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Dipartimento di Fisica dell’Università di Roma “La Sapienza” and INFN, Piazzale Aldo Moro 2, I-00185 Roma, Italy

Ettore Vicari‡
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We study the finite-size behavior of two-dimensional spin-glass models. We consider the ±J model for
two different values of the probability of the antiferromagnetic bonds and the model with Gaussian distributed
couplings. The analysis of renormalization-group invariant quantities, the overlap susceptibility, and the two-point
correlation function confirms that they belong to the same universality class. We analyze in detail the standard
finite-size scaling limit in terms of T L1/ν in the ±J model. We find that it holds asymptotically. This result
is consistent with the low-temperature crossover scenario in which the crossover temperature, which separates
the universal high-temperature region from the discrete low-temperature regime, scales as Tc(L) ∼ L−θS with
θS ≈ 0.5.
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I. INTRODUCTION

The two-dimensional (2D) Edwards-Anderson spin-glass
model [1] has been extensively studied in recent years in
order to investigate the interplay of disorder and frustration
in 2D systems. If frustration is sufficiently large, these
systems are paramagnetic at any finite temperature T . A
critical glassy behavior is only observed for T → 0. The
zero-temperature behavior has been extensively studied. It is
now well understood that it depends on the behavior of the
low-energy spectrum. One should indeed distinguish systems
with a discrete energy spectrum (DES), such as the ±J Ising
model with a bimodal coupling distribution, from systems with
a continuous energy spectrum (CES), such as the Ising model
with Gaussian distributed couplings [2–4]. At T = 0, these
two classes of systems behave quite differently. For instance,
in DES systems, the stiffness exponent vanishes, while in CES
systems, we have θ < 0; recent numerical studies [5] give
θ ≈ −0.28.

For finite values of T , CES systems show a standard
critical behavior, consistent with what is observed at T = 0. In
particular, one expects ν = −1/θ and η = 0, two predictions
which are consistent with numerical data [3,6]. The behavior of
DES systems is instead more complex. In a finite box of linear
size L, one observes two different behaviors, which depend
on how large L is compared to a temperature-dependent
crossover length Lc(T ); see Refs. [3,7–10] and references
therein. For L < Lc(T ), the critical behavior is analogous
to that observed at T = 0. The system shows an effective
long-range spin-glass order and its critical behavior can be
predicted using droplet theory [7,9]. On the other hand, for L >

Lc(T ), the system is effectively paramagnetic. Equivalently, at
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fixed L, one observes the two regimes for T < Tc(L) and
T > Tc(L), respectively, where Tc(L) is the corresponding
crossover temperature. Note that this discrete behavior can
only be observed for finite values of L, since Tc(L) → 0
for L → ∞. Of course, since Tc(L) is an effective finite-size
temperature, the crossover temperature is not uniquely defined,
and many different definitions can be used. One of the basic
questions is whether the critical behavior of DES systems for
T > Tc(L) is the same as that observed in CES systems. The
numerical results of Ref. [3] strongly suggested that this is
the case. However, those conclusions were later questioned in
Ref. [6], on the basis that much larger lattices were needed to
show it conclusively.

In a renormalization-group (RG) picture, the two regimes
can be interpreted as due to two different fixed points (FPs)
[3,9]: a stable FP— the same that controls the critical
behavior of CES systems—which describes the infinite-
volume behavior up to T = 0, and an unstable FP, present only
in DES systems, which controls the low-temperature behavior
for T < Tc(L).

In order to fully specify the two regimes, one should predict
how Tc(L) scales with the size L. A free-energy argument,
based on the energy difference and degeneracies of the two
lowest-energy states [6], suggests Tc(L) ∼ 1/ ln L as L → ∞.
However, recently, using droplet theory, Refs. [7–9] suggested
a power-law behavior

Lc(T ) ∼ T −1/θS , Tc(L) ∼ L−θS . (1)

Reference [7] predicted θS ≈ 0.50(1), which appears to be
consistent with their numerical data for the twist free energy [7]
and the two-point correlation function [8], as well as with
previous results [4,11]. A calculation in a hierarchical model
[9] gives a similar result of θS ≈ 0.37. These calculations
indicate that although θS is quite small, it is nonetheless
larger than the exponent 1/ν = −θ ≈ 0.28 (θ is the stiffness
exponent in CES systems).
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In this paper, we investigate again the question of univer-
sality, by comparing the finite-size scaling (FSS) of the ±J

model for two values of the disorder parameter p = 0.5, 0.8
and the model with Gaussian distributed couplings (henceforth
we call it the Gaussian model). The FSS analysis in terms of
RG invariant quantities (for example, the plots of the Binder
cumulants versus the ratio ξ/L, with all quantities being
defined in terms of the overlap variables) shows that the two
models belong to the same universality class, confirming the
conclusions of Refs. [3,4]. Indeed, the ±J data have the same
FSS behavior as the Gaussian data, if we only consider the
±J model results corresponding to temperatures larger than
the crossover temperature. Then, we focus on the validity of
the standard FSS in terms of the variable T L1/ν , which is a
rather subtle point in DES systems. Standard FSS exists only
if Tc(L)L1/ν → 0 for L → ∞. If we assume Tc(L) ∼ L−θS ,
then since Tc(L)L1/ν ∼ L1/ν−θS , FSS can be observed only if
θS > 1/ν ≈ 0.28. This implies that if Tc(L) ∼ 1/ ln L [6,10],
the FSS limit T → 0, L → ∞ at fixed T L1/ν does not exist
in DES systems. On the other hand, if Eq. (1) holds with θS ≈
0.50, FSS holds also in DES models. However, the approach to
the asymptotic limit is quite slow. The region in which no FSS
is observed, which corresponds to T L1/ν � Tc(L)L1/ν , shrinks
slowly, as L1/ν−θS ∼ L−0.2. The comparison of the Monte
Carlo (MC) simulations of the ±J and Gaussian models shows
quite convincingly that for fixed T L1/ν close to Tc(L)L1/ν ,
the ±J model data converge toward the data of the Gaussian
model, confirming the existence of the standard FSS, hence
the power-law behavior (1) with θS > 1/ν. A reanalysis of
the freezing temperature Tf (L), defined in Ref. [10] from the
freezing of ξ/L and of the Binder cumulants [at fixed L,
they are approximately constant for T < Tf (L)], is consistent
with Eq. (1) with θS ≈ 0.4, which is close to the estimate of
Ref. [7]. The freezing temperature Tf (L) should represent a
correct effective definition for Tc(L), although deviations from
the universal FSS behavior are expected for somewhat larger
values of T .

We also investigate the FSS behavior of the magnetization
and the two-point correlation function of the overlap variables.
We find that the data are consistent with the hyperscaling
relation 2β = ην. However, the data are not sufficiently precise
to provide a precise determination of η, being consistent with

a small value of η � 0.2, including η = 0. In Ref. [8], the
authors showed that a properly subtracted overlap correlation
function scales in the temperature region they consider, which
essentially corresponds to T � Tc(L). Here we consider the
opposite regime, T > Tc(L). We find that standard FSS as
well as universality hold for the overlap correlation function.

The paper is organized as follows. In Sec. II, we define the
models and the quantities we investigate. Section III reports
the numerical results of our FSS analysis: in Sec. III A, we
discuss the RG invariant couplings, such as the ratio ξ/L and
the cumulants of the overlap variable, focusing mainly on the
question of the validity of FSS in terms of T L1/ν ; in Sec. III B,
we discuss the overlap magnetization and susceptibility; and
finally, in Sec. III C, we discuss the two-point correlation
function. In Sec. IV, we present our conclusions.

II. MODELS AND DEFINITIONS

We consider the 2D Ising model on a square lattice with
Hamiltonian

H = −
∑
〈xy〉

Jxyσxσy, (2)

where σx = ±1, the sum is over all pairs of lattice nearest-
neighbor sites, and the exchange interactions Jxy are uncorre-
lated quenched random variables. We consider a model with
Gaussian bond distribution,

P (Jxy) ∼ exp
( − J 2

xy

/
2
)

(3)

(in the following, we call it the Gaussian model). We also
consider the ±J model where the couplings Jxy take values
±J with probability distribution

P (Jxy) = pδ(Jxy − J ) + (1 − p)δ(Jxy + J ). (4)

As in Ref. [10], we consider p = 0.5 and 0.8. We recall that
for sufficiently large frustration, i.e., for 0.11 � p � 0.89, the
model shows a zero-temperature glassy critical behavior, with
a paramagnetic low-temperature phase. Ferromagnetism can
only be observed for p > p∗ = 0.89093(3) [12].

The critical modes at the glassy transition are those related
to the overlap variable qx ≡ σ (1)

x σ (2)
x , where the spins σ (i)

x

belong to two independent replicas with the same disorder
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FIG. 1. (Color online) The cumulants U4 and U22 vs ξ/L. We present data for the ±J model (p = 0.5 and 0.8) and for the Gaussian model.
Only the data for the largest lattices are included for clarity.
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FIG. 2. (Color online) The phenomenological couplings ξ/L (left) and U22 (right) vs T L1/ν . We report the results for the Gaussian model
(top), and for the ±J model at p = 0.5 (middle) and p = 0.8 (bottom).

realization {Jxy}. In our Monte Carlo (MC) simulations, we
compute the overlap magnetization

m = 1

L2

[〈∣∣∣∣∑
x

qx

∣∣∣∣
〉]

, (5)

the overlap susceptibility χ , and the second-moment correla-
tion length ξ defined from the correlation function

Go(x) ≡ [〈q0 qx〉] = [〈σ0 σx〉2], (6)

where the angular and the square brackets indicate the thermal
average and the quenched average over disorder, respectively.
We define χ ≡ ∑

x Go(x) and

ξ 2 ≡ 1

4 sin2(pmin/2)

G̃o(0) − G̃o(p)

G̃o(p)
, (7)

where p = (pmin,0), pmin ≡ 2π/L, and G̃o(q) is the Fourier
transform of Go(x). We also consider some quantities that are
invariant under RG transformations in the critical limit, which
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FIG. 3. (Color online) The phenomenological couplings (a) ξ/L and (b) U22 vs aT L1/ν . We report the results for the ±J model at p = 0.8
and 0.5 (only L � 32) and for the Gaussian (G) model (only L � 12). We fix a = 1, 1.5, and 1.3 for the Gaussian model, and for the ±J model
at p = 0.8 and 0.5, respectively.

we call phenomenological couplings. We consider the ratio
ξ/L and the quartic cumulants

U4 ≡ [ρ4]

[ρ2]2
, U22 ≡

[
ρ2

2

] − [ρ2]2

[ρ2]2
, (8)

where ρk ≡ 〈(∑x qx)k〉.
In the case of a T = 0 transition with a nondegenerate

ground state, as expected in CES systems, the overlap
magnetization exponent β vanishes, and U4 → 1 and U22 → 0
for T → 0. Moreover, assuming the hyperscaling relation
2β = ην, we obtain η = 0, thus χ ∼ ξ 2 for T → 0.

III. FINITE-SIZE SCALING BEHAVIOR

In order to study the FSS behavior, we extend the MC
simulations of the ±J model at p = 0.5 and 0.8 presented
in Ref. [10]; we perform further simulations of the ±J Ising
model at p = 0.8 on finite square lattices of sizes L = 16,32,
and of the Gaussian model for L = 8,12,16. We use the
Metropolis algorithm and the random-exchange method [13].
For the Gaussian model, we study the temperature interval
Tmin � T � 1.6, with Tmin = 0.2 (L = 8) and Tmin = 0.167

(L = 12,16). We average over a large number of disorder
samples, i.e., 104 for each T and p.

A. RG invariant couplings

To begin with, we wish to check that the ±J model and the
Gaussian model belong to the same glassy universality class,
extending the FSS analyses of Refs. [3,6,10]. For this purpose,
we consider U4 and U22 as a function of ξ/L. Our numerical
results for the largest values of L are reported in Fig. 1. No
scaling corrections are visible in the plot of U4, as already
observed in Refs. [6,10], while slightly larger corrections
appear in the case of U22 for ξ/L � 0.6. It is, however, evident
that as L increases, the differences between the Gaussian
model results and those for the ±J model decrease. Thus, these
results, together with those presented in Refs. [3,6] (in Ref. [3],
other CES and DES systems were considered), confirm that
all models belong to the same universality class.

Now we investigate the question of the existence of standard
FSS as a function of T L1/ν . For a RG-invariant quantity R, we
expect

R = hR(x), x ≡ aT L1/ν, (9)
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FIG. 4. (Color online) The phenomenological couplings (a) ξ/L and (b) U22 vs aT L1/ν for aT L1/ν < 1.25. We report the results for the
±J model at p = 0.8 and for the Gaussian model. We fix a = 1 for the Gaussian (G) model and a = 1.5 for the ±J model at p = 0.8.
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where a is a nonuniversal constant that depends on the model
but not on the quantity R, which can be chosen so that hR(x)
is model independent.

First, we consider the data for the Gaussian model. The
numerical results for ξ/L and U22 are reported versus T L1/ν

in Fig. 2 (top). We use ν = 3.55, which corresponds to
θ = −1/ν = −0.282, which in turn is the present best estimate
of the stiffness exponent of the Gaussian model [5]. The
data show that ξ/L and U22 scale reasonably as a function
of T L1/ν and clearly appear to approach a FSS limit with
increasing L. Scaling violations increase as T L1/ν increases.
This is not unexpected since the correct scaling variable is the
combination uT (T )L1/ν , where uT (T ) is the nonlinear scaling
field associated with the temperature. Considering T L1/ν as
the scaling variable corresponds to expanding uT (T ) to first
order in the temperature, an approximation which is expected
to work well only when T is small. On the other hand,
the region T L1/ν � 2 corresponds to temperatures T � 1
for the lattice sizes considered here. Of course, we cannot
exclude the additional presence of nonanalytic scaling correc-
tions, which increase as T L1/ν increases.

Then, we consider the data for the ±J model; see Fig. 2.
The data show essentially three types of behavior, depending
on the value of T L1/ν . For T L1/ν � 1.5, no scaling is observed.
This may be explained by the fact that the data in this region
are below the crossover temperature, i.e., they correspond
to T < Tc(L), and thus are outside the regime in which
FSS is supposed to hold. Then, there is an intermediate
region, 1.5 � T L1/ν � 2.0, where data show scaling with
small corrections—this is particularly evident for U22. For
T L1/ν � 2.0, the corrections are larger, but the results appear
to rapidly converge to a limiting curve: for both ξ/L and U22,
the results satisfying L � 32 are very close to each other.
We conclude that at least for T L1/ν � 1.5, FSS apparently
holds.

Furthermore, we verify the universality of the FSS behavior
by comparing the results for the function hR(x) defined in
Eq. (9). For this purpose, we should first fix the model-
dependent constant a that appears in Eq. (9). We determine
it by requiring the FSS curves for ξ/L to coincide in the
region in which ξ/L ≈ 0.5. Indeed, in this range of values

2.0 2.5 3.0

lnL

-1.2

-1.0

-0.8

lnT
f

data
fit

FIG. 5. (Color online) Log-log plot of the freezing temperature
Tf (L) vs L for the ±J model at p = 0.8. The dashed line shows a fit
to the data, corresponding to Tf (L) ∼ L−0.35.

of ξ/L, we observe small scaling deviations in all of the
models we consider. If we set a = 1 for the Gaussian model,
then for the ±J model, we obtain a(p = 0.5) ≈ 1.3 and
a(p = 0.8) ≈ 1.5. In Fig. 3, we plot together the data for
the Gaussian model and the ±J models at p = 0.8 and 0.5.
For clarity, we only report the data with L � 32 for the ±J

model and the results with L � 12 for the Gaussian model.
With this choice, there is only one point (it belongs to the
±J model with p = 0.8 and corresponds to L = 32) which
belongs to the region T < Tc(L). This point is clearly visible
in the figures as an isolated point. If we discard it, we observe
good scaling up to aT L1/ν � 1.5: the ±J model data and the
Gaussian data fall on top of each other with good precision.
For aT L1/ν � 1.5, the ±J data scale reasonably. The data
of the Gaussian model, which correspond to significantly
smaller lattices, show significant scaling corrections. It is,
however, reassuring that the trend is correct: as L increases,
they approach the ±J results.

In order to understand the behavior close to the crossover
temperature Tc(L), in Fig. 4 we report results for all values of
L, but only for aT L1/ν < 1.25. It is clear that the deviations
between ±J and Gaussian data slowly decrease as L increases
(the same occurs for p = 0.5, not shown). This is consistent
with the idea that FSS in terms of T L1/ν holds asymptotically,
and, hence, with the prediction Tc(L) ∼ L−θS with θS > 1/ν.
The approach is, however, very slow. Indeed, the region in
which FSS does not hold is predicted to shrink as L−θS+1/ν ∼
L−0.2.

This power-law behavior is also supported by the scaling
of the freezing temperature Tf (L) defined in Ref. [10]. For
each value of L, ξ/L and U4 become constant for small T ,
assuming values (ξ/L)f and U4,f . Then, one defines Tf (L) as
the largest temperature of the region in which ξ/L ≈ (ξ/L)f
and U4 ≈ U4,f . A fit of the data to a power-law behavior [14]
gives Tf (L) ∼ L−0.35; see Fig. 5. Given the ad hoc procedure
[15] used to determine Tf (L), it is difficult to give a reliable
error for the result. It is, however, reassuring that the estimate
satisfies the bound θS > 1/ν and is close to the estimates of
Refs. [4,7].
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FIG. 6. (Color online) Scaling combination H defined in Eq. (13)
vs ξ/L for the Gaussian (G) model and the ±J model at p = 0.8.
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FIG. 7. (Color online) Scaling combination χLη−2u−2
h vs ξ/L. We report the results for (a) η = 0 and (b) η = 0.2. Data are for the Gaussian

model (G) and for the ±J model with p = 0.8 and 0.5.

B. Overlap magnetization and susceptibility

The overlap magnetization m and susceptibility are ex-
pected to behave as

m = ξ−β/νuh(T )fm(ξ/L), (10)

and

χ = ξ 2−ηuh(T )2fχ (ξ/L), (11)

where fm(x) and fχ (x) are universal functions apart from
a multiplicative constant, and the scaling field uh(T ) is an
analytic function of T . If hyperscaling holds, we should have

β = ην

2
. (12)

Thus, the combination

H = ξ 2m2

χ
(13)

should be a universal function of ξ/L, independent of the
scaling field uh(T ). In Fig. 6, we show the combination H for
the Gaussian model and the ±J model at p = 0.8. The scaling
is good. Deviations are only observed for ξ/L � 0.2—these
data correspond to large temperatures—and for ξ/L � 0.6,

which, as discussed in Ref. [10], is the region in which strong
crossover effects are observed for the lattice sizes considered
in this paper. However, the observed trends are consistent
with a unique universal curve. We thus confirm the validity
of Eq. (12), independently of what the numerical value of η

is. If, indeed, η = 0, as theoretically predicted, Eq. (12) gives
β = 0.

We have fitted all Gaussian data for the overlap suscep-
tibility to Eq. (11)—more precisely to its logarithm as in
Ref. [10]—obtaining η = 0.20(7). The error we report is
purely statistical and does not take into account possible
scaling corrections. This result is slightly larger than the
predicted result η = 0. The discrepancy should not be taken
seriously, given the small lattices we consider. A precise
determination of η in the Gaussian model requires, indeed,
much larger values of L; see Ref. [6].

The function fχ (x) is universal apart from a rescaling: if
f1(x) and f2(x) are determined in two different models, we
expect f1(x) = bf2(x), where b is a model-dependent constant.
We now compare the estimates of the functions fχ (x) for
the Gaussian model and the ±J model. In Fig. 7, we report
the functions (they have been rescaled so that they coincide
for ξ/L = 0.3) for the Gaussian model and the ±J model at
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FIG. 8. (Color online) Scaling combination go(x,T ) for (a) x = L/2 and (b) x = L/4, vs ξ/L. We report results for the Gaussian (G)
model and the ±J model at p = 0.8.
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FIG. 9. (Color online) Scaling combination go(x,T ) for (a) ξ/L ≈ 0.18 and (b) ξ/L ≈ 0.63, vs x/ξ . We report the results for the Gaussian
(G) model and the ±J model at p = 0.8.

p = 0.8 and 0.5. We report the curves both for η = 0 and 0.2.
In Ref. [10], we observed that for η = 0, the scaling was good
up to ξ/L ≈ (ξ/L)max, a value which had been estimated as the
boundary of the crossover region before the regime in which
freezing was observed. The quantity (ξ/L)max should scale as
(ξ/L)c, i.e., the value of ξ/L at the crossover temperature.
Now, using Eq. (9), since hξ/L(x) ∼ x−ν for x → 0 to recover
the correct infinite-volume behavior, we have

(ξ/L)max ∼ (ξ/L)c ∼ hξ/L[aTc(L)L1/ν]

∼ Tc(L)−ν/L ∼ LνθS−1 ∼ L0.8, (14)

where we have used θS = 0.5 in the last step, and the fact that
Tc(L)L1/ν → 0 for L → ∞. Again note that the inequality
θS > 1/ν is necessary to guarantee that (ξ/L)max → ∞ as
L → ∞. By looking at the scaling behavior of U22, Ref. [10]
estimated (ξ/L)max ≈ 0.65 and 0.45 for p = 0.8 and 0.5,
respectively, in the range 32 � L � 64. For the ±J model
at p = 0.5, a similar estimate is obtained by considering the
scaling behavior of the estimates of ξ (2L)/ξ (L) reported in
Ref. [3]. The data for the Gaussian model agree with the ±J

model data for both p = 0.5 and 0.8 up to (ξ/L)max. Thus, the
numerical results are consistent with universality and η = 0.

In Ref. [10], we also observed that if we included all data
in the fits, the best estimate of η was η ≈ 0.2. Indeed, in this
case, the results for the overlap susceptibility showed a very
good scaling up to ξ/L ≈ 0.8. We did not take this result
as an indication that η = 0.2 was a more plausible estimate
than η = 0 because we had good reason to discard all data
beyond ξ/L ≈ (ξ/L)max. Somewhat surprisingly, if we now
include the data for the Gaussian model, and take η = 0.2 for
all models, we again observe a good universal scaling up to
ξ/L ≈ 0.8. However, the numerical results of Ref. [6] exclude
η = 0.2 for the Gaussian model. Thus, the apparently good
observed behavior cannot hold asymptotically. In view of the
result η = 0 of Ref. [6], as L increases, the Gaussian data
should become inconsistent with η = 0.2.

Finally, we note that, in order to observe a good scaling
behavior for the overlap susceptibility, it is crucial to include
the nonlinear scaling field uh(T ). Indeed, such a function
gives a sizable contribution to our data. In the case in which

we set η = 0, we obtain uh(T = 1)2/uh(T = 0.2)2 ≈ 2.2 and
uh(T = 1.5)2/uh(T = 0.2)2 ≈ 3.3.

C. Two-point function

In Ref. [8], the authors analyzed the scaling behavior of
the two-point function, showing that below the crossover
temperature, the two-point function scales as predicted by
droplet theory. Here we analyze the two-point function in the
opposite regime in which we expect

Go(r,T ) = ξ−2χfG(r/ξ,ξ/L). (15)

Note that by writing the scaling behavior in this form, there
is neither the need to specify η nor to introduce the nonlinear
scaling fields. Moreover, the function fG(x,y) is universal.

To verify the scaling behavior (15), we compute Go(r,T )
along a lattice line, i.e., for r = (x,0). We perform the
computation in the Gaussian model (L = 8,12,16) and in the
±J model at p = 0.8 (L = 16,32). Then, we consider

go(x,T ) ≡ Go(r,T )L2

χ
. (16)

In Fig. 8, we report go(x,T ) for x = L/2 and L/4 as a function
of ξ/L, while in Fig. 9, we show go(x,T ) at fixed ξ/L ≈ 0.18
and 0.63 as a function of x. In these cases, the scaling is very
good: all points fall onto a single curve, confirming the validity
of Eq. (15) and universality.

IV. CONCLUSIONS

We investigate the FSS behavior of two-dimensional Ising
spin-glass systems. In particular, we consider the square lattice
±J model at p = 0.5 and 0.8, and the Gaussian model. In
this respect, the ±J model appears particularly problematic
because it presents two different finite-volume regimes: a
continuous regime for T > Tc(L) and a discrete regime
for T < Tc(L). According to droplet theory, the crossover
temperature Tc(L) is expected to vanish in the large-L limit as a
power law [7–9], Tc(L) ∼ L−θS with θS ≈ 0.5. A logarithmic
behavior, Tc(L) ∼ 1/ ln L, is instead suggested by the free-
energy arguments of Ref. [6].
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The main conclusions of our numerical analysis based on
MC simulations are as follows:

(i) All models we consider belong to the same universality
class. The magnetization, susceptibility, two-point correlation
function, and the quartic cumulants, defined in terms of the
overlap variables, show a universal FSS behavior in terms
of ξ/L. In the case of the ±J model, this universal scaling
is only observed above the crossover temperature Tc(L),
which separates the continuous region from the discrete
low-temperature behavior.

(ii) Our FSS analysis provides good evidence of the FSS
limit T → 0, L → ∞ at fixed T L1/ν . This implies that
the crossover temperature Tc(L) does not behave as 1/ ln L

as suggested in Ref. [6], but rather as Tc(L) ∼ L−θS with
θS > 1/ν ≈ 0.28. This is consistent with droplet theory, which
predicts a power-law behavior with θS ≈ 0.5.

(iii) We study the FSS behavior of χ . The data for
the Gaussian and the ±J models support universality.
However, the available data are not sufficient to obtain a
precise estimate of η and confirm definitely the expected
value η = 0.

(iv) We verify the hyperscaling relation 2β = ην. If β = 0,
it implies η = 0.

(v) We consider the two-point correlation function and
show that it satisfies a standard FSS ansatz. Note that the
scaling form (15), which is appropriate for a high-temperature
phase, is different from that considered in Ref. [8], which is
appropriate for a low-temperature phase in which spontaneous
magnetization is present. The occurrence of these two different
scaling behaviors is related to the different regimes considered.
Here, we use data such that T > Tc(L), while Ref. [8] studies
the behavior for T < Tc(L).
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