacing the solution in the
expression for the entropy production yields

σ ∗ =
∑

α

J αAα, (20)

where

Aα =
∑

e

cα
e ae (21)

is a macroscopic external force or affinity, obtained as
the circuitation of the mesoscopic forces along cycle cα .
Macroscopic currents and affinities are conjugate variables that
completely characterize the steady state. When all affinities
vanish, the system is said to satisfy detailed balance, or to
be equilibrium. In the linear regime, replacing the solution to
Kirkhhoff’s law (19) into Eq. (17) and summing along oriented
edges of a cycle yields

Aα =
∑

β

Jβ

∑
e

�ec
α
e cβ

e =
∑

β

LαβJβ, (22)

where the linear response matrix Lαβ = ∑
e �ec

α
e c

β
e , being

manifestly symmetric, satisfies Onsager’s reciprocity rela-
tions. This was one main clue that led Schnakenberg to promote
macroscopic currents and forces to fundamental observables.

The linear response matrix can be combinatorially con-
structed by taking all response coefficients �e that belong to
both cycles cα and cβ , with a plus or minus sign whether the
cycles’ orientation is either concordant or opposite along edge
e. This kind of matrix is well known in graph theory and in
Feynman diagrammatics [15]. One property that is relevant
to our discourse is that its determinant is always non-null
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(but for very trivial graphs), which guarantees invertibility of
expression (22).

III. MINIMUM ENTROPY PRODUCTION PRINCIPLE

In this section we prove that, in the linear regime, steady
states minimize entropy production among all states that are
compatible with the external macroscopic circuitations of
the mesoscopic forces. We then apply the result to master
equation systems, showing that in the linear regime the steady
probability distribution minimizes the entropy production.

A. General statement

According to Schnakenberg’s theory of nonequilibrium
observables, the external constraints that force a system into
a nonequilibrium steady state are the macroscopic external
forces. We will now extremize entropy production with
respect to mesoscopic currents in the linear regime, using
Schnakenberg’s affinities as constraints,

Āα ≡ Aα[j ] =
∑

e

cα
e �eje + O(j 3), (23)

where Āα is a fixed, “observed” value of the affinity. The EP
is the quadratic form

σ [j ] =
∑

e

�ej
2
e + O(j 4). (24)

We introduce Lagrange multipliers and vary

δ

δje

[
σ [j ] − 2

∑
α

λα(Aα[j ] − Āα)

]
= 0. (25)

Multipliers λα are to be determined by replacement of the
stationary solution into (23). The calculation is easily carried
over, yielding

j ∗ =
∑

α

λαcα. (26)

Stationary currents are linear combinations of a cyclomatic
number of boundary terms λα . We now prove that the latter are
in fact the macroscopic currents conjugate to the constrained
values of the affinities. Fixing the Lagrange multipliers we get

Āα =
∑

β

λβ

∑
e

�ec
α
e cβ

e =
∑

β

Lαβλβ, (27)

where we recognized the linear response matrix. This relation
can be inverted, showing, after Eq. (22), that λα is the steady
current conjugate to the measured value of the affinity Āα . The
second variation

δσ

δjeδjf

− 2
∑

α

cα
e

δλα

δjf

= �eδe,f (28)

yields a positive Hessian matrix, which guarantees positive
concavity.

We thus conclude that the stationary configuration of cur-
rents that in the linear regime minimizes the entropy production
with constrained macroscopic forces satisfies Kirchhoff’s
conservation law. From a dynamical point of view, if under
some ergodic hypothesis the steady state is asymptotically
reached over the long time (as is the case, for example, for

Markovian systems), one can conclude that a nonequilibrium
system tends to relax to a state of minimum entropy production,
compatibly with the macroscopic external forces that prevent
it from reaching equilibrium. This echoes Klein and Meijer’s
phrasing.

B. Master equation systems

Up to this point our main variables have been the currents,
whose nature and origin was left unspecified. When dealing
with Markov processes the object of interest is a normalized
probability distribution ρ on the vertex set, which we will call
a state of the system. Probability currents are defined in terms
of it as

jij [ρ] = wijρj − wjiρi, (29)

where wij are positive time-independent transition rates
between states, with the physical dimension of an inverse time.
The master equation dictates the evolution

d

dt
ρ(t) = Lρ(t) = −∂j [ρ(t)], (30)

where L is the Markovian generator. Its solution is ρ(t) =
etLρ0 for any initial state ρ0. We assume that the graph G

is connected (that is, that there exists a path between any
two vertices) and that transition rates are non-null in both
directions along its edges. Under these mild assumptions, there
exists a unique invariant, or steady, state μ, Lμ = 0, which is
approached at late times,

ρ(t)
t→∞−→ μ, ∀ρ0, (31)

independently of the initial distribution. Notice that the
invariant state is uniquely determined from knowledge of the
system’s transition rates, and in fact there exists an explicit
(but complicated) combinatorial expression for it, which is
unnecessary for the present discussion [5].

The conjugate force along edge e = i ← j is defined as

aij [ρ] = ln
wijρj

wjiρi

, (32)

and it is dimensionless. By the Handshaking Lemma we
can replace the sum over edges with one-half the sum over
neighboring sites, yielding the EP

σ [ρ] = 1

2

∑
i,j

jij [ρ]aij [ρ] = d

dt
S[ρ] + σenv[ρ]. (33)

The motivation behind definition (32), also due to Schnaken-
berg [5], is that the entropy production is naturally split in the
time derivative of the Gibbs-Shannon internal entropy S[ρ],
and a term that quantifies heat exchange with the environment,
yielding an entropic balance equation that is generally widely
accepted, as it is the mesoscopic counterpart of the first law of
(stochastic) thermodynamics along single trajectories [22].

The main peculiarity of definition (32) is that affinities turn
out to be independent of the state of the system ρ(t), and thus
time independent,

Aα = ln
∏
e∈cα

we

w−e

. (34)
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This property was another important clue that led Schnaken-
berg to interpret them as environmental constraints. Remark-
ably, this further entails that, for a fixed set of transition rates,
variation of the probability distribution ρ in any case preserves
all of the macroscopic affinities: We do not need to impose any
constraint at all, as long as we stick to the linear regime.

Let us then set up the linear regime. Consider a set of
equilibrium transition rates w0

ij , whose steady state μ0 satisfies
detailed balance

w0
ijμ

0
j

w0
jiμ

0
i

= 1, (35)

which by Kolmogorov’s criterion is known to hold if and only
if all of the affinities vanish. The linear regime is attained when
perturbing the equilibrium generator to a nonequilibrium one,
Lε , and at the same time considering a probability distribution
ρε , which is only slightly apart from the equilibrium steady
state,

wε
ij = (

1 + εij

)
w0

ij , (36a)

ρε
i = (1 + ηi) μ0

i , (36b)

where we suppose that all the ε and η are of infinitesimal order
ε. Let με be the steady state relative to generator Lε . It can be
shown [17] that με − μ0 is of order ε, and consequently so is
ρε − με . Expanding the forces and the currents we obtain

aij [ρε] = ln

(
1 + wε

ijρ
ε
j − wε

jiρ
ε
i

wε
jiρ

ε
i

)
≈ jij [ρε]

w0
jiρ

0
i

, (37a)

jij [ρε] = w0
ij ρ

0
j (εij + ηj − εji − ηi). (37b)

The right-hand side of Eq. (37a) furnishes the linear response
coefficient, �ij = (w0

jiρ
0
i )−1, which by Eq. (35) is indeed

symmetrical under edge inversion. Notice that both forces
and currents are of order ε; entropy production is of order ε2.

In the linear regime local forces and currents meet all
the requirements that are necessary to formulate the MINEP
principle proven above. On the other hand, macroscopic
constraints are independent of the probability distribution.
To conclude, we need to prove that the following variational
problems are equivalent:

δσ

δj

∣∣∣∣
Aα

= 0 ⇔ δσ

δρ
= 0. (38)

Using Eqs. (33) and (37a), we can write the variation with
respect to ρk as a linear combination of the variations with
respect to the currents:

δσ [ρ]

δρk

=
∑

i

wik

δσ [j ]

δjik

. (39)

Since variation of ρ preserves the affinities, we also have∑
i

wik

δσ [j ]

δjik

∣∣∣∣
Aα

= δσ [ρ]

δρk

∣∣∣∣
Aα

= δσ [ρ]

δρk

. (40)

When the right-hand side vanishes, so does the left-hand side.
Hence the left-to-right implication in Eq. (38) can be drawn,
which suffices to prove that the minEP principle for master
equation systems follows from ours: The invariant state με

is a local minimum of the entropy production among nearby

probability distributions. Notice that we cannot continue our
conclusion where η is no longer small. So we might expect
that, even for near-equilibrium transition rates, there might
exist a landscape of minima of the entropy production besides
the invariant state.

For sake of completeness, notice that the inverse implication
in (38) also holds. We need to make sure that the linear span
of the variables is the same, in order to avoid, for example,
that negative curvature directions of possible saddle points
be out of the span of the probability distribution, but within
the span of the currents. In such a case, one would conclude
that certain configurations of currents are extremal without
being able to inspect all possible configurations. A qualitative
argument goes as follows. There are |E| currents, subject to a
cyclomatic number of linear constraints, and |V | probability
entries, subject to one linear constraint, namely, normalization.
From Eq. (14) and from the fact that currents are linear in
the probabilities, it follows that the linear span of the two
variations has the same dimensionality: Hence they cover the
same small neighborhood in the space of current profiles, near
the equilibrium steady state. There is one last subtlety involved
with this: Probability densities live in a simplex 0 � ρi �
1, rather than a vector space, which for small-enough rates
would make even small currents out of reach. This is not a true
limitation, as transition rates are defined up to the conventional
choice of an unit measure of time, which of course does not
affect the generality of the principle.2

IV. DISCUSSION: RELATIONSHIP
TO PREVIOUS RESULTS

The first paragraph of this section is devoted to a tribute to
Prigogine’s insights. Our proof of MINEP for master equation
systems is a new path to an old result; we then briefly
credit the two approaches we are aware of. We conclude
with a discussion of a formulation of the maximum entropy
production principle that also involves Kirchhoff’s equations.

A. Prigogine

I. Prigogine’s proof of MINEP [3], shaped upon chemical
systems, is based on an assumed splitting of the EP into a
matter flux term and a heat flux term:

σ = JthAth + JmAm. (41)

Steadiness is equivalent to the requirement that matter currents
vanish, Jm = 0. Hence EP at a steady state consists only of heat
flux contributions.

Bridging to our abstract setup, we might interpret heat
currents and inverse temperature gradients respectively as
Schnakenberg’s internal currents and external forces (this is
precisely the case in the example discussed in Sec. I B).
Pushing this identification out of the steady state, the question
arises whether there exist conjugate observables analogous

2In other words, the question arises: with respect to what are current
small? A better definition of linear regime is then the requirement
that dimensionless forces, and not currents, be small; in that case
inspection of Eq. (37a) reveals that ρi ∈ [0,1] poses no limitations.
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to “matter currents” and “pressure gradients” that would
allow an analogous splitting in terms of Schnakenberg-type
observables. The answer is in the affirmative. In Ref. [23], the
author provides a complete set of observables, complementing
Schnakenberg’s with internal forces Aμ and external currents
Jμ, in such a way to bring EP to the form

σ =
∑

α

AαJα +
∑

μ

JμAμ. (42)

The new observables are again built as linear combinations
of mesoscopic observables along certain subgraphs. External
currents vanish at a steady state.

A review of the construction and its detailed properties goes
beyond the scope of this article. Let us hint at it by finalizing
the special case treated in Sec. II A. Basically we want to
rearrange Eq. (9) so to have cycles emerge. Since the new
expression should reduce to Eq. (11) when the conservation
laws (10) hold, regardless of the value of the local affinities,
we are indeed able to collect the currents in a profitable way:

σ [j,a] = j1

A1︷ ︸︸ ︷
(a1 + a4 − a5) +j3

A3︷ ︸︸ ︷
(a2 + a3 + a5)

+ a2

J 2︷ ︸︸ ︷
(j2 − j3) +a4

J 4︷ ︸︸ ︷
(j4 − j1) +a5

J 5︷ ︸︸ ︷
(j5 + j1 − j3) .

(43)

The macroscopic external currents J 2,J 4,J 5 vanish at the
steady state, as does Jm in Prigogine’s approach. Notice that
index α in Eq. (42) ranges over 1,3, index μ ranges over
2,4,5, and that the alternating index positioning is crucial to
the identification of the diverse observables. Exploiting the
linear regime local constitutive relations, one obtains

Jα =
∑

β


αβAβ +
∑

μ


μ
α Aμ (44a)

Jμ =
∑

α


μ
α Aα +

∑
ν


μνAν, (44b)

which pairs with Prigogine’s Eq. (6.2). Direct calculation of
the coefficients (which we leave to the reader) shows that the
reciprocity relations are fulfilled. Now the reasoning follows
along the same tracks as Prigogine’s. Variation with respect to
the mesoscopic observables, at constant external affinities, can
be replaced with variation with respect to the internal forces

δ

δa

∣∣∣∣
Aα

⇔ δ

δAμ

. (45)

Replacing (44) into Eq. (42) and varying,

δσ

δAμ

= 2
(

μ

α Aα + 
μνAν

) = 2Jμ = 0, (46)

yields vanishing external currents. We thus conclude that
our approach is completely superimposable on Prigogine’s
phenomenological derivation, adding to it an abstract and quite
general definition of the constraints.

B. Jiu-Li and coworkers, Maes and coworkers

The problem of extending Prigogine’s theorem to a
statement regarding populations, probability distributions, or
density matrices was raised and undertaken already by Klein

and Meijer [1] with a specific model, and by Callen [4] in a
quantum mechanical setting, in which a number of fixed forces
are assumed [see Eq. (39)].

Later, the Brussel school delved into the problem of
establishing stability criteria for nonequilibrium steady states
[24], Sec. 3.5]. Along this line of research, Schnakenberg’s
expression (33) for the EP of a Markovian system first
appears in the work of L. Jiu-Li, C. Van den Broeck, and
G. Nicolis [16], who derived the MINEP principle for
probability distributions evolving under a master equation in
a very straightforward manner, which we now synthesize. The
time derivative of a local force is

ȧij [ρ] = ρ̇j

ρj

− ρ̇i

ρi

. (47)

Writing the linear regime expression for the entropy production
in terms of the affinities

σ = 1

2

∑
i,j

a2
ij /�ij (48)

and taking its time derivative, we obtain

σ̇ = 2
∑
i,j

aij

�ij

ρ̇j

ρj

= −2
∑
i,j

jij

ρ̇i

ρi

= −2
∑

i

(ρ̇i)2

ρi

. (49)

Since σ̇ � 0, the EP decreases in the vicinity of the steady
state toward the steady state.

More involved is the approach of Maes and Netočný [17],
who considered the large deviation rate function I ε of the
occupancy empirical distribution

I ε[ρ] = − lim
T →∞

1

T
log P

(
1

T

∫ T

0
δi,ξt

dt ≡ ρi

)
. (50)

Here ξt is a single jump-process trajectory from time 0 to time
T , and P is the probability measure over trajectories. Maes and
Netočný proved the stronger result that, near equilibrium, in
the leading order the rate function I ε[ρ] is equal to one-fourth
the entropy production difference σ [ρ] − σ [με] between state
ρ and the invariant state. Since upon the above assumptions,
on connectedness and nonvanishing rates, Markovian systems
are known to converge to the steady state, and since, by the
law of large numbers, the steady state με is a global minimum
of the rate function, one concludes that it is a local minimum
of the entropy production.

C. Županović and coworkers

The striving for variational principles in NESM has a long
and contrived history. In particular, another, less familiar, vari-
ational principle has been proposed that should characterize
the behavior of nonequilibrium systems: the maximum entropy
production principle (MAXEP). There are at least as many
formulations of MAXEP as there are of MINEP. Arguably,
the apparent clash between these two instances is due to the
fact that they apply to distinct scales and regimes, and employ
different notions of “state.” There is a vast literature that tries
to sort out the matter [25], and by no means do we mean to be
exhaustive. However, we need to put our principle in contact
with some instances of MAXEP in order to appreciate their
relative significance.
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It was Jaynes’s conviction that [26] “there must exist an
exact variational principle for steady irreversible processes”
and that such principle should capture conservation laws: “we
should rather take the conservation laws as exact and given,
and seek a principle which gives the correct phenomenological
relations.” Jaynes thought that reversing this logic would also
reverse the principle: “perhaps the exact phenomenology is
the one that has maximum entropy production for prescribed
exact conservation laws.” So Jaynes’s expectation was that
conservation laws and constitutive equations should fit in
the same picture, under the aegis of one unifying maximum
principle. This supposition informs Gyarmati’s research [13],
Par. V.3], as he claims that “the principle of minimum
production of entropy is not an independent principle ..., but
rather is only an alternative reformulation of the Onsager
principle valid for stationary cases.”

In this respect, P. Županović, D. Juretić, and S. Botrić’s
proposition is more closely related to our principle, as it deals
with Kirkhhoff’s current law (18) and Kirkchhoff’s loop law
(21) on networks. It is to this work that we mainly refer in the
following.

Suppose we do not know the system’s constitutive equa-
tions, but that we do know that entropy (in the form of heat) is
dispersed into the environment at a rate

ω =
∑

e

�ej
2
e , (51)

which is called the dissipation function. This is the case for
electrical circuits, where �e plays the role of a resistance.
Entropic balance then requires

σ − ω ≡ 0. (52)

This is particularly reasonable for an electrical circuit, where
ω is the electric power and σ the heat flux [18]. Finally
we extremize entropy production, varying with respect to the
currents, and imposing constraint (52),

δ

δje

[σ + λ(σ − ω)] = 0. (53)

We obtain ae = 2λ/(1 + λ)�eje. The value of the multiplier
is set by replacing the extremizer in Eq. (52), which yields
λ = 1, a stationary value σ ∗ = ω, and the desired mesoscopic
phenomenological, ae = �eje. Taking the second variation we
obtain a negative hessian, hence a concave-down paraboloid,
hence we front a maximum entropy production principle.

Variational principle (25) is discussed by Martyusheva and
Seleznev [25, Eq. 1.16], where it is introduced as Ziegler’s
principle, and again by Županović and coworkers [27, Eq. (9)]
in a follow-up paper on the relation between MAXEP and the
principle of least dissipation: In fact, the procedure is but a
restatement of Onsager’s least dissipation principle, which in
its original form simply states that σ − ω should be maximum
[28].

Embedding Kirchhoff’s current law (18) into Eq. (25),

δ

δJγ

[
(1 + λ)

∑
α

JαAα − λ
∑
α,β

LαβJαJβ

]
= 0, (54)

or, equivalently, constraining the solution to the variational
problem (25) on the ∂j = 0 shell, leads to the identification

of circuitations Aα = ∑
β LαβJβ as the phenomenological

conjugate variables to the currents. This realization of MAXEP
does indeed reproduce Jaynes’s expectation that the reversed
logic should yield the correct phenomenological laws. The
MAXEP of Županović et al. is in a sense complementary to
our MINEP, reproducing the macroscopic Onsager’s relations.
With one specification: The MAXEP principle does not imply
that “currents in a linear planar network arrange themselves so
as to achieve the state of maximum entropy production.” That
is due to the minimum entropy production principle.

V. CONCLUDING REMARKS

Some of the hypothesis upon which we derived the
principle can be relaxed. Working in a differential-geometric
setting should allow us to extend the principle to continuous
systems. In this context, a result similar to Schnakenberg’s
decomposition has been obtained by Jiang and the Qians [29]
for topological currents, such as those that flow along the
two fundamental cycles of a torus. The task is then to extend
to nontopological currents, through lattice discretizations and
limiting procedures. One problem appears at the horizon: As
the discretization becomes more and more refined, the number
of cycles tends to become infinite, becoming nondenumerable
in the continuum limit. This clashes with the physical intuition
that nonequilibrium constraints should be a few boundary
conditions that are experimentally accessible. For physically
relevant systems, symmetries might have a role in the reduction
of the number of affinities.

The condition of locality can also be relaxed, consider-
ing the more general mesoscopic phenomenological linear
response relation

ae =
∑
f

�ef jf , (55)

where (�ef )e,f is required to be a positive symmetric matrix.
Definitions and proofs become only slightly more complicated
by considering (55) in place of (17), with the only exception
of det L �= 0, whose proof might be nontrivial.

As to the hypothesis of linear regime, in our formulation the
assumption seems to be unavoidable if one chooses affinities as
nonequilibrium constraints. The possibility is open that better
observables might allow for a departure from the linear regime.
There exist many instances of variational principles in NESM,
most of which can be traced back to Onsager’s least dissipation
amd Prigogine’s minimum EP, with their own, and different,
inclination. However, to the author’s knowledge, none truly
departs from the linear regime, at least in an operational sense.
So in this respect our principle is no exception.

Our extremization procedure is based on the identification
of the fundamental macroscopic observables that keep a
system in a nonequilibrium steady state. The setup is quite
general and can in principle be adapted to any system
that allows a local conservation law. It can be applied to
master equation systems, where its robustness can be tested
against well-known results. It is shown to provide an abstract
setup where Prigogine’s original statement sits comfortably,
provided that we have a mesoscopic substrate. So, while the
principle per se is no novelty, the procedure and its generality
are.
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While the hot topic of NESM are, of course, fluctuations,
there is a priori no fluctuating character in the principle we
have formulated: It is purely geometrical, as one can show
by recasting the construction in the language of discrete
differential forms [30].

Coming to a conclusion, we suggest that the search for
an extremal functional is as important as the identification of
constraints of physical relevance. This might be a good guiding
principle, for example, in the search of a maximum entropy
principle: While MAXENT can be constructively employed
to derive equilibrium ensembles [2], to our knowledge a
similar application to nonequilibrium steady states is still

lacking. The possibility is open that giving to Schnakenberg’s
affinities the correct weight might allow to derive as useful
tools of calculation as are equilibrium ensembles, fulfilling
Jaynes’s expectation that “essentially all of the known results
of statistical mechanics, equilibrium and nonequilibrium, are
derivable consequences of this principle” [31].
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