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In this paper we discuss a novel data compression technique for binary symmetric sources based on the cavity
method over GF(q), the Galois Field of order q. We present a scheme of low complexity and near-optimal
empirical performance. The compression step is based on a reduction of a sparse low-density parity-check code
over GF(q) and is done through the so-called reinforced belief-propagation equations. These reduced codes
appear to have a nontrivial geometrical modification of the space of codewords, which makes such compression
computationally feasible. The computational complexity is O(dnq log2 q) per iteration, where d is the average
degree of the check nodes and n is the number of bits. For our code ensemble, decompression can be done in a
time linear in the code’s length by a simple leaf-removal algorithm.
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I. INTRODUCTION

The relation between information theory and statistical
mechanics of disordered systems has been long established
[1,2]. Since then, various techniques from statistical physics
of disordered systems have been used not only to assess the
theoretical bounds of the achievable performance but also to
provide practical encoding and decoding methods for lossy
data compression. In particular, both cavity method and replica
symmetry breaking techniques have been used to demonstrate
the Shannon results and assess the performance of codes
defined on sparse factor graphs [3–6].

In this paper we address the classical problem of finding
an efficient lossy compression scheme for a generic binary
symmetric source. This objective is reached by exploiting
some unexpected features of the cavity method when applied
to graphical codes defined over a finite field algebra of high
order.

Given any realization y ∈ {0,1}n of a symmetric Bernoulli
process Y, the goal is to compress y by mapping it to a shorter
binary vector such that an approximate reconstruction of y
is possible within a given fidelity criterion. More precisely,
suppose y is mapped to the binary vector x ∈ {0,1}k with
k < n and ŷ is the reconstructed source sequence. The quantity
R = k/n is called the compression rate. The fidelity or
distortion is measured by the Hamming distance dH (y,ŷ) =
(1/n)

∑n
i=1 |yi − ŷi |. The goal is to minimize the average

Hamming distortion D = E[dH (Y,Ŷ)] for any given rate.
The asymptotic limit, known as the rate-distortion function,
is given by R(D) = 1 − H (D) for any D ∈ [0,0.5] where
H (D) = −D log2 D − (1 − D) log2(1 − D) is the binary en-
tropy function.

Our approach in this paper is based on Low-Density
Parity-Check (LDPC) codes. Let C be a LDPC code with
k × n generator matrix G and m × n parity check matrix
H. Encoding in lossy compression can be implemented like
decoding in error correction. Given a source sequence y, we
look for a codeword ŷ ∈ C such that dH (y,ŷ) is minimized.
The compressed sequence x is obtained as the k information
bits that satisfy ŷ = GT x.

Even though LDPC codes have been successfully used for
various types of lossless data compression schemes [7], and the
existence of ensembles that asymptotically achieve the Shan-
non’s bound for binary symmetric sources has been proved [8],
they have not been fully explored for lossy data compression.
It is partially due to the long-standing problem of finding a
practical source-coding algorithm for LDPC codes, and par-
tially because Low-Density Generator Matrix (LDGM) codes,
as dual of LDPC codes, seemed to be more adapted for source
coding and have received more attention in the past few years.

In Ref. [9], Martinian and Yedidia show that quantizing a
ternary memoryless source coding with erasures is dual of the
transmission problem over a binary erasure channel. They also
prove that LDGM codes, as dual of LDPC codes, combined
with a modified Belief Propagation (BP) algorithm can
saturate the corresponding rate-distortion bound. Following
their pioneering work, LDGM codes have been extensively
studied for lossy compression by several researchers [10–15].
In a series of parallel works, several researchers have used
techniques from statistical physics to provide nonrigorous
analysis of LDGM codes [3,5,16]. However, LDGM codes
seem to perform well only for rates smaller than 0.5. As we
will see, our proposed LDPC codes perform very near to the
rate distortion bound for rates larger than 0.5. For smaller rates
the loss in performance can be compensated by increasing the
complexity (number of iterations) of our coding scheme.

In terms of practical algorithms, lossy compression is still
an active research topic. In particular, an asymptotically opti-
mal low-complexity compressor with near-optimal empirical
performance has not been found yet. Almost all suggested al-
gorithms have been based on some kind of decimation of belief
or survey propagation that suffers a computational complexity
of O(n2) [11,15,16]. One exception is the algorithm proposed
by Murayama [5]. When the generator matrix is ultrasparse
(US), the algorithm was empirically shown to perform very
near to the associated capacity needing O(n) computations. A
generalized form of this algorithm, called Reinforced Belief
Propagation (RBP) [17], was used in a dual setting [18], for
ultrasparse LDPC codes (US-LDPC) over GF(2) for lossy
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compression [19]. The main drawback in both cases is the
nonoptimality of US structures over GF(2) [5,10,12]. As we
will see, this problem can be overcome by increasing the size
of the finite field.

Estimation of the weight-enumerating function shows that
randomly constructed US-LDPC codes over GF(q) nearly
achieve the rate-distortion bound for q � 64. Despite this,
practical encoding for these codes is a hard task. The main
problem seems to stem from geometrical properties of the
configuration space: As the codes are good for channel coding,
solutions are isolated and well separated. This characteristic
is known to make the encoding problem difficult to solve for
iterative and local algorithms [20,21]. To improve this step
we introduce the ensemble of b-reduced US-LDPC codes,
which by eliminating a logarithmic number of constraints from
US-LDPC codes just multiplies the number of codewords by
a polynomial. This change has a negligible effect in the rate,
while having a large effect on the performance of the scheme.
Indeed, this modification not only improves the convergence
of the RBP algorithm on encoding, but also provides us with
a simple efficient decoding algorithm.

The rest of this paper is organized as follows. Section II
reviews the code ensemble which we use for lossy compres-
sion. Section III describes the RBP algorithm over GF(q). We
also discuss briefly the complexity and implementation of the
RBP algorithm. In Sec. IV we describe iterative encoding and
decoding for our ensemble and then present the corresponding
simulation results in Sec. V. In Sec. VI we discuss some
properties of the geometry of the space of codewords in
relation to the reduction procedure. A brief discussion on
further research is given in Sec. VII.

II. LDPC CODES OVER GF(q)

In this section we introduce the US-LDPC codes over
GF(q). As we will see later, near Shannon’s bound lossy
compression is possible using these codes and BP-like iterative
algorithms.

A. (λ,ρ) Ensemble of GF(q) LDPC codes

We follow the methods and notations in Ref. [22] to
construct irregular bipartite factor graphs. What distinguishes
GF(q) LDPC codes from their binary counterparts is that each
edge (i,j ) of the factor graph has a label hi,j ∈ GF(q) \{0}. In
other words, the nonzero elements of the parity-check matrix
of a GF(q) LDPC codes are chosen from the nonzero elements
of the field GF(q). Denoting the set of variable nodes adjacent
to a check node j by N (j ), a word c with components in
GF(q) is a codeword if at each check node j the equation∑

i∈N (j ) hi,j ci = 0 holds.
An ensemble of GF(q) LDPC codes is characterized by two

generating polynomials λ(x) = ∑dv

i=1 λix
i−1 and ρ(x) =∑dc

i=1 ρix
i−1 where λi (ρi) denotes the fraction of edges

incident on variable(check) nodes of degree i and dv (dc) is
maximum variable (check) node degree.

A (λ,ρ) GF(q) LDPC code can be constructed from a
(λ,ρ) LDPC code by random independent and identically
distributed selection of the matrix coefficients with uniform
probability from GF(q)\{0}. Note that this may not be an
optimal way for selecting the coefficients. For more details on

code construction and coefficient selection we refer the readers
to Refs. [23] and [24].

B. Code construction for lossy compression

It is well known that the parity check matrix of a GF(q)
LDPC code, optimized for binary input channels, is much
sparser than the one of a binary LDPC code with same
parameters [23,25]. In particular, when q � 26, the best error
rate results on binary input channels is obtained with the
lowest possible variable node degrees, i.e., when almost all
variable nodes have degree two. Such codes have been called
ultrasparse or cyclic LDPC codes in the literature. In the rest of
this paper we call a LDPC code ultrasparse (US-LDPC) if all
variable nodes have degree two. We will mainly concentrate
on codes in which the parity check’s degree distribution is
concentrated on at most two different degree values, for any
given rate.

Given a linear code C and an integer b, a b-reduction of C
is the code obtained by randomly eliminating b parity-check
nodes of C. For reasons to be made clear in Sec. IV, we are
mainly interested in b-reduction of GF(q) US-LDPC codes for
small values of b (1 � b � 5).

GF(q) US-LDPC codes have been extensively studied for
transmission over noisy channels [25–27]. The advantage of
using such codes is twofold. On the one hand, by moving to
sufficiently large fields, it is possible to obtain near-capacity-
achieving codes. On the other hand, the extreme sparseness
of the factor graph is well suited for iterative message-passing
decoding algorithms. Despite the state-of-the-art performance
of moderate length GF(q) US-LDPC channel codes, they have
been less studied for lossy compression, the main reason being
the lack of fast suboptimal algorithms. In the next section we
present the RBP algorithm over GF(q) and then show that
practical encoding for lossy compression is possible by using
RBP as the encoding algorithm for the ensemble of b-reduced
US-LDPC codes.

III. REINFORCED BELIEF PROPAGATION
ALGORITHM IN GF(q)

In this section first we briefly review the RBP equations
over GF(q), and then we discuss in some detail the complexity
of the algorithm following Declercq and Fossorier [27].

A. BP and RBP equations

The GF(q) Belief Propagation (BP) algorithm is a straight-
forward generalization of the binary case, where the messages
are q-dimensional vectors.

Let μ�
vf denote the message vector form variable node v to

check node f at the �th iteration. For each symbol a ∈GF(q),
the ath component of μ�

vf is the probability that variable v takes
the value a and is denoted by μ�

vf (a). Similarly, μ�
f v denotes

the message vector from check node f to variable node v at
the iteration � and μ�

f v(a) is its ath component. Also let N (v)
[M(f )] denote the set of check (variable) nodes adjacent to v

(f ) in a given factor graph.
Constants μ1

v are initialized according to the prior informa-
tion. The BP updating rules can be expressed as follows:
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Local function to variable:

μ�
f v(a) ∝

∑

Conf(v,f )(a)

∏

v′∈M(f )\{v}
μ�

v′f (a); (1)

Variable to local function:

μ�+1
vf (a) ∝ μ1

v(a)
∏

f ′∈N (v)\{f }
μ�

f ′v(a), (2)

where Conf(v,f )(a) is the set of all configurations of variables
in M(f ) that satisfy the check node f when the value of
variable v is fixed to a. We define the marginal function of
variable v at iteration � + 1 as

g�+1
v (a) ∝ μ1

v(a)
∏

f ∈N (v)

μ�
f v(a). (3)

The algorithm converges after t iterations if and only if for
all variables v and all function nodes f ,

μt+1
f v = μt

f v

up to some precision ε. A predefined maximum number of
iterations �max and the precision parameter ε are the input to
the algorithm.

RBP is a generalization of BP in which the messages from
variable nodes to check nodes are modified as follows:

μ�+1
vf (a) ∝ [

g�
v(a)

]γ (�)
μ1

v(a)
∏

f ′∈N (v)\{f }
μ�

f ′v(a), (4)

where γ (�) : [0,1] −→ [0,1] is a nondecreasing function and
g�

v is the marginal function of variable v at iteration �. The
marginals for RBP are defined as

g�+1
v (a) ∝ [

g�
v(a)

]γ (�)
μ1

v(a)
∏

f ∈N (v)

μ�
f v(a). (5)

Intuitively, RBP equations can be thought as a sort of “soft-
decimation” procedure. Indeed, in a decimation procedure
[28], the BP equations are iterated until convergence, and
then an infinite external field with the same sign of the local
field is applied to one or more variables, and the process is
repeated (until all variables receive an infinite field). In the
RBP procedure, every variable receives a finite external field
that is proportional to its own local field [the proportionality
factor being γ (�)]. Moreover, the two time scales (convergence
and external field update) are intermixed.

It is convenient to define γ to be

γ (�) = 1 − γ0γ
�
1 , (6)

where γ0,γ1 are in [0,1].
Note that when γ1 = 1, RBP is the same as the algorithm

presented in Ref. [5] for lossy data compression. In this case
it is easy to show that the only fixed points of RBP are
configurations that satisfy all the constraints.

B. Efficient implementation

Ignoring the normalization factor in (2), to compute all
variable to check-node messages at a variable node of degree
dv we need O(qdv) computations. A naive implementation of
GF(q) BP has computational complexity of O(d2

f q2) opera-
tions at each check node of degree df . This high complexity
is mainly due to the sum in (1), which can be interpreted as a

discrete convolution of probability density functions. Efficient
implementations of function to variable node messages based
on the Discrete Fourier Transform (DFT) have been proposed
by several authors; see, for example, Refs. [23,27,29,30]
and the references therein. The procedure consists in using
the identity

⊙
v′∈M(f )\{v} μv′f = F−1[

∏
v′∈M(f )\{v} F(μv′f )]

where the
⊙

symbol denotes convolution of functions over
GF(q), and the product on the right-hand side is the pointwise
product of real-valued functions.

Assuming q = 2p, the Fourier transform of each mes-
sage μv′f needs O(qp) computations, and hence the total
computational complexity at check node f can be reduced
into O(d2

f qp). This complexity can be further reduced
to O(df qp) by using the fact that

∏
v′∈M(f )\{v} F(μvf ) =∏

v′∈M(f ) F(μv′f )/F(μvf ), or alternatively by using the sum-
mation strategy described in Ref. [31], which has the same
complexity but is numerically more stable. Therefore, the
total number of computations per iteration is O(dqpn),
where d is the average check-node degree. A prototype
C++ implementation of these equations is provided in source
form [32].

IV. ITERATIVE LOSSY COMPRESSION

In the following three subsections we first describe a
simple method for identifying information bits of a b-reduced
US-LDPC code and then present a near-optimal scheme for
iterative compression (encoding) and linear decompression
(decoding).

A. Identifying a set of information bits

For b-reduced US-LDPC codes, one can use the leaf
removal (LR) algorithm to find the information bits in linear
time. In the rest of this section we briefly review the LR
algorithm and show that 1-reduction (removal of a sole check
node) of a US-LDPC code significantly changes the intrinsic
structure of the factor graph of the original code.

The main idea behind the LR algorithm is that a variable
on a leaf of a factor graph can be fixed in such a way that the
check node to which it is connected is satisfied [33]. Given a
factor graph, LR starts from a leaf and removes it as well as
the check node it is connected to. LR continues this process
until no leaf remains. The residual subgraph is called the core.
Note that the core is independent of the order in which leaves
(and hence the corresponding check nodes) are removed from
the factor graph. This implies that also the number of steps
needed to find the core does not depend on the order on which
leaves are chosen.

While US-LDPC codes have a complete core, i.e., there is
no leaf in their factor graph, the b-reduction of these codes have
empty core. Our simulations also indicate that even 1-reduction
of a code largely improves the encoding under RBP algorithm
(see Sec. V). How RBP exploits this property is the subject of
ongoing research.

As we have mentioned, the LR algorithm can be also used
to find a set of information bits of a given US-LDPC code. Let
us examine the LR algorithm in more detail. At any step t of
LR algorithm, a leaf variable node vt attached to a factor node
ft is selected. Denote by Ft the remaining leaf variable nodes
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attached to check node ft (Ft could be empty if there are no
other leaves attached to it). Now we remove check node ft and
leaf nodes in Ft ∪ {vt }, and repeat. Under the hypothesis that
the original graph was connected, this process is guaranteed
to finish at some time T with the empty graph, as at each step
except the last one, at least one leaf is created.

It is easy to see that at each step, if we fix the values
of all variables except those in Ft ∪ {vt }, then for each
configuration of variables in Ft , the value of variable vt is
uniquely determined. Therefore, ∪t=1...T Ft = {w1, . . . ,wN−T }
will form a set of information bits. Indeed, using the ordering
of the variable indices vT , . . . ,v1,w1, . . . ,wN−T , the check
matrix becomes upper triangular, and each solution can be
found by back substitution in linear time once information bits
are fixed.

B. Iterative encoding

Suppose a code of rate R and a source sequence y is
given. In order to find the codeword ŷ that minimizes dH (ŷ,y),
we will employ the RBP algorithm with a strong prior
μ1

v(a) = exp[−LdH (yv,a)] centered around y. The sequence
of information bits of ŷ is the compressed sequence and is
denoted by x. In order to process the encoding in GF(q), we
first need to map y into a sequence in GF(q). This can be
simply done by grouping p bits together and using the binary
representation of the symbols in GF(q).

C. Linear decoding

Given the sequence of information bits x, the goal of the
decoder is to find the corresponding codeword ŷ. This can be
done by calculating the GT x, which in general needs O(n2)
computations. One of the advantages of our scheme is that it
allows for a linear complexity iterative decoding. The decoding
can be performed by iteratively fixing variables following the
inverse steps of the LR algorithm; at each step t only one
noninformation bit is unknown (variable vt ), and its value
can be determined from the parity check ft . For a sparse
parity-check matrix, the number of needed operations is O(n).
It is straightforward to show that a code has an empty core
if and only if there exists a permutation of columns of the
corresponding parity-check matrix H such that hij �= 0 for
i = j and hij = 0 for all i > j . The decoding procedure is
equivalent to back-substitution on this permutated triangular
matrix.

V. SIMULATION RESULTS

A. Approximating the weight enumeration function by BP

Given an initial vector y, and a probability distribution P (c)
over all configurations, the P -average distance from y can be
computed by

DP (y) =
∑

i

∑

ci

P (ci)dH (ci,yi), (7)

where P (ci) is the set of marginals of P . On the other hand,
the entropy of the distribution P is defined by

S(P ) = −
∑

c

P (c) log P (c). (8)
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FIG. 1. (Color online) The approximate WEF of GF(q)
US-LDPC codes as a function of q for a same block length in binary
digits.

Even though it is a hard problem to calculate analytically
both marginals and S(P ) of a given code, one may approximate
them using messages of the BP algorithm at a fixed point
[34]. Assuming the normalized distance is asymptotically a
self-averaging quantity for our ensemble, S(P ) represents
the logarithm of the number of codeword at distance DP (y)
from y. By applying a prior distribution on codewords given
by exp[−LdH (c,y)], one is able to sample the subspace of
codewords at different distances from y.

Figure 1 demonstrates the weight enumerator function
(WEF) of random GF(q) US-LDPC codes for rates 0.3, 0.5, and
0.7 and field orders 2, 4, 16, 64, and 256. The block length is
normalized so that it corresponds to n = 12 000 binary digits.

Though BP is not exact over loopy graphs, we conjecture
that the WEF calculated for US-LDPC codes is asymptotically
exact. This hypothesis can be corroborated by comparing the
plot in Fig. 1 with the simulation results we obtained by using
the RBP algorithm (Fig. 3).

B. Performance

For the simplicity of the analysis, in all our simulations
the parameter γ1 of the RBP algorithm is fixed to one, and
therefore the function γ is constant. We also fix the maximum
number of iterations to �max = 300. If RBP does not converge
after 300 iterations, we simply restart RBP with a new random
scheduling. The maximum number of trials allowed in our
simulations is Tmax = 5. The encoding performance depends
on several parameters such as γ0, L, the field order q, and the
block length n. In the following we first fix n, q, and L, in
order to see how the performance changes as a function of γ0.

1. Performance as a function of γ0

We will show that with this choice of γ (�) = 1 − γ0 there
is a tradeoff, controlled by γ0, between three main aspects of
the performance, namely, average distortion, average number
of iterations, and average number of trials. The simulations
in this subsection are done for a 5-reduced GF(64) US-
LDPC code with length n = 1600 and rate R = 0.33. The
factor graph is made by Progressive-Edge-Growth (PEG)
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FIG. 2. (Color online) Performance as a function of γ0 for a PEG
graph with n = 1600 and R = 0.33. The averages are taken over 50
samples. (a) Average distortion as a function of γ0. For γ0 > 0.96 the
RBP does not converge within 300 iterations. (b) The average number
of iterations. (c) The average number of trials. (d) The average number
of iterations needed for each trial. Note that even though average
number of iterations show a steep increase as a function of γ0, the
average number of iterations needed per trial increases only linearly.

construction [26]. The rate is chosen purposefully from a
region where our scheme has the weakest performance. The
Shannon’s distortion bound for this rate is approximately
0.1754. Note that the nonmonotonous behavior of RBP
as a function of γ0 could be a result of two concurrent
phenomena: For small γ0 the reinforcement dynamics is
too fast and may drive the system to non-codewords; for
large γ0 the reinforcement contribution is small, and the
system does not achieve polarization under the predefined
iteration bound. In the latter case, better performance may
be achieved with γ1 < 1 or simply with a different choice
of γ (�).

In Fig. 2 we plot the performance as a function of γ0. For
γ0 = 0.92 we achieve a distortion of D = 0.1851 needing only
83 iterations on average and without any need to restart RBP
for 50 samples. By increasing γ0 to 0.96, one can achieve an
average distortion of 0.1815, which is only 0.15 dB away from
the rate-distortion bound needing 270 iterations in average.
However, as can be seen in Fig. 2(d), the average number of
iterations needed per trial increases only linearly as a function
of γ0.

2. Performance as a function of R and q

Figure 3 shows the distortion obtained by randomly
generated 5-reduced GF(q) US-LDPC codes for q = 2, 16,
64, and 256. The block length is fixed to n = 12 000 binary
digits. For each given code with rate larger than or equal to 0.3,
we choose γ0 and L so that the average number of trials does
not exceed 2 and the average number of iterations remains
less than 300. The optimized values of γ0 and L are found by
simulations and are reported in Table I for q = 256. Under
these two conditions, we report distortion corresponding to
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FIG. 3. (Color online) The rate-distortion performance of GF(q)
LDPC codes encoded with RBP algorithm for q = 2, 16, 64, and
256. The block length is 12 000 binary digits, and each point is the
average distortion over 50 samples.

best values of the two parameters averaged over 50 samples.
For codes with rates smaller than 0.3, one needs to allow for
larger number of iterations and trials.

As the data in Table I indicate, by increasing the rate, both L

and 1 − γ0 increase. Larger values of L impose stronger prior
values, indicating that the initialized message distribution is
more centered around y. Note that in high rates, if L is not
chosen large enough, the loss in performance is substantial.
On the other hand, γ0 regulates the reinforcement needed.
Values very near to one for low rates indicate essentially the
failure of reinforced strategy. This is not surprising, since in
the absence of a codeword near y, forcing BP to find a solution
is useless.

3. Reduction effect on performance of US-LDPC codes

As we have mentioned, 5-reduced LDPC codes have been
used in our simulations. The reduction improves both the
convergence of the RBP algorithm and the performance of the
our scheme. In Fig. 4 we show how the performance changes
as a function of b. The simulations in this subsection are done
for a GF(64) US-LDPC code of length n = 1600 and rate
R = 0.33 with PEG constructed factor graph.

VI. DISCUSSION ON REDUCED FACTOR GRAPHS

Our results indicate that the scheme proposed in this paper
outperforms the existing methods for lossy compression by
low-density structures in both performance and complexity.
The main open problem is to understand and analyze the
behavior of RBP over b-reduced US-LDPC codes.

TABLE I. The optimal values for L and γ0 obtained experimen-
tally for q = 256.

Rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L 1.1 1.3 1.5 1.7 1.9 2.3 2.4 2.8 3.8
γ0 0.98 0.96 0.94 0.92 0.92 0.90 0.90 0.88 0.88

051111-5



A. BRAUNSTEIN, F. KAYHAN, AND R. ZECCHINA PHYSICAL REVIEW E 84, 051111 (2011)

0.332 0.334 0.336 0.338 0.34 0.342 0.344 0.346
0.165

0.17

0.175

0.18

0.185

0.19

Rate

D
is

to
rt

io
n

Rate−Distortion bound
b−Reduction, b=0,1,5,10,15,20

FIG. 4. (Color online) Performance as a function of b for a PEG
graph with n = 1600 and R = 0.33 over GF(64). The averages are
taken over 50 samples.

We would like to add a few words to the role of b-
reduction. For simplicity, let us concentrate on q = 2, though
the argument is general. First, note that by removing a
parity check node from a code, the number of codewords
is doubled. This increment has an asymptotically negligible
effect on the compression rate since it increases by only
1/n, while the robustness may increase. More generally, it
is possible to significantly alter the geometry of the solution
space while maintaining (asymptotically) the compression
rate: For instance, adding a path {c = d1,d2, . . . ,dk = 0}
of new codewords from each codeword c of a given code
to the codeword 0, such that dH (dt ,dt+1) = 1/n and k � n,
multiplies the number of codewords by at most n and thus
increases the rate by at most log n/n, which is asymptotically
negligible. On the other hand, the codeword space becomes
“star-shaped” and thus connected on the hypercube geometry.
Note that such modified codes may be terrible for channel
coding, as the separation properties may have been severely
worsened (e.g., the minimum distance of the code becomes 1).

We think that a similar phenomenon could take place on
b-reduced codes. On the one hand, the asymptotic rate for
source coding under the proposed scheme is only increased
by b/n, and the performance assuming MAP encoding
can only improve. On the other hand, we believe that the
implied modification of the geometry could ease the task
of our iterative encoder. Indeed, it is well known that large
separation between solutions makes the problem very hard
for iterative and local algorithms [20,21]. In the following we
briefly explain some asymptotic implications of 1-reduction
on the weight-enumerating function of the US-LDPC code
ensemble.

1. 1-Reduced US-LDPC codes

As we have mentioned, canceling a single check node
increases the the cardinality of the code by the factor q. As
we will see, for each codeword c of the original US-LDPC,
there are created q − 1 new codewords, which all have a
distance O(log n) from c. In other words, a cluster of new

codewords emerges for each codeword c. In order to see
this fact, let v and v′ denote two variables of degree one
after removing the parity check a. With a probability that
approaches one, the check node a and both variables v and
v′ belong to a loop of length O(log n) of the original factor
graph as n → ∞. After removing a, this loop is broken, and
for any codeword of the original factor graph one can obtain
new codewords by assigning to v any value from the finite
field and changing accordingly the values of all variables
in the broken loop. Note that this can be done because all
variables in the broken loop have degree two, and v′ can
be adjusted to satisfy the last checknode in the path from
v to v′.

VII. CONCLUSIONS AND PERSPECTIVES

Our main goal in this paper is to provide a low-complexity
coding scheme for lossy data compression with near rate-
distortion bound performance. We propose a practical itera-
tive encoding-decoding scheme that exploits the geometrical
structure of the so-called reduced US low-density parity-
check codes. Our proposed algorithm for encoding can be
considered as a soft decimation strategy for belief propagation
algorithm. The complexity per iteration at the iterative en-
coder depends linearly on both the length of the code and
the order of the field on which the code is defined. The
decoding algorithm is based on a leaf removal algorithm
that has linear complexity on the proposed sparse factor
graphs.

We have investigated the behavior of our scheme for various
field orders and parameters of the proposed algorithm. In
particular, we approximately calculate the weight-enumerating
function of US-LDPC codes as a function of field order
using the BP algorithm. Our estimations show that US-
LDPC codes over GF(q) nearly achieve the rate-distortion
bound for q � 64. Though BP is not exact over loopy
graphs, we conjecture that the WEF calculated for US-LDPC
codes is asymptotically exact. This hypothesis is corrobo-
rated by the simulation results we obtained by using RBP
algorithm.

Our research can be expanded in several directions. For
example, it is interesting to study other US ensembles sharing
similar properties, e.g., where just a certain fraction of variable
nodes of degree one is allowed. Several directions could be
explored in order to obtain more efficient coding schemes:
other choices of the reinforcement rate γ (�), choices of random
codes and coefficient selection, and a L → ∞ version of
the encoder along the lines of [27], as it could allow much
lower computational complexity. Work is in progress in these
directions.
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[21] L. Zdeborová and F. Krzákała, Phys. Rev. E 76, 031131
(2007).

[22] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A.
Spielman, IEEE Trans. Inf. Theory 47, 585 (2001).

[23] A. Bennatan and D. Burshtein, IEEE Trans. Inf. Theory 52, 549
(2006).

[24] D. MacKay, http://www.inference.phy.cam.ac.uk/mackay/
CodesGallager.html (2003).

[25] M. C. Davey and D. MacKay, IEEE Comm. Lett. 2, 165 (1998).
[26] X. Y. Hu and E. Eleftheriou, IEEE Int. Conf. on Communica-

tions, 528 (2004).
[27] D. Declercq and M. Fossorier, IEEE Trans. Communication

Theory 55, 633 (2007).
[28] A. Braunstein, M. Mezard, and R. Zecchina, Rand. Struct.

Algorithms 27, 201 (2005).
[29] T. J. Richardson and R. Urbanke, IEEE Trans. Inf. Theory 47,

599 (2001).
[30] D. J. C. MacKay, IEEE Trans. Inf. Theory 45, 399 (1999).
[31] A. Braunstein, R. Mulet, and A. Pagnani, BMC Bioinformatics

9, 240 (2008).
[32] http://www.polito.it/cmp/code/gfrbp (2011).
[33] M. Mezard, F. Ricci-Tersenghi, and R. Zecchina, J. Stat. Phys.

111, 505 (2003).
[34] J. S. Yedidia, W. T. Freeman, and Y. Weiss, IEEE Trans. Inf.

Theory 51, 2282 (2005).

051111-7

http://dx.doi.org/10.1038/339693a0
http://dx.doi.org/10.1016/j.physa.2006.01.013
http://dx.doi.org/10.1088/1751-8113/42/13/135002
http://dx.doi.org/10.1103/PhysRevE.69.035105
http://dx.doi.org/10.1088/0305-4470/36/43/031
http://dx.doi.org/10.1088/0305-4470/36/43/031
http://dx.doi.org/10.1109/TIT.2003.815805
http://dx.doi.org/10.1109/TIT.2003.815805
http://dx.doi.org/10.1109/ITW.2007.4313151
http://dx.doi.org/10.1109/ITW.2007.4313151
http://dx.doi.org/10.1109/TURBOCODING.2008.4658729
http://dx.doi.org/10.1109/TURBOCODING.2008.4658729
http://dx.doi.org/10.1109/ISIT.2006.261716
http://dx.doi.org/10.1109/ISIT.2006.261716
http://dx.doi.org/10.1109/TIT.2008.2009815
http://dx.doi.org/10.1109/TIT.2008.2009815
http://dx.doi.org/10.1109/TIT.2009.2039160
http://dx.doi.org/10.1109/TIT.2009.2039160
http://dx.doi.org/10.1103/PhysRevLett.95.038701
http://dx.doi.org/10.1103/PhysRevLett.95.038701
http://dx.doi.org/10.1103/PhysRevLett.96.030201
http://dx.doi.org/10.1103/PhysRevLett.96.030201
http://dx.doi.org/10.1109/ISIT.2007.4557497
http://dx.doi.org/10.1109/ISIT.2007.4557497
http://dx.doi.org/10.1103/PhysRevE.77.031118
http://dx.doi.org/10.1103/PhysRevE.77.031118
http://dx.doi.org/10.1103/PhysRevE.76.031131
http://dx.doi.org/10.1103/PhysRevE.76.031131
http://dx.doi.org/10.1109/18.910576
http://dx.doi.org/10.1109/TIT.2005.862080
http://dx.doi.org/10.1109/TIT.2005.862080
http://www.inference.phy.cam.ac.uk/mackay/CodesGallager.html
http://www.inference.phy.cam.ac.uk/mackay/CodesGallager.html
http://dx.doi.org/10.1109/4234.681360
http://dx.doi.org/10.1109/TCOMM.2007.894088
http://dx.doi.org/10.1109/TCOMM.2007.894088
http://dx.doi.org/10.1002/rsa.20057
http://dx.doi.org/10.1002/rsa.20057
http://dx.doi.org/10.1109/18.910577
http://dx.doi.org/10.1109/18.910577
http://dx.doi.org/10.1109/18.748992
http://dx.doi.org/10.1186/1471-2105-9-240
http://dx.doi.org/10.1186/1471-2105-9-240
http://www.polito.it/cmp/code/gfrbp
http://dx.doi.org/10.1023/A:1022886412117
http://dx.doi.org/10.1023/A:1022886412117
http://dx.doi.org/10.1109/TIT.2005.850085
http://dx.doi.org/10.1109/TIT.2005.850085

