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Derivation of exact master equation with stochastic description: Dissipative harmonic oscillator
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A systematic procedure for deriving the master equation of a dissipative system is reported in the framework of
stochastic description. For the Caldeira-Leggett model of the harmonic-oscillator bath, a detailed and elementary
derivation of the bath-induced stochastic field is presented. The dynamics of the system is thereby fully described
by a stochastic differential equation, and the desired master equation would be acquired with statistical averaging.
It is shown that the existence of a closed-form master equation depends on the specificity of the system as well as
the feature of the dissipation characterized by the spectral density function. For a dissipative harmonic oscillator
it is observed that the correlation between the stochastic field due to the bath and the system can be decoupled,
and the master equation naturally results. Such an equation possesses the Lindblad form in which time-dependent
coefficients are determined by a set of integral equations. It is proved that the obtained master equation is
equivalent to the well-known Hu-Paz-Zhang equation based on the path-integral technique. The procedure is also
used to obtain the master equation of a dissipative harmonic oscillator in time-dependent fields.
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I. INTRODUCTION

In the real world, physical systems are not exempt from
the disturbance of their surrounding environment. Because of
dissipation caused by system-environment couplings [1–5],
the dynamics of open systems will change dramatically from
reversible to irreversible behavior. The most representative
model of the dissipative dynamics is Brownian motion, a
subject extensively investigated in many academic areas rang-
ing from natural sciences, to engineering, to social sciences
[6–10]. As one observes that the environment makes the
dynamics of the system a stochastic process, it is natural to
use random noises to imitate the influence of the environment,
which results in the phenomenological Langevin equation and
Fokker-Planck equation methods [11]. The Langevin equation
describes the motion of a classical Hamiltonian system
subjected additionally to a noise due to the environment,
while the Fokker-Planck equation depicts the evolution of
the phase-space probability for an ensemble of the system.
The most successful microscopic model for the environment
consists of an infinite number of effective harmonic oscillators
[12], which has been shown to be a generic heat bath [13,14].
The harmonic-oscillator bath with linear couplings to the
system under study is called the Caldeira-Leggett model in
the literature.

Traditionally dissipative dynamics is an essential subject
of nonequilibrium processes and plays an indispensable
role in condensed-phase dynamics and transport as well as
spectroscopy [15–17]. Nowadays the rapid development of
quantum information and quantum measurement provides
extraordinary paradigms for exploring dissipative effect, es-
pecially the interplay of quantum coherence, dephasing, and
relaxation [18–21]. Because it is an inherent many-body
problem, dissipative dynamics is usually very difficult to solve
exactly. There are, however, still several general frameworks
available for investigating the diversified features of open
systems [2,3]. For instance, the projection operator technique
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developed by Nakajima [22] and Zwanzig [23] has been
widely used in fields of spectroscopy and quantum optics
where dissipation in general is weak and thereby perturbation
treatment can be employed. The influence functional method
based on the path integral, on the other hand, which was first
proposed by Feynman and Vernon [24] and popularized by
Caldeira and Leggett [13], has been shown to be a powerful
tool for theoretical analysis [1]. This method has also been
implemented as a numerical technique to simulate dynamics
of dissipative two- and three-state systems [25,26]. Following
Feynman, Stockburger et al. interpreted the influence func-
tional in the Caldeira and Leggett model as a random field
and put forward a stochastic formulation for the dissipative
dynamics [27]. Along this line one of the authors extended the
stochastic idea to general heat baths and was able to establish
that the influence of the heat bath on the system can be fully
characterized by its induced stochastic fields [28]. Based on
the stochastic description, a deterministic approach comprising
hierarchical equations of motion was developed [29–32]. This
scheme is only applicable to specific dissipation where the
bath-induced stochastic field is the Ornstein-Ulenbeck type
or the like. Fortunately it is shown that the hierarchy method
combined with stochastic realization can be used to accurately
simulate zero-temperature dynamics of dissipative two-state
systems at strong dissipation [29].

Analytically solvable models are always desired because
they provide deep insights into the understanding of dissipation
and benchmark results for comparison when developing
approximations. It is unfortunate that in dissipative dynamics
only a few systems are analytically solvable. Good examples
include models of the harmonic oscillator [33–50], the free
particle [51], and the parabolic barrier [52–55]. In this paper
we will show that the stochastic decoupling approach can
be invoked to obtain the master equation of the dissipative
harmonic oscillator with or without driving fields in a
straightforward and elementary way. Although some results
were already reported and the method was briefly outlined
in previous work [38,39], a full procedure by which one can
follow step by step has yet been supplied. This paper will fill
this gap. We will give a detailed report on the derivation of the
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master equation for dissipative linear systems from the estab-
lishment of the stochastic differential equation of the dissip-
ative system to the statistical averaging that leads to the desired
master equation.

The paper is organized as follows. In Sec. II we briefly
review the stochastic description of quantum dissipation. In
Sec. III we apply the stochastic formulation to a dissipative
harmonic oscillator and derive its exact master equation. In
Sec. IV we prove the equivalence between our results and the
known results, the Hu-Paz-Zhang master equation. In Sec. V
we extend the scheme to the case of the harmonic oscillator
in time-dependent external fields and work out the master
equation. We conclude the paper in Sec. VI.

II. THEORY

A. Stochastic description: Primer

To study the dissipative dynamics, we start with a system-
plus-bath model defined by the Hamiltonian

Ĥ = Ĥs + Ĥb + Ĥint, (1)

where Ĥs is the Hamiltonian of the renormalized system
of interest, Ĥb the Hamiltonian of the bath, and Ĥint the
interaction energy between the system and the bath. Without
loss of generality the couplings can be written as Ĥint =∑

α f̂αĝα , where f̂α are the operators of the system and ĝα

the operators of the bath. According to quantum mechanics
the evolution of the total system obeys the Liouville equation,
namely,

ih̄
∂ρ(t)

∂t
= [Ĥ ,ρ(t)], (2)

where ρ(t) is the density matrix. Keep in mind that we are
interested only in the dynamics of the system. The reduced
density matrix ρ̃s(t) = Trbρ(t) provides sufficient informa-
tion that we require. Because the complexity of dissipative
dynamics lies in the coupling between the system and the
bath, it would be desired to decouple the interaction in such a
way that the evolution of the bath will no longer be explicitly
involved in the evolution of the system. Actually, it was
shown by one of the authors that the Hubbard-Stratonovich
transformation can be used to convert the system-bath coupling
during the evolution to the correlation of stochastic processes
for the separated but random system and bath [28]. Doing this,
the price one has to pay is to introduce auxiliary stochastic
fields in subsystems. Later it was recognized that a simpler and
natural language way to formulate the dissipative dynamics as
a stochastic one is the Itô calculus [28].

The Itô calculus is concerned with a Wiener process
W (t) = ∫ t

0 dt ′μ(t ′), where μ(t) is a Gaussian white noise with
zero mean and delta function correlation, i.e., M{μ(t)} = 0
and M{μ(t)μ(t ′)} = δ(t − t ′). Roughly speaking, the white
noise μ(t) can be regraded as a series of independent
random numbers at time slices t0 = 0,t1, . . . ,tN = t , where
one can simply assume the time steps �tj = tj − tj−1 = �t

are uniform and �t → 0. Thus the distribution function for
any μj = μ(tj ) is

P (μj ) = lim
�t→0

√
�t

2π
e− �t

2 μ2
j .

For a random process F [μ] or F (μ1, . . . ,μN ) in discrete-
time representation, the stochastic averaging M means the
expectation value of F (μ1, . . . ,μN ), i.e.,

M{F [μ]} =
∫ ∞

−∞

N∏
j=1

[dμjP (μj )]F (μ1, . . . ,μN ).

Note that dW is of the order
√

dt and (dW )2 = dt . To apply
the Itô calculus we now consider the Liouville dynamics
Eq. (2) with a disentangled initial state ρ(0) = ρs(0)ρb(0).
When calculating the time derivative of a composite stochastic
process constructed from the Wiener process, one should take
into account the second-order contribution of dW . Let us
analyze the following stochastic differential equations:

ih̄dρs = [Ĥs,ρs]dt +
√

h̄

2

∑
α

[f̂α,ρs]dW1α

+ i

√
h̄

2

∑
α

{f̂α,ρs}dW ∗
2α (3)

and

ih̄ρb = [Ĥb,ρb]dt +
√

h̄

2

∑
α

[ĝα,ρb]dW2α

+ i

√
h̄

2

∑
α

{ĝα,ρb}dW ∗
1α, (4)

where W1α(t) = ∫ t

0 dt ′[μ1α(t ′) + iμ4α(t ′)] and W2α(t) =∫ t

0 dt ′[μ2α(t ′) + iμ3α(t ′)] are complex Wiener processes with
independent Gaussian white noises μkα(t) (k = 1 − 4). Appar-
ently there is no direct interaction between the two subsystems,
and the equations of motion for the system and the bath
Eqs. (3) and (4) are independent. Using the Itô calculus of
the complex Wiener process, dWαdWk = dW ∗

α dW ∗
k = 0 and

dWαdW ∗
k = 2δαkdt , and the nonanticipating property, that is,

that the combined stochastic process ρs(t)ρb(t) is statistically
independent of dW1(2),t , M{ρs(t)ρb(t)dW1(2),t } = 0, we can
readily prove

ih̄d(M{ρs(t)ρb(t)})
= ih̄M{dρs(t)ρb(t) + ρs(t)dρb(t) + dρs(t)dρb(t)}

=
[
Ĥs + Ĥb +

∑
α

f̂αĝα,M{ρs(t)ρb(t)}
]
dt. (5)

Therefore, M{ρs(t)ρb(t)} satisfies the Liouville equation
Eq. (2) and is, of course, identical with the density matrix
ρ(t) of the total system.

With the help of the Itô calculus, therefore, we are able to
illustrate how the interaction between the system and bath is
decoupled, as shown in Eqs. (3) and (4). As a consequence,
the system as well as the bath is subjected to random fields.
Again, it should be stressed that we want to calculate the
reduced density matrix, ρ̃s(t) = TrbM{ρs(t)ρb(t)}. To this end
we change the operation order of the tracing over the degrees
of freedom of the bath and the stochastic averaging to obtain

ρ̃s(t) = M{ρs(t)Trbρb(t)}. (6)
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The formal expression of Trbρb(t) can be feasibly acquired by
solving its equation of motion [Eq. (4)],

Trbρb(t) = exp

{
1√
h̄

∑
α

∫ t

0
dt ′[μ1α(t ′) − iμ4α(t ′)]ḡα(t ′)

}
,

(7)

where we introduce the bath-induced stochastic fields:

ḡα(t) = Trb{ĝαρ̄b(t)} (8)

with ρ̄b(t) = ρb(t)/Trbρb(t) the normalized density matrix for
the random bath. Now comes a crucial step. We can change
the measure of stochastic processes to absorb the trace of the
bath; that is, we modify the Wiener process W1α(t) as
W1α(t) + 2

∫ t

0 dt ′ḡα(t ′)/
√

h̄. Complying with this, ρs(t) will
also change accordingly. The mathematical manipulation is
nothing but the Girsanov transformation [56,57]. To illustrate
this transformation clearly, we again resort to the discrete-
time representation. Now inserting Eq. (7) into Eq. (6), one
has

ρ̃s(t) =
∫ ∞

−∞

∏
α

4∏
k=1

N∏
j

dμj,kαP (μj,kα)

× exp

{
�t√

h̄

∑
α

N∑
j=1

[μj,1α − iμj,4α]ḡα(tj )

}
× ρs(t,{μj,kα}). (9)

Note that in this expression one can put the contribution due to
the bath-induced field into the distribution function P (μj,1(4)α),
namely,

∏
α

P (μj,1α)P (μj,4α) exp

{
�t√

h̄

∑
α

[μj,1α − iμj,4α]ḡα(tj )

}

=
∏
α

P

[
μj,1α − 1√

h̄
ḡα(tj )

]
P

[
μj,4α + i√

h̄
ḡα(tj )

]
.

Now we define new variables μ̃j,1α = μj,1α − ḡα(tj )/
√

h̄,
μ̃j,2α = μj,2α , μ̃j,3α = μj,3α , and μ̃j,4α = μj,4α +
iḡα(tj )/

√
h̄. Because both μj,1α and μj,4α are independent of

ḡα(tj ), the Jacobian of the variable change is equal to one.
With these new variables, therefore, Eq. (9) becomes

ρ̃s(t) =
∫ ∞

−∞

∏
α

4∏
k=1

N∏
j=1

dμ̃j,kαP
(
μ̃j,kα

)
× ρs

(
t,

{
μ̃j,1α + 1√

h̄
ḡα(tj ),μ̃j,2α,μ̃j,3α,μ̃j,4α

− i√
h̄

ḡα(tj )

})
= M{ρs[t,{μ̃kα}]},

where the second equality results from the continuous rep-
resentation. Notice that ρs(t) ≡ ρs[t,{μkα}] satisfies Eq. (3).
Changing the underlying random processes in Eq. (3) from
{μkα} to {μ̃kα}, one obtains the equation for the new density

matrix ρs(t) ≡ ρs[t,{μ̃kα}],

ih̄dρs =
[
Ĥs +

∑
α

gα(t)f̂α,ρs

]
dt +

√
h̄

2

∑
α

[f̂α,ρs]dW1α

+ i

√
h̄

2

∑
α

{f̂α,ρs}dW ∗
2α. (10)

For brevity, here and in the following, the functional depen-
dence of the random density matrix ρs(t) on {μ̃kα} will not
indicated explicitly.

Given ḡα(t), one needs only to solve the stochastic dif-
ferential equation Eq. (10) and calculate the random average
to obtain the exact reduced density matrix ρ̃s(t). The bath-
induced field in general evokes fast motion, and thus ρs(t) as
well as the white noises to which ρs(t) is subjected displays
a smaller time scale than its average ρ̃s(t). In the following
section we will consider the Caldeira-Leggett (CL) model for
which the bath-induced field can be worked out explicitly. We
would like to emphasize that in the CL model there is only one
interaction term, while within the stochastic description one
can deal with many interaction terms.

B. Caldeira-Leggett model

The Hamiltonian of a CL model reads

Ĥ = p̂2

2M
+ V (x̂) + 1

2

N∑
j=1

[
p̂2

j

mj

+ mjω
2
j

(
x̂j + cj

mjω
2
j

x̂

)2]
,

(11)

where the first two terms define the Hamiltonian of the system
and the third one induces the Hamiltonian of the bath, the
interaction, and a counterterm. The last can directly be read
off as

V ′(x̂) ≡ 1
2Mx̂2ω̃2,

where

ω̃2 =
∑

j

c2
j

Mmjω
2
j

= 2

Mπ

∫ ∞

0
dω

J (ω)

ω
. (12)

J (ω) is the spectral density function

J (ω) = π

2

∑
j

[
c2
j

mjωj

δ(ω − ωj )

]
, (13)

which exactly characterizes the effect of the environment. In
general the system-bath linear coupling not only provides
a dissipation mechanism for the system but also tends
to renormalize the potential V (x̂). To compensate for this
renormalization effect the counterterm is introduced. It ensures
that the system cannot lower its potential energy below the
original uncoupled value [13].

Assume that the initial state of the bath is in a thermal
equilibrium state for the noninteracting harmonic oscillators,
that is, ρb(0) = e−βĤb/Trb{e−βĤb}. Because of the linearity,
the dynamics of the random bath described by Eq. (4) is
analytically solvable. Moreover, since there are no interactions
among the bath modes, the evolution of the bath is fully
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determined by that of the individual mode. In other words,
the solution of Eq. (4) can be written as

ρb(t) =
∏
j

uj,1(t,0)ρb(0)
∏
j

uj,2(0,t), (14)

where uj,1(t,0) is the forward propagator of the mode j

dictated by the Hamiltonian

ĥ1,j (t) =
(

p̂2
j

2mj

+ 1

2
mj x̂

2
j ω

2
j

)
+

√
h̄

2
ν+(t)cj x̂j ,

and uj,2(0,t) is the backward propagator dictated by

ĥ2,j (t) =
(

p̂2
j

2mj

+ 1

2
mj x̂

2
j ω

2
j

)
+

√
h̄

2
ν−(t)cj x̂j

with the stochastic fields ν±(t) = μ2(t) + iμ3(t) ± iμ1(t) ±
μ4(t). For a driven harmonic oscillator

ĥ(t) = p̂2

2m
+ 1

2
mω2

0x̂
2 + ν(t)x̂, (15)

its corresponding propagator u(t,0) can be worked out in terms
of the operator algebra method [58]. To do this, it would be
better to work in the second quantization formalism. Now we
introduce the creation and annihilation operators,

a† =
√

mω0

2h̄
x̂ − i√

2h̄mω0
p̂ (16)

and

a =
√

mω0

2h̄
x̂ + i√

2h̄mω0
p̂. (17)

From the commutation relation [x̂,p̂] = ih̄, one readily finds
[a,a†] = 1. The Hamiltonian Eq. (15) then becomes

ĥ(t) = ĥ0 +
√

h̄

2mω0
ν(t)(a + a†),

where ĥ0 = h̄ω0(a†a + 1/2) is the Hamiltonian of an isolated
harmonic oscillator. The propagator u0(t,0) dictated by ĥ0

has been well known, and the result can be found in several
textbooks [24,59–61]. For the driven case one uses the
interaction representation to have

ih̄
∂uI (t,0)

∂t
=

√
h̄

2mω0
ν(t)(ae−iω0t + a†eiω0t )uI (t,0)

with the initial condition uI (0,0) = 1. Resorting to the Baker-
Campbell-Hausdorff formula [62], we readily obtain

uI (t,0) = exp[d(t)a] exp[b(t)a†] exp[j (t)], (18)

where

d(t) = − i√
2mh̄ω0

∫ t

0
dt1 exp (−iω0t1) ν(t1),

b(t) = − i√
2mh̄ω0

∫ t

0
dt1 exp (iω0t1) ν(t1),

and

j (t) = 1

2mh̄ω0

∫ t

0
dt1

∫ t1

0
dt2ν(t1)ν(t2) exp[iω0(t1 − t2)].

Upon using Eqs. (16) and (17) and Baker-Campbell-Hausdorff
formula again, the propagator uI (t,0) becomes

uI (t,0) = exp

{√
mω0

2h̄
[d(t) + b(t)]x̂

}
× exp

{
i√

2mh̄ω0
[d(t) − b(t)]p̂

}
× exp

{
1

4
[d2(t) − b2(t)]

}
.

Finally with the given expressions of u0(t,0) and uI (t,0) the
propagator u(t,0) = u0(t,0)uI (t,0) is also available. There-
fore, we propose a straightforward procedure to calculate
uj,1(t,0) and uj,2(t,0). Inserting these results into Eq. (8) and
calculating the trace we finally find

ḡ(t) =
√

h̄

∫ t

0
dt ′{αR(t − t ′)[μ1(t ′) − iμ4(t ′)]

+αI (t − t ′)[μ2(t ′) + iμ3(t ′)]}, (19)

where αR,I (t) turn out to be the real and imaginary parts of the
autocorrelation function of the “force” ĝ = ∑

j cj x̂j , namely,

α(t) = Trb{ρb(0)ĝ(t)ĝ(0)} = 1

π

∫ ∞

0
dωJ (ω)

×
[

coth

(
h̄βω

2

)
cos ωt − i sin ωt

]
(20)

with ĝ(t) = eiĤbt/h̄ĝe−iĤbt/h̄. One can see that αR(t) is depen-
dent on temperature, reflecting dissipation effects contributed
from both quantum and “classical” motion, while αI (t) is
independent of temperature, embodying a pure quantum effect.

C. Formal solution

As one can understand, we start from Eq. (10), the working
equation in the framework of stochastic description. The
formal solution of this linear equation is [28]

ρs(t) = U1(t,0)ρs(0)U2(0,t), (21)

where U1(t,0) is the forward propagator of the stochastic
system associated with the Hamiltonian

Ĥ1(t) = Ĥs +
∑

α

[
ḡα(t) +

√
h̄

2
η+α(t)

]
f̂α, (22)

while U2(0,t) is the backward propagator associated with the
Hamiltonian

Ĥ2(t) = Ĥs +
∑

α

[
ḡα(t) +

√
h̄

2
η−α(t)

]
f̂α (23)

with η±α(t) = μ1α(t) + iμ4α(t) ± iμ2α(t) ± μ3α(t). When we
can take stochastic average of random density matrix ρs(t)
in principle, we can obtain the exact reduced density matrix
ρ̃s(t). To derive the equation of motion for ρ̃s(t) or the master
equation, however, it would be better to start from Eq. (10).
Whenever the statistical average of the right-hand side of
Eq. (10) can be expressed explicitly in terms of ρ̃s(t) and
other known operators of the system, one obtains a master
equation.
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To acquire the deterministic equation from the corre-
sponding stochastic differential equation for arbitrary noises
is a challenging, if not impossible, task [63–66]. In the
literature, one may find incorrect results about the derivation
of the deterministic equation for Gaussian noises and similar
statements in developing a master equation for open systems
[67].

For the Caldeira-Leggett model, upon substituting the
expression of the bath-induced fields Eq. (19) and carrying
out the stochastic averaging, Eq. (10) becomes

ih̄
dρ̃s(t)

dt
= [Ĥs,ρ̃s(t)] +

[
x̂,

∫ t

0
dt ′αR(t − t ′)M{ρs,1(t,t ′)}

]
+

[
x̂,

∫ t

0
dt ′αI (t − t ′)M{ρs,2(t,t ′)}

]
, (24)

where ρs,1(t,t ′) = √
h̄[μ1(t ′) − iμ4(t ′)]ρs(t) and ρs,2(t,t ′) =√

h̄[μ2(t ′) + iμ3(t ′)]ρs(t). In the above derivation the nonan-
ticipating property of ρs(t), namely, M{ρs(t)dW1(2)(t)} = 0,

is used. It is obvious that when there is no dissipation, only
the first term remains on the right-hand side of Eq. (24). Of
course, this is the Liouville equation of the system, as it should
be. As the stochastic fields are added, the other two terms
naturally come out. These terms lead to the irreversibility
caused by the coupling to the bath à la its induced random
fields. To obtain the expressions of M{ρs,1(2)(t,t ′)} we resort
to the Furutsu-Novikov theorem [68], that is,

M{μ(t ′)F [μ]} = M

{
δF [μ]

δμ(t ′)

}
(25)

for a white noise μ(t) and its arbitrary functional F [μ]. Using
this theorem allows us to write

M{ρs,1(t,t ′)} =
√

h̄M

{
δρs(t)

δμ1(t ′)
− i

δρs(t)

δμ4(t ′)

}
≡ Ôs,1(t,t ′)

and

M{ρs,2(t,t ′)} =
√

h̄M

{
δρs(t)

δμ2(t ′)
+ i

δρs(t)

δμ3(t ′)

}
≡ Ôs,2(t,t ′).

Therefore, M{ρs,1(2)(t,t ′)} in Eq. (24) can be replaced,
respectively, by Ôs,1(2)(t,t ′). For brevity, they are called
the dissipation operators. With the formal solution of ρs(t)
[Eq. (21)], one can directly work out the expression of the
functional derivatives

Ôs,1(t,t ′) = −iM{x̂1(t,t ′)ρs(t) − ρs(t)x̂2(t,t
′
)} (26)

and

Ôs,2(t,t ′) = M{x̂1(t,t ′)ρs(t) + ρs(t)x̂2(t,t
′
)}, (27)

where x̂1(t,t ′) = U1(t,t ′)x̂U1(t ′,t) and x̂2(t,t ′) =
U2(t,t ′)x̂U2(t ′,t) are the Heisenberg operators. To build
up a master equation, of course, we still need to find the
expressions of Ôs,1(2)(t,t ′) in terms of ρ̃s(t) and other known
operators.

Some comments are in order. For arbitrary response func-
tions αR(I )(t), deriving the master equation relies on whether
the explicit expressions of dissipative operators Ôs,1(2)(t,t ′)

can be worked out. However, when αR(I )(t) are localized dis-
tribution functions, say, αR(I )(t) = α̃R(I )δ(t), Eq. (24) becomes

ih̄
dρ̃s(t)

dt
= [Ĥs,ρ̃s(t)] + [x̂,α̃RM{ρs,1(t,t)}]

+ [x̂,α̃IM{ρs,2(t,t)}]. (28)

From Eqs. (26) and (27), we know M{ρs,1(t,t)} = −i[x̂,ρ̃s(t)]
and M{ρs,2(t,t)} = {x̂,ρ̃s(t)}. Inserting into Eq. (28) yields the
master equation

ih̄
dρ̃s(t)

dt
= [Ĥs,ρ̃s(t)] − iα̃R[x̂,[x̂,ρ̃s(t)]] + α̃I [x̂,{x̂,ρ̃s(t)}].

(29)

Therefore, both the specificities of the system and the bath-
induced field determine the “existence” of the master equation.

III. DERIVATION OF MASTER EQUATION

Now we shall derive the master equation of a dissipative
harmonic oscillator described by the Caldeira-Leggett model
with V (x̂) = Mω2

0x̂
2/2. As discussed above, the system-bath

coupling modifies the potential of the system by addition of a
counterterm. In the present case the frequency of the harmonic
oscillator becomes a renormalized one,

ω2 = ω2
0 + ω̃2.

To acquire the master equation we use the equation of motion
in the Heisenberg representation to find the operators x̂1(2)(t,t ′)
in Eqs. (26) and (27). After some algebra we obtain

x̂1(2)(t,t
′) = cos ω(t − t ′)x̂ − sin ω(t − t ′)

Mω
p̂ − 1

Mω

∫ t

t ′
dt1

× sin ω(t1 − t ′)
[
ḡ(t1) +

√
h̄

2
η±(t1)

]
.

Inserting into Eqs. (26) and (27) and carrying out the involved
stochastic averaging, we find

Ôs,1(t,t ′)

= −i cos ω(t − t ′)[x̂,ρ̃s(t)] + i

Mω
sin ω(t − t ′)[p̂,ρ̃s(t)]

+ 2

Mω

∫ t

t ′
dt1

∫ t

t1

dt2 sin ω(t1 − t ′)αI (t1 − t2)Ôs,1(t,t2)

(30)

and

Ôs,2(t,t ′)

= cos ω(t − t ′){x̂,ρ̃s(t)} − sin ω(t − t ′)
Mω

{p̂,ρ̃s(t)}

− 2

Mω

∫ t

t ′
dt1

∫ t

0
dt2 sin ω(t1 − t ′)αR(t1 − t2)Ôs,1(t,t2)

− 2

Mω

∫ t

t ′
dt1

∫ t1

0
dt2 sin ω(t1 − t ′)αI (t1 − t2)Ôs,2(t,t2).

(31)
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In the derivation we have used the following functional
derivatives:

M

{
δρs(t)

δμ1(t ′)
+ i

δρs(t)

δμ4(t ′)

}
= 2√

h̄

∫ t

t ′
dt1αR(t1 − t ′)Ôs,1(t,t1)

and

M

{
δρs(t)

δμ2(t ′)
− i

δρs(t)

δμ3(t ′)

}
= 2√

h̄

∫ t

t
′

dt1αI (t1 − t ′)Ôs,1(t,t1),

which are also readily obtained with the formal solution
of ρs(t) and the Furutsu-Novikov theorem. For the inte-
gral equations (30) and (31) one can employ iteration to
show that their solutions Ôs,1(2)(t,t ′) possess the following
forms:

Ôs,1(t,t ′) = x11(t,t ′)[p̂,ρ̃s(t)] + x12(t,t ′)[x̂,ρ̃s(t)] (32)

and

Ôs,2(t,t ′) = x21(t,t
′
){x̂,ρ̃s(t)} + x22(t,t ′){p̂,ρ̃s(t)}

+ x23(t,t ′)[p̂,ρ̃s(t)] + x24(t,t ′)[x̂,ρ̃s(t)]. (33)

Because the operators [x̂,ρ̃s(t)], [p̂,ρ̃s(t)], {x̂,ρ̃s(t)}, and
{p̂,ρ̃s(t)} are arbitrary, their coefficients xjk(t,t ′) in Eqs. (32)
and (33) are determined by Eqs. (30) and (31), which satisfy
the following integral equations:

x11(t,t ′)= i

Mω
sin ω(t − t ′) + 2

Mω

∫ t

t ′
dt1

∫ t

t1

dt2 sin ω(t1 − t ′)

×αI (t1 − t2)x11(t,t2), (34)

x12(t,t ′)=−i cos ω(t − t ′) + 2

Mω

∫ t

t ′
dt1

∫ t

t1

dt2 sin ω(t1 − t ′)

×αI (t1 − t2)x12(t,t2), (35)

x21(t,t ′) = cos ω(t − t ′) − 2

Mω

∫ t

t ′
dt1

∫ t1

0
dt2 sin ω(t1 − t ′)

×αI (t1 − t2)x21(t,t2), (36)

x22(t,t ′) = − sin ω(t − t ′)
Mω

− 2

Mω

∫ t

t ′
dt1

∫ t1

0
dt2 sin ω(t1 − t ′)

×αI (t1 − t2)x22(t,t2), (37)

x23(t,t ′) = − 2

Mω

∫ t

t ′
dt1 sin ω(t1 − t ′)

[ ∫ t

0
dt2αR(t1 − t2)

× x11(t,t2) +
∫ t1

0
dt2αI (t1 − t2)x23(t,t2)

]
, (38)

and

x24(t,t ′) = − 2

Mω

∫ t

t ′
dt1 sin ω(t1 − t ′)

×
[ ∫ t

0
dt2αR(t1 − t2)x12(t,t2)

+
∫ t1

0
dt2αI (t1 − t2)x24(t,t2)

]
. (39)

With these expressions at hand, Eq. (24) immediately becomes
the desired master equation, namely,

ih̄
dρ̃s(t)

dt
= [Ĥs,ρ̃s(t)] + A1(t)[x̂,{x̂,ρ̃s(t)}]

+A2(t)[x̂,{p̂,ρ̃s(t)}] + A3(t)[x̂,[p̂,ρ̃s(t)]]

+A4(t)[x̂,[x̂,ρ̃s(t)]], (40)

where Ĥs = p̂2/(2M) + Mω2x̂2/2 and the coefficients are

A1(t) =
∫ t

0
dt ′αI (t − t ′)x21(t,t ′), (41)

A2(t) =
∫ t

0
dt ′αI (t − t ′)x22(t,t ′), (42)

A3(t) =
∫ t

0
dt ′[αR(t − t ′)x11(t,t ′) + αI (t − t ′)x23(t,t ′)],

(43)

and

A4(t) =
∫ t

0
dt ′[αR(t − t ′)x12(t,t ′) + αI (t − t ′)x24(t,t ′)].

(44)

As clearly clarified in the literature [38,39], A1(t) is the
coefficient for the frequency shift because [x̂,{x̂,ρ̃s(t)}] =
[x̂2,ρ̃s(t)], A2(t) is a quantum dissipation term, A3(t) reflects
the anomalous quantum diffusion, while A4(t) is the coefficient
for the normal quantum diffusion.

IV. EQUIVALENCE TO THE HU-PAZ-ZHANG EQUATION

The master equation and the dynamics of the dissipative
harmonic oscillator have been derived and studied by several
researchers with diversified methods [35–50]. Dekker used the
canonical quantization method [35], while Haake and Reibold
employed the Wigner function method. The latter also studied
the low-temperature and strong-damping anomalies [36].
Grabert, Schramm, and Ingold went beyond the factorized
initial condition [37]. It would be stressed that the master
equation in a general environment was derived by Hu, Paz,
and Zhang (HPZ) by virtue of path-integral technique [38]. An
elementary derivation of the HPZ equation was documented
by Halliwell and Yu with the Wigner function approach
[39]. Karrlein and Grabert pointed out that there is an exact
dissipative Liouville operator for certain correlated initial
conditions [40]. The master equation was also considered
by Calzetta et al. through a stochastic method based on
the quantum Langevin equation [41]. Ford and O’Connell
[42] rederived the HPZ equation with the quantum Langevin
equation method and also analyzed its solution. Strunz and Yu
offered an alternative derivation, using the quantum trajectory
method [43]. The HPZ master equation has recently been used
by Chou, Yu, and Hu to derive the master equation of two and
more coupled harmonic oscillators in a bosonic bath [44,45].
Furthermore, the HPZ master equation was extended by Xu
et al. [46] to the case where time-dependent external fields are
applied.

For convenience of comparison, we will always use the
results in the paper by Halliwell and Yu [39]. The HPZ master
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equation takes the same form as Eq. (40). The corresponding
coefficients in our notation read

B1(t) =
∫ t

0
dt ′αI (t − t ′)x̄21(t,t ′), (45)

B2(t) =
∫ t

0
dt ′αI (t − t ′)x̄22(t,t ′), (46)

B3(t) =
∫ t

0
dt ′[αR(t − t ′)x̄11(t,t ′) + αI (t − t ′)x̄23(t,t ′)],

(47)

and

B4(t) =
∫ t

0
dt ′[αR(t − t ′)x̄12(t,t ′) + αI (t − t ′)x̄24(t,t ′)],

(48)

where

x̄21(t,t ′) = u2(t ′) − u̇2(t)

u̇1(t)
u1(t ′), (49)

x̄22(t,t ′) = u1(t ′)
Mu̇1(t)

, (50)

x̄11(t,t ′) = i

M
G1(t,t ′), (51)

x̄12(t,t ′) = −iG′
1(t,t ′), (52)

x̄23(t,t ′) = 2i

M2

∫ t

t ′
dt1

∫ t

0
dt2αR(t1 − t2)G1(t,t2)G2(t ′,t1),

(53)

and

x̄24(t,t ′) = − 2i

M

∫ t

t ′
dt1

∫ t

0
dt2αR(t1 − t2)G′

1(t,t2)G2(t ′,t1).

(54)

Here the dot over uj (t)(j = 1,2) stands for the derivative with
respect to t, and the functions uj (t) are the solutions of the
homogeneous integro-differential equation(

d2

dt2
+ ω2

)
u(t) + 2

M

∫ t

0
dt ′αI (t − t ′)u(t ′) = 0 (55)

with inhomogeneous boundary conditions u1(0) = 1, u1(t) =
0 and u2(0) = 0, u2(t) = 1 and Gj (t1,t2)(j = 1,2) are the
Green’s functions obeying(

d2

dt2
1

+ ω2

)
G(t1,t2) + 2

M

∫ t1

0
dt3αI (t1 − t3)G(t3,t2)

= δ(t1 − t2) (56)

with specified initial conditions at the fixed initial and
final times G1(t1 = 0,t2) = 0, G′

1(t1 = 0,t2) = 0 and G2(t1 =
t,t2) = 0, G′

2(t1 = t,t2) = 0. Here the prime in G′
j (t1,t2) stands

for the derivative with respect to the first variable, that is,
G′

j (t1,t2) = ∂Gj (t1,t2)/∂t1. Because of causality G1(t1,t2) =
0 for t1 < t2, while G2(t1,t2) = 0 for t1 > t2.

Now we show that the HPZ equation and that derived with
the stochastic formulation are identical. To this end we need
only to prove that Aj (t) = Bj (t) (j = 1 − 4), respectively. As
clearly shown in Eqs. (41)–(44) and (45)−(48), all functions
Aj (t) and the counterparts Bj (t) are integrals over the time
range [0,t]. Therefore, a sufficient condition for Aj (t) = Bj (t)
is that the corresponding integrands are the same. Besides,

because these integrands consist of factors αR(I )(t) that are
dependent on the specificity of the dissipation and can be
arbitrary, one can further simplify the proof significantly.

A. Proof of A1(t) = B1(t), A2(t) = B2(t)

To prove A1(t) = B1(t), one should prove x21(t,t ′) =
x̄21(t,t ′). Note that uj (t) satisfy linear differential Eq. (55).
Because x̄21(t,t ′) is a linear combination of u1(t ′) and u2(t ′),
as a function of t ′, it should also obey Eq. (55),(

∂2

∂t ′2
+ ω2

)
x̄21(t,t ′) = − 2

M

∫ t
′

0
dt1αI (t ′ − t1)x̄21(t,t1).

(57)

On the other hand, from the integral Eq. (36) we
can show by a straightforward algebra that calculat-
ing the second-order derivative of x21(t,t ′) on both
sides, one can obtain the equation that is the same as
Eq. (57). Moreover, x21(t,t ′) |t ′=t= x̄21(t,t ′) |t ′=t= 1 and
∂x21(t,t ′)/∂t ′ |t ′=t= ∂x̄21(t,t ′)/∂t ′ |t ′=t= 0, and the initial
conditions are the same. Therefore, A1(t) is identical with
B1(t). Along the same line, one can prove A2(t) = B2(t).

B. Proof of A3(t) = B3(t), A4(t) = B4(t)

As pointed out above, the problem of proving A3(t) = B3(t)
can be changed to proving the equivalence of the two involved
integrands. That is, one needs to show x11(t,t ′) = x̄11(t,t ′) and
x23(t,t ′) = x̄23(t,t ′).

Let us look at Eq. (56) with the initial condition G1(0,t2) =
0 and G′

1(0,t2) = 0. Suppose the second term on the left-hand
side is given. Then Eq. (56) can be viewed as a function of t1
and can be “solved” with the Green’s function method. Now
the required Green’s function obeys(

d2

dt2
1

+ ω2

)
Ḡ(t1,τ ) = δ(t1 − τ )

with Ḡ(t1,τ ) |t1<τ= 0 and ∂Ḡ(t1,τ )/∂t1 |t1<τ= 0. Its solution
is

Ḡ(t1,τ ) = sin ω(t1 − τ )

ω
θ (t1 − τ ).

Therefore, the “solution” of Eq. (56) can be written as

G1(t1,t2) =
∫ t1

0
dτḠ(t1,τ )

×
[
δ(τ − t2) − 2

M

∫ τ

t2

dt4αI (τ − t4)G1(t4,t2)

]
= sin ω(t1 − t2)

ω
− 2

Mω

∫ t1

t2

dt3

×
∫ t3

t2

dt4 sin ω(t1 − t3)αI (t3 − t4)G1(t4,t2).

Substituting into Eq. (51) yields

x̄11(t,t ′) = i

Mω
sin ω(t − t ′) − 2

Mω

∫ t

t ′
dt1

×
∫ t1

t ′
dt2 sin ω(t − t1)αI (t1 − t2)x̄11(t2,t

′). (58)
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Note that from Eq. (20) one can see αI (t1 − t2) = −αI (t2 − t1).
Making a change of integration orders and variables in the
double integral then leads to

x̄11(t,t ′) = i

Mω
sin ω(t − t ′) + 2

Mω

∫ t

t ′
dt1

×
∫ t

t1

dt2 sin ω(t − t2)αI (t1 − t2)x̄11(t1,t
′), (59)

which is an integral equation of x̄11(t,t ′) with respect to the
first argument t . Now we show that x̄11(t,t ′) determined by
Eq. (59) is identical with x11(t,t ′) solved from Eq. (34), which
is an integral equation with respect to the second argument
t ′. To this end, we discretize the variables t and t ′ so that
x11(t,t ′) and x̄11(t,t ′) can be represented as matrices. To be
specific, the elements of matrices X0, X, X′, and α take the
discretized values of x0(t,t ′), x11(t,t ′), x̄11(t,t ′), and α(t − t ′),
respectively. Here x0(t,t ′) = sin ω(t − t ′) is introduced. With
these matrices, the integrals in Eqs. (34) and (59) become
matrix products,

X = X0 − XαX0 (60)

and

X ′ = X0 − X0αX ′. (61)

Solving these matrix equations with elementary algebraic
manipulations, we find

X = X0(1 + αX0)−1 (62)

and

X ′ = (1 + X0α)−1 X0. (63)

Because (1 + X0α)X0 = X0(1 + αX0), one immediately ob-
tains X = X ′. Therefore, we find x11(t,t ′) = x̄11(t,t ′). Thus,
Eq. (51) can be recast as G1(t,t ′) = −iMx11(t,t ′). Substituting
into Eq. (53) leads to

x̄23(t,t ′) = 2

M

∫ t

t ′
dt1

∫ t

0
dt2αR(t1 − t2)x11(t,t2)G2(t ′,t1).

(64)

We now treat G2(t1,t2) in the same way as we did for G1(t1,t2)
in the above. As a result, G2(t1,t2) satisfies the following
integral equation:

G2(t1,t2) = sin ω(t1 − t2)

ω
− 2

Mω

∫ t

t1

dt3

×
∫ t3

0
dt4 sin ω(t3 − t1)αI (t3 − t4)G2(t4,t2).

(65)

Inserting into Eq. (64) and rearranging, we find the integral
equation of x̄23(t,t ′) is identical with that of x23(t,t ′), Eq. (38).
Therefore, x̄23(t,t ′) = x23(t,t ′). Similarly, we can demonstrate
the equality A4(t) = B4(t).

V. MASTER EQUATION OF DRIVEN
HARMONIC OSCILLATOR

Consider a dissipative harmonic oscillator driven by general
external time-dependent fields [46–49] with Hamiltonian

Ĥs(t) = p̂2

2M
+ 1

2
Mω2x̂2 + f1(t)x̂ + f2(t)p̂.

We shall work out the master equation in the driving case
along the same line of deriving the master equation of the
dissipative harmonic oscillator in Sec. III. Note that for
the external time-dependent fields that act only on the system,
the bath-induced field is the same as that without driving fields.
We can thus start from Eqs. (26) and (27). By solving the
equations of motion for the Heisenberg operators and taking
stochastic averaging, we find

Ôs,1(t,t ′)

= −i cos ω(t − t ′)[x̂,ρ̃s(t)] + i

Mω
sin ω(t − t ′)[p̂,ρ̃s(t)]

+ 2

Mω

∫ t

t ′
dt1

∫ t

t1

dt2 sin ω(t1 − t ′)αI (t1 − t2)Ôs,1(t,t2)

and

Ôs,2(t,t ′)

= cos ω(t − t ′){x̂,ρ̃s(t)} − sin ω(t − t ′)
Mω

{p̂,ρ̃s(t)}

− 2

Mω

∫ t

t ′
dt1

∫ t

0
dt2 sin ω(t1 − t ′)αR(t1 − t2)Ôs,1(t,t2)

− 2

Mω

∫ t

t ′
dt1

∫ t1

0
dt2 sin ω(t1 − t ′)αI (t1 − t2)Ôs,2(t,t2)

− 2

Mω

∫ t

t ′
dt1 sin ω(t1 − t ′)f1(t1)ρ̃s(t) − 2

∫ t

t ′
dt1

× cos ω(t1 − t ′)f2(t1)ρ̃s(t).

Similar to the undriven case, these dissipation operators
possess the following forms:

Ôs,1(t,t ′) = x11(t,t ′)[p̂,ρ̃s(t)] + x12(t,t ′)[x̂,ρ̃s(t)]

and

Ôs,2(t,t ′) = x21(t,t ′){x̂,ρ̃s(t)} + x22(t,t ′){p̂,ρ̃s(t)}
+ x23(t,t ′)[p̂,ρ̃s(t)] + x24(t,t ′)[x̂,ρ̃s(t)]

+ x25(t,t ′)ρ̃s(t),

where all coefficients xjk(t,t ′) except x25(t,t ′) are the same
as that of undriven case [Eqs. (34)–(39)]. The new term is
determined by

x25(t,t ′) = − 2

Mω

∫ t

t ′
dt1 sin ω(t1 − t ′)f1(t1) − 2

×
∫ t

t ′
dt1 cos ω(t1 − t ′)f2(t1) − 2

Mω

×
∫ t

t ′
dt1

∫ t1

0
dt2 sin ω(t1 − t ′)αI (t1 − t2)x25(t,t2).
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Therefore, substituting M{ρs,1(2)(t,t ′)} by Ôs,1(2)(t,t ′) in
Eq. (24) yields the required master equation:

ih̄
dρ̃s(t)

dt
= [Ĥeff(t),ρ̃s(t)] + A1(t)[x̂,{x̂,ρ̃s(t)}]

+A2(t)[x̂,{p̂,ρ̃s(t)}] + A3(t)[x̂,[p̂,ρ̃s(t)]]

+A4(t)[x̂,[x̂,ρ̃s(t)]],

where the effective Hamiltonian Ĥeff(t) is

Ĥeff(t) = Ĥs(t) + x̂

∫ t

0
dt ′αI (t − t ′)x25(t,t ′).

Here again, the coefficients Aj (t) (j = 1 − 4) are the same as
that of the undriven case, which are given through Eqs. (41)–
(44). It is obvious that the second term in Ĥeff(t) reflects the
very interplay between the system and the bath mediated by
the driving fields.

VI. CONCLUSION

Classical dynamics of dissipative systems is traditionally
described by the Langevin equation. It has been shown that the
stochastic formulation provides a similar description of quan-
tum dissipative systems [28]. In this framework the dissipative
system obeys Liouville equations subjected to the stochastic
fields due to the bath. Based on the stochastic formulation,
flexible numerical methods have been proposed and used to
solve dissipative dynamics [30]. As complementing previous
work, the present paper provides conceptual and analytical
results. We have illustrated how to obtain the bath-induced field
of the Caldeira-Leggett model through an elementary solution
of quantum linear systems. Furthermore, we have elaborated

a systematic approach to derive the master equation, if it
exists.

The reduced density matrix can in principle be obtained
by solving the stochastic Liouville equation and calculating
stochastic average. Because it is difficult to have convergent
stochastic averaging, a master equation describing the evo-
lution of the reduced density matrix is highly desired. We
have shown the existence of the master equation relies not
only on the feature of the dissipation characterized by the
spectral density function, but also on the dynamics of the
stochastic system itself. For linear systems, we have found that
the “dissipative operator” due to the interplay of the system
and the stochastic field is exactly solvable and thereby derived
the master equation. We have shown that the master equation
is equivalent to the HPZ equation derived by Hu, Paz, and
Zhang using the path-integral approach [38,39]. We would
like to point out that the coefficients in our master equation
are determined by a set of integral equations, which may not
suffer from the mathematical problems concerned by Fleming,
Roura, and Hu [50].

We have also shown that the master equation of driven
harmonic oscillator can be derived similarly. In this case, the
system is dressed by both the driving and the stochastic fields,
although the dissipation operators appear the same as that of
the undriven case.
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