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Noise-controlled dynamics through the averaging principle for stochastic slow-fast systems
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The effect of noise on nonlinear systems is analyzed, considering the case of slow-fast systems. It is known
that small noise perturbations can induce a deterministic limit cycle in excitable systems when a specific scaling
between the noise strength and the time-scale separation is achieved, a mechanism called self-induced stochastic
resonance (SISR). The present study is focused on the impact of order 1 noise using the stochastic averaging
principle. We introduce an elementary system of two coupled FitzHugh-Nagumo equations, which display the
following nontrivial noise-induced behavior: (i) in the noise-free case, or for very small noise, the system
fluctuates around its resting state; (ii) for small noise, oscillations appear due to SISR; (iii) for intermediate noise,
the system fluctuates again around its resting state; (iv) for larger noise, new oscillations are observed and their
explanation requires the application of the stochastic averaging principle. It is suggested that in the perspective
of biological systems, time-scale separation may act as a “noise averager,” enabling a noise-controlled dynamical
behavior through the averaging principle.
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I. INTRODUCTION

Understanding the impact of noise on nonlinear dynamical
systems has been an active field of research for many years
and has a wide range of applications, from physics to biology
to earth science and economy. Although the effect of noise
is frequently reduced to adding variability in response of the
system, without any effect on the qualitative dynamics, it has
been shown in several situations how the interplay between
noise and the nonlinearities of the system may induce counter-
intuitive behavior [1,2]. In such situations, noise may play
a constructive role, and the nonlinearities enables a useful
transformation of the energy contained in the fluctuations into
an ordered dynamic, which may be of interest, for instance, in
living systems. In this paper, we describe a new mechanism
of noise-controlled dynamics in noisy nonlinear systems with
multiple time scales.

In this context, previous studies about the constructive
role of noise have focused on a class of phenomena called
“stochastic resonance” (SR): an appropriate amount of noise
applied on some nonlinear systems may enhance their ability
to respond coherently to periodic forcing or their performance
in a signal detection task [3–5]. In absence of periodic
forcing, coherence resonance (CR, or autonomous SR) phe-
nomena [6–10] appear when an appropriate noise perturbation
enhances the coherence of a system close to a bifurcation
point. In the context of excitable systems below threshold,
a phenomenon called self-induced SR (SISR) [11–13] is
responsible for noise-induced oscillations. In those systems,
generally with several time scales, an appropriate asymptotic
scaling relationship between the time-scales separation and
the vanishing noise strength leads to coherent oscillations in
a regime where the noise-free dynamics is subthreshold. The
idea of SISR is that rare events leading to an excursion can
become frequent and regular when the slow-fast time-scales
ratio scales exponentially with respect to the noise strength.
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In the present article, we describe a new phenomenon
arising in the same context of noisy slow-fast systems. Unlike
SISR, we do not consider here the small noise limit. We rather
show how the strength of the noise applied to the system can
become a control parameter of the resulting dynamics. This
phenomenon is studied on a prototypical slow-fast system,
namely the FitzHugh-Nagumo (FHN) model [14], which has
been introduced as a minimal nonlinear model describing
neuronal excitability. We consider two FHN units, dynamically
coupled through a synaptic variable. Previous works [15–17]
have focused on understanding the potential impact of noise
on coupled excitable units, exploring various regimes of
stochastic resonance, and noise-induced oscillations.

We apply mathematical results from stochastic averaging
theory to provide an explanation of the observed phenomenon.
The fast noisy variable can be approximated by its stationary
distribution and an effective description of the slow dynamics
features the noise strength as a bifurcation parameter. The
principle described here is very general and may have many
other applications, as in Ref. [32], where the impact of channel
noise on discharge patterns in stochastic conductance-based
neuronal models is studied.

The paper is organized as follows. After a description of
the model (Sec. II), we present numerical simulations and
theoretical explanations of the phenomenon (Sec. III) and
conclude by a discussion on several generalizations and an
interpretation in terms of neuronal computation (Sec. IV).

II. MODELS

Introduced in Ref. [14], the FitzHugh-Nagumo model is a
two-dimensional system, similar to the VanderPol oscillator
model, that was constructed as a reduced neuron model
where the nonlinearities have been simplified to isolate the
mathematical properties of excitation (and propagation in its
spatially extended version, see Discussion). The system of
equation is given by

ε
dx

dt
= x − x3/3 − y + I,

dy

dt
= ax − by.
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According to the values of the parameters, this dynamical
system can be mainly in three different regimes, namely
excitable (one single stable fixed point), multistable (two or
three stable fixed points), and oscillatory (one stable limit
cycle). We refer the interested reader to Refs. [18,19] for more
details about the properties of this model.

A. Stochastic FitzHugh-Nagumo model

To account for the effect of external fluctuations, we
consider a stochastic white-noise perturbation on the fast
variable, leading to the following Stochastic Differential
Equation (SDE):

εdxt = (
xt − 1

3x3
t − yt + I

)
dt + σdWt, (1)

dyt = (axt − byt ) dt, (2)

with a,I ∈ R, b > 0, σ > 0, and Wt a standard Brownian
motion. This white noise perturbation can be justified as
a diffusion approximation of a sum of many independent
synaptic events coming from the rest of the network [20].
We do not study here the impact of noise on the slow variable
coming from ion channel stochasticity; that is, we assume that
this source of noise is negligible compared to external noise.

This model has been studied with various methods and
within different parameter regimes. In particular, we consider
here only the case where noise is added on the fast variable x,
but the impact of a noisy perturbation on the slow variable
y has also been studied, for example, in Ref. [21], using
geometric singular perturbation methods for stochastic slow-
fast systems, or in Ref. [22], using time-scales expansion
of the corresponding Fokker-Planck equation. Inspired from
large deviations theory, several mathematical results have been
obtained concerning the phenomenon of SISR [11–13,23].
We also mention several works on stochastic bifurcations for
stochastic FHN models using the moment equations method
[24,25].

B. Two coupled systems

We introduce a coupling between two FHN units,
system 1 and system 2, based on a simplified model of synaptic
transmission. Although processes involved at the synapse are
very complex, we can consider as a first approximation [26]
that system 2’s input p1→2 evoked by system 1’s activity is
given by the convolution of membrane potential x(1) with some
kernel K1→2:

p1→2(t) =
∫ t

0
K1→2(t − s)x(1)

s ds. (3)

Experimental results of Ref. [26] and analysis of kinetic
models of receptor binding [27] indicate that the choice of an
exponential kernel is a reasonable approximation. Thus, we
assume in the following that

K1→2(t,s) = e−(t−s)/τ . (4)

It appears that with this choice, the postsynaptic potential
p1→2(t) can be seen as a dynamical variable, solution of a

FIG. 1. Schematic representation of the two coupled systems.
First FHN system (FHN 1) is driven by a white-noise stimulation and
its output drives the second FHN system (FHN 2).

linear differential equation driven by x
(1)
t , with a time constant

τ > 0:

dp1→2

dt
= −τp1→2 + x

(1)
t . (5)

We further assume that the synaptic time-constant τ is
of order 1. This assumption corresponds to the case of fast
glutamate synapses of type AMPA-kainate, for which the
typical decay time-scale τ is of order 1–5 ms (cf. Ref. [27] and
Ref. [28], Chap. 7), which is the same order as the time-scale of
the recovery variable y (typical time of an action potential plus
recovery is 2–5 ms). With this simplified synaptic model, we
construct the following system as a model of two coupled
neurons. As pictured in Fig. 1, system 1 receives a noisy
stimulation and targets to system 2 as follows:

εdx
(1)
t = [

G
(
x

(1)
t ,y

(1)
t

) + I1
]
dt + σdWt, (6)

dy
(1)
t

dt
= ax

(1)
t − by

(1)
t , (7)

dp1→2

dt
= −τp1→2 + x

(1)
t , (8)

ε
dx

(2)
t

dt
= G

[
x

(2)
t ,y

(2)
t

] + p1→2 + I2, (9)

dy
(2)
t

dt
= ax

(2)
t − by

(2)
t , (10)

where G(x,y) = x − x3/3 − y.

III. RESULTS

A. Simulations

We present in this section stochastic simulations of both
the single stochastic FitzHugh-Nagumo model and the two
coupled systems. We fix all the parameters (a = b = 1,
I1 = −0.5, I2 = −0.3, τ = 1, ε = 0.0001) and investigate the
impact of the noise strength σ . The value of ε is set to 10−4,
enhancing the time-scale separation in the system. We have
chosen this value since it enables a clearer observation of
the impact of σ and corresponds to the asymptotic regime
described by the stochastic averaging principle (cf. Sec. III B).
We will also display some results for higher values of ε to
explore the robustness of the results obtained for ε = 10−4.

Note that with this choice of parameters (a = b = 1),
variables y(1) and p1→2 can be identified since they satisfy
the same differential equation.

Stochastic simulations reveal four regimes that we describe
below. Notice that the dynamics observed in those regimes
are purely noise-induced, in the sense that the deterministic
system (σ = 0) has only a single stable fixed point.
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a. Regime 1: very small noise does not induce oscillations.
With our choice of parameters, the noise-free system has
a single stable fixed point. Under a very small random
perturbation, we observe numerically that the system fluctuates
for a long time around this resting state, as displayed in Figs. 2
and 3, case σ = 0.01.

b. Regime 2: small noise induces coherent oscillations in
both systems through SISR. When the noise strength σ is
increased, a jump from the stable fixed point to the other
branch of the cubic x nullcline becomes more probable. In
fact, there is a competition between two time-scales that will
determine whether this jumping probability is of order 1 or not:

(i) The expected time for such a jump to occur is of order
eVy/σ

2
for small σ , with Vy a positive number depending on

the ordinate y at the jumping point.
(ii) Due to the time-scale separation, a time-interval of order

1 in the slow time scale is actually seen as a time-interval of
order ε−1 by the fast variable.

As a consequence, we expect that if ε−1 ≈ eVy/σ
2
, meaning

that σ 2 ln(ε) → −α < 0 when both ε → 0 and σ → 0, then
the probability of a jump at a value y(α) such that Vyα

= α

becomes very close to one. We observe numerically this
phenomenon in Figs. 2 and 3, with σ = 0.03 (transition to
SISR), and σ = 0.05,0.1. We refer the interested reader to
Refs. [11–13,23] for more details.

In Fig. 4 (right panel) and Fig. 5, the interspike intervals’
mean and coefficient of variation (CV) are displayed as a
function of σ . The CV is computed as the ratio between the
standard deviation and the mean of the interspike intervals.
These figures show the emergence of an oscillatory behavior.
Furthermore, an intermediate value of the noise strength σ

minimizes the coefficient of variation, a phenomenon referred
to as stochastic resonance.

c. Regime 3: medium noise destroys coherent oscillations.
Increasing the noise strength destroys the particular scaling
between σ and ε that is crucial for SISR. We observe
numerically in Figs. 2 and 3 for σ = 0.95,1,2 that the fast
variable x

(1)
t jumps constantly between the two attracting

branches of the x nullcline, and that meanwhile both y
(1)
t

and p1→2 fluctuate around new equilibrium values, which are
not equilibrium points for the deterministic system. A key
remark here is that these emergent equilibria for the slow
variable and for the synaptic variable depends on the noise
strength σ . We will see in Sec. IV how the mathematical
theory of stochastic averaging accounts for this surprising
phenomenon.

d. Regime 4: large noise induces a bifurcation leading to
oscillations only in system 2, through stochastic averaging in
system 1. In Fig. 2, the time course of system 2’s slow variable
y(2) is displayed (gray), showing the emergence of oscillations

FIG. 2. Numerical simulations of two coupled stochastic FizHugh-Nagumo systems with the same parameters: a = b = 1, τ = 1,
I1 = −0.5, I2 = −0.3, ε = 0.0001. Time courses of variables y(1)(t) (black) and y(2)(t) (gray) are displayed for different values of the
noise strength σ ∈ [0.01,7] (increasing from left to right and from top to bottom).
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FIG. 3. Numerical simulations of a single stochastic FizHugh-Nagumo model (unit 1) with parameters a = b = 1, τ = 1, I = −0.5,
ε = 0.0001. With this choice of parameters, the noise-free system (σ = 0) is in an excitable regime. Variables x(t) and y(t) are displayed in
the phase plane for different values of the noise strength σ ∈ [0.01,7] (increasing from left to right and from top to bottom), together with the
nullclines of the deterministic system.

when a large noise is applied to system 1 (cf. σ = 7). In Fig. 4
(right panel), the interspike intervals’ mean and coefficient
of variation are displayed as a function of σ , showing the
emergence of an oscillatory behavior characterized by the joint
decrease in the mean and coefficient of variation of interspike
intervals. One recovers the same phenomenology for higher
values of ε as displayed in Fig. 5. However, transitions between
different regimes become much smoother as time-scales are
less separated.

In this large noise regime, the fast variable x(1) of system
1 fluctuates very rapidly between the two branches of the
x nullcline, and following the averaging principle, the slow
variable becomes concentrated around an equilibrium value,
which depends on the noise strength σ , and the same is true
for the synaptic variable p1→2. Thus, input to system 2 is
approximately a constant that is fixed by the value of σ , and
changing σ may thus lead to bifurcations in system 2. In our
case, a Hopf-bifurcation in system 2, with p1→2 as a dynamical
parameter modulated by σ , explains the emergence of periodic
solutions in system 2 for large values of σ .

B. Theory

The aim of this section is to provide a theoretical ex-
planation of regimes 3 and 4. Indeed, the transition to and
from regime 2 has already been intensively investigated. After
giving a brief presentation of the main mathematical result
of stochastic averaging for slow-fast diffusion processes, we
discuss their application in the perspective of understanding
the noise-induced bifurcation, thus explaining regime 4.

1. Stochastic averaging principle

The first results on stochastic averaging go back to Ref. [29],
where the following set up is studied. Consider a stochastic
differential equation in Rn+m:

dxε
t = 1

ε
g
(
xε

t ,y
ε
t

)
dt + 1√

ε
σ
(
xε

t ,y
ε
t

)
dWt, (11)

dyε
t = f

(
xε

t ,y
ε
t

)
dt, (12)

with initial conditions xε(0) = x0, yε(0) = y0, and where yε ∈
Rn is called the slow variable, xε ∈ Rm is the fast variable,
with f : Rm+n → Rn and g : Rn+m → Rm, σ : Rn+m → Mm

smooth functions ensuring existence and uniqueness for the
solution (xε,yε), and W a m-dimensional standard Brownian
motion.

In order to approximate the behavior of (xε,yε) for small
ε, the idea is to average out the equation for the slow variable
with respect to the stationary distribution of the fast one. More
precisely, one first assumes, for each y ∈ Rn fixed, the frozen
fast SDE:

dxt = g(xt ,y)dt + σ (xt ,y)dWt (13)

admits a unique invariant measure, denoted ρy(dx). Such an
assumption is generally related to the uniform nondegeneracy
of the matrix σ .

Then, one defines the averaged drift vector field f̄ :

f̄ (y) :=
∫

Rm

f (x,y)ρy(dx) (14)
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FIG. 4. Numerical estimation of the interspike intervals’ (ISI) mean and coefficient of variation for unit 2, under various noise strength σ .
The two left panels correspond to regime 2, namely noise-induced oscillations by SISR. The CV is minimal for an intermediate value of σ . The
two right panels correspond to regime 4, namely noise-induced oscillations by stochastic averaging, further explained in Sec. III B. Strikingly
enough, in this regime the CV is a decreasing function of the noise strength σ . Parameters a = b = τ = 1, I = −0.5, ε = 0.0001.

and ȳ the solution of the following ordinary differential
equation (ODE):

dȳ

dt
= f̄ (ȳ) (15)

with initial condition ȳ(0) = y0.
Under some mild technical assumptions (see Ref. [29]),

mostly strong dissipativity conditions ensuring a uniformly

exponential mixing ergodicity property for the frozen fast
system, the main mathematical result is then [29]

lim
ε→0

P
[

sup
t∈[0,T ]

∣∣∣∣yε
t − ȳt

∣∣∣∣2
> δ

]
= 0, (16)

for any δ > 0 and T > 0.
This result ensures that, during finite time intervals [0,T ],

the probability of seeing xε outside a δ tube around x̄
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FIG. 5. Impact of the time-scale separation parameter ε: numerical estimation of the interspike intervals’ (ISI) mean and coefficient of
variation for unit 2, under various noise strength σ , and for two values of ε = 0.01,0.001. Transition between different regimes is smoother
when relaxing the time-scales separation. Still, the various regimes identified in the case of a stronger time-scales separation are reflected
faithfully in the strongly nonmonotonic evolution of the spiking statistics of unit 2 as a function of σ . Parameters a = b = τ = 1, I = −0.5.
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(deterministic) can be made arbitrary small when decreasing
ε. Many other results have been developed since, extending
the set-up to the case where the slow variable has a diffusion
component or to infinite-dimensional settings, for instance,
and also refining the convergence study, providing results
concerning the limit of ε−1/2(yε − ȳ) or establishing large
deviation principles. We refer the interested reader to Ref. [30]
for an introductory account of the theory and its applications
and to Ref. [31] for recent mathematical results on this topic.

For our purpose, the key observation here is that the
averaged vector field f̄ actually depends on the diffusion
coefficient σ of the fast variable, through the quasistationary
distribution ρy . Note that this property has been also ex-
ploited in Ref. [32] to explain stochastic bifurcations in the
Hodgkin-Huxley model with stochastic ion channels. We
will exploit this observation in the following paragraph to
analyze a stochastic bifurcation phenomenon in our example
(regime 4).

2. Noise-induced bifurcations for the coupled
stochastic FHN system

We are now in position to apply the above theory to the
stochastic FHN system. The first point is to compute the
invariant measure for the following one-dimensional frozen
diffusion, for each y ∈ R:

dxt = (
xt − 1

3x3
t − y + I

)
dt + σdWt . (17)

Introducing the potential,

Uy(x) = − 1
2x2 + 1

12x4 + xy − Ix, (18)

we derive the invariant density ρy(x) for the fast variable x:

ρy(x) = 1

Zy

exp

[
−Uy(x)

2σ 2

]
, (19)

where Zy = ∫
x∈R exp

( − Uy (x)
2σ 2

)
dx is an integrating constant.

As a consequence, we obtain the averaged vector field F̄σ

for the recovery variable y, which depends on σ :

F̄σ (y) =
∫

x∈R
(ax − by)ρy(x)dx, (20)

= aξσ (y) − by, (21)

where

ξσ (y) = Z−1
y

∫
x∈R

x exp

(
−Uy(x)

2σ 2

)
dx. (22)

The slow variable y can be approximated for small ε by the
solution ȳ of the deterministic ODE:

d

dt
ȳ = F̄σ (ȳ). (23)

Similarly, in the coupled system of Sec. II B, the synaptic
variable p1→2 can be approximated by the solution of

d

dt
p̄1→2 = −τ p̄1→2 + ξσ (p̄1→2). (24)

The equilibrium points p̄∗ solution of

−τ p̄∗ + ξσ (p̄∗) = 0 (25)

FIG. 6. Numerical computation of the solution p̄∗ of Eq. (25) as a
function of noise parameter σ . Parameter values: a = b = 1, τ = 1,
I = −0.5.

are thus functions of the noise strength σ applied on the fast
variable. Even if an analytical computation of p̄∗ is difficult,
one can compute numerically the solution of Eq. (25), as shown
in Fig. 6, for different values of σ . This figure compares
very well with plots of Fig. 2, for σ = 1,2,4,7 displaying
the value of the slow variable y(1), which is equal to p1→2

with our choice of parameters (a = b = τ = 1); one observes
fluctuations around an seemingly equilibrium value, which is
precisely p̄∗ as displayed in Fig. 6.

It is now possible to understand what happens in regime 4:
the synaptic variable of system 1 stays close to p̄∗ (for small
enough ε, during finite time intervals), which can be seen
as a bifurcation parameter for system 2. When p̄∗ crosses a
Hopf bifurcation value for system 2, then it starts to oscillate as
shown in Fig. 2, case σ = 7. As the value of p̄∗ is determined
by the noise strength applied to system 1, the coupled system
is thus in some sense controlled by the noise strength σ .

a. Remark: As seen in Fig. 3, subplots σ = 0.03,0.05,0.1,
it seems to be necessary to have σ high enough to apply
efficiently the averaging principle. Let us explain in more
details this observation, which is due to the nonzero value of
ε. As the invariant distribution for the fast process is bimodal
(double-well potential), we may distinguish two time-scales
for the convergence toward stationarity. First, one of the two
peaks grows exponentially fast and then on a much longer
time scale, typically exp(1/σ 2) for small σ , the rare escapes
from one well to the other occur and the second peak starts to
grow. As a consequence, for the averaging principle to work
efficiently, one has to require that the fast variable has enough
time to reach its stationary bimodal distribution, which requires
that ε is sufficiently small compared to the noise strength, in
the sense that ε−1 � exp(1/σ 2).

IV. DISCUSSION

The purpose of the present paper was to describe and
analyze a new phenomenon of noise-controlled dynamics in
slow-fast systems through the stochastic averaging principle.
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We have considered a pair of unilaterally coupled FHN
systems, where the first one receives a white-noise input and
targets the second system. We have observed by numerical
simulations that changing the noise strength as a parameter
can induce oscillations by two very different mechanisms.
The first one is an example of well-known SISR and arises in a
proper scaling between small noise and time-scale separation.
The second one is a novel mechanism that relies on the
stochastic averaging principle: in the non-small noise regime,
the behavior of the slow variable can be approximated by
an averaged system, using the idea that the fast variable
statistical fluctuations are close to stationarity (however,
depending on the slow variable). In our setting, the averaged
slow variable then converges to a steady state whose value
depends on the statistical properties of the noise, here its
variance. When considering the coupled system, the averaged
slow variable of the first system then becomes a bifurcation
parameter for the second system and can induce possibly
any type of dynamical behavior, here oscillation through a
Hopf bifurcation. However, our analysis relies on the as-
sumption of a strong time-scale separation, and the transition
between the different regimes may be less clear if the time-
scale separation is less strong. Yet, our opinion is that the
theoretical asymptotic analysis in the limit ε → 0 can be used
as a tool to unravel a singular stochastic bifurcation structure
(at the singular point ε = 0), whose effects remain visible for
nonzero values of ε.

The idea of stochastic averaging principle is a very general
and powerful mechanism for studying and constructing noise-
controlled dynamical systems. We point out that it is possible
to extend the present setting in several directions. First, we
have used here a white-noise stimulation and shown how its
variance can become a control parameter, but it is possible to
construct a system where the control parameter would take into

account several statistical properties of the noisy input, such as
its higher-order moments or its temporal correlations. Another
very interesting direction would be to consider the same kind
of ideas but for spatially extended systems, in which noise
might control front or pulse propagation.

With this perspective of noise-controlled dynamics through
the stochastic averaging principle, slow-fast systems can
be seen as building blocks for “translating” the statistical
properties of the noise into steady control parameters, which
might be of great interest for biological systems. Among many
possible explanations of the ubiquity of slow-fast dynamics
in the nervous system, the present analysis suggests that it
might be related to the stochastic averaging principle. First,
when stochastically perturbed on the fast variables, this class
of system enables us to reduce the variability (convergence to a
deterministic limit when ε → 0). Second, it may transform the
statistics of the fluctuations into a precise dynamical behavior,
shedding potentially a new light on the role of noise in
neuronal dynamics. Our findings suggest that these properties
of slow-fast systems might be advantageous in an intrinsically
noisy environment, such as the nervous system, but this
idea clearly requires further theoretical and experimental
investigations.
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