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Geometrical expression of excess entropy production
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We derive a geometrical expression of the excess entropy production for quasistatic transitions between
nonequilibrium steady states of Markovian jump processes, which can be exactly applied to nonlinear and
nonequilibrium situations. The obtained expression is geometrical; the excess entropy production depends only
on a trajectory in the parameter space, analogous to the Berry phase in quantum mechanics. Our results imply
that vector potentials are needed to construct the thermodynamics of nonequilibrium steady states.
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I. INTRODUCTION

The investigation of thermodynamic structures of nonequi-
librium steady states (NESSs) has been a topic of active
research in nonequilibrium statistical mechanics [1–17]. For
example, the extension of the relations in equilibrium ther-
modynamics, such as the Clausius equality, to NESSs is a
great challenge [1–8]. The extended thermodynamics, which
is called steady-state thermodynamics (SST) [2], is expected to
be useful in analyzing and predicting the dynamical properties
of NESSs. However, the complete picture of SST has not been
understood.

In equilibrium thermodynamics, the Clausius equality tells
us how one can determine thermodynamic potential (entropy)
by measuring the heat:

�S −
∑

ν

βνQν = 0, (1)

which is universally valid for quasistatic transitions between
equilibrium states. Here ν is an index of the heat baths, βν

is the inverse temperature of bath ν, Qν is the heat that the
system absorbed from bath ν, and S is the Shannon entropy
of the system. The second term on the left-hand side (lhs)
of Eq. (1) is called the entropy production in the baths. To
generalize the Clausius equality to nonequilibrium situations,
it has been proposed [1,2] that heat Qν needs to be replaced by
excess heat Qν

ex, which describes an additional heat induced
by a transition between NESSs with time-dependent external
control parameters such as the electric field. Correspondingly,
the total heat can be decomposed as Qν = Qν

ex + Qν
hk, where

the housekeeping heat Qν
hk describes the steady heat current

in a NESS without any parameter change. Quantitative
definitions of these quantities will be given later. One may
then expect that there exists some thermodynamic potential
SSST that characterizes NESSs such that

�SSST −
∑

ν

βνQν
ex = 0 (2)

holds for quasistatic transitions between NESSs, where the
second term on the lhs corresponds to the excess part of the
entropy production in the baths. Komatsu, Nakagawa, Sasa,
and Tasaki (KNST) found that SSST in Eq. (2) is a symmetrized
version of the Shannon entropy in the lowest order of
nonequilibrium [4,5]. However, the full-order expression of
the extended Clausius equality Eq. (2) has been elusive. The

fundamental questions arise as to what the nonequilibrium
thermodynamic potential SSST in Eq. (2) is in the full-order
expression and whether such a potential exists at all.

In this paper we answer these questions and derive a
full-order expression of the excess entropy production for
Markovian jump processes. We note that driven lattice gases
are special cases of our formulation. We have found that an
extended Clausius equality in the form of Eq. (2) does not hold
in general; the scalar thermodynamic potential SSST should be
replaced by a vector potential. In other words, the first term
on the lhs of Eq. (2) should be replaced by a geometrical
quantity that depends only on trajectories in the parameter
space. Our result includes the equilibrium Clausius equality
Eq. (1) and KNST’s extended Clausius equality as special
cases. We will also derive the general condition that there
exists a thermodynamic potential SSST such that Eq. (2) holds.

We have used the technique of the full counting statistics
[11,18] to prove our main results. In the context of the
full counting statistics (and also stochastic ratchets), it has
been reported [19–26] that several phenomena in classical
stochastic processes are analogous to Berry’s geometrical
phase in quantum mechanics [27,28]. In this analogy, the
above-mentioned vector potential corresponds to the gauge
field that induces the Berry phase. Our result can also
be regarded as a generalization of these previous studies on
the classical Berry phase.

This paper is organized as follows. In Sec. II we formulate
the model of our system and define the decomposition of the
entropy production into the housekeeping and excess parts
based on the full counting statistics. In Sec. III we derive
our main results, which consist of the geometrical expressions
of the excess parts of the cumulant generating function and
the average of the entropy production. In Sec. IV we apply
our main results to two special cases: One is equilibrium
thermodynamics with the detailed balance and the other is
KNST’s extended Clausius equality. In Sec. V we discuss a
quantum dot as a simple example, where Eq. (2) does not hold
in general. In Sec. VI we conclude this paper with a discussion.

II. SETUP

We first formulate our setup and define the decomposition
of the cumulant generating function of the entropy production
into the excess and housekeeping parts.
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A. Dynamics

We consider Markovian jump processes with N < ∞
microscopic states. Let px be the probability that the system
is in state x. The probability distribution of the system is then
characterized by the vector |p〉 := [p1,p2, . . . ,pN ]T , where
1,2, . . . ,N describe the states and T describes the transpose
of the vector. The time evolution of the probability distribution
is given by a master equation |ṗ(t)〉 = R(α(t))|p(t)〉, where
|ṗ(t)〉 describes the time derivative of |p(t)〉 and R(α) is an
N × N matrix characterizing the transition rate of the dynam-
ics with external parameters α. Here the external parameters
correspond, for example, to a potential or a nonconservative
force applied to a lattice gas, or the temperatures of the heat
baths. We drive the system by changing α. For simplicity
of notation, we will often omit α(t) or t in the following
discussion. We note that

∑
x Rxy = 0 holds for every y, where

Rxy is the xy component of R that characterizes the transition
rate from state y to x. We assume that R is irreducible
such that R has eigenvalue 0 without degeneracy due to
the Perron-Frobenius theorem. We write as 〈1| and |pS〉 the
left and right eigenvectors of R corresponding to eigenvalue
0 such that 〈1|R = 0 and R|pS〉 = 0 hold. We note that
〈1| = [1,1, . . . ,1] holds and that |pS〉 = [pS

1 ,pS
2 , . . . ,pS

N ]T is
the unique steady distribution of the dynamics with a given
α. For simplicity, we assume that R is diagonalizable. We
also assume that the transition matrix can be decomposed into
the contributions from multiple heat baths, labeled by ν, as
Rxy = ∑

ν Rν
xy .

We next introduce the entropy production that depends
on trajectories of the system. Such a trajectory-dependent
entropy production has been studied in terms of nonequilib-
rium thermodynamics of stochastic systems [13,29–31]. The
entropy production in bath ν with transition from y to x is
given by

σ ν
xy =

{
ln

Rν
xy

Rν
yx

= −βνQν
xy if Rν

xy �= 0, Rν
yx �= 0

0 if Rν
xy = 0, Rν

yx = 0,
(3)

where Qν
xy is the heat that is absorbed in the system from

bath ν during the transition from y to x. The equality in
Eq. (3) is consistent with the detailed fluctuation theorem
[13,29–31]. The integrated entropy production from time 0
to τ is determined by the trajectory of the system’s states
during the time interval as

σ =
∑

t : jump

σ ν
x(t+0)y(t−0), (4)

where the sum is taken over all times at which the system
jumps and y(t − 0) and x(t + 0) are the states immediately
before and after the jump at t , respectively. We note that the
ensemble average of σ is equivalent to the entropy production
in the conventional thermodynamics of macroscopic systems.
A reason why we consider the trajectory-dependent entropy
production lies in the fact that the entropy production is
connected to the heat through Eq. (3) at the level of each
trajectory.

B. Full counting statistics

We then discuss the full counting statistics of σ . Let P (σ )
be the probability of σ . Its cumulant generating function is
given by

S(iχ ) := ln
∫

dσ eiχσP (σ ), (5)

where χ ∈ R is the counting field. Here S(iχ ) leads to the
cumulants of σ such as 〈σ 〉 = ∂S(iχ )/∂(iχ )|χ=0, where 〈· · ·〉
describes the statistical average. To calculate S(iχ ), we define
the matrix Rχ as (Rχ )xy := ∑

ν Rν
xy exp(iχσ ν

xy) and consider
the time evolution of vector |pχ (t)〉 corresponding to

|ṗχ (t)〉 = Rχ (α(t))|pχ (t)〉, (6)

with initial condition |pχ (0)〉 := |p(0)〉. The formal solution of
Eq. (6) is given by |pχ (t)〉 = T exp←[

∫ τ

0 Rχ (α(t))dt]|p(0)〉,
where T exp← describes the left-time-ordered exponential.
Then we can show that

eS(iχ) = 〈1|pχ (τ )〉 (7)

holds, where 〈·|·〉 means the inner product of the left and right
vectors.

We write the eigenvalues of Rχ as λn
χ , where n = 0

corresponds to the eigenvalue with the maximum real part.
If |χ | is sufficiently small, λ0

χ is not degenerated and Rχ is
diagonalizable. We write as 〈λn

χ | and |λn
χ 〉 the left and right

eigenvectors corresponding to λn
χ , which we can normalize as

〈λn
χ |λm

χ 〉 = δnm, with δnm the Kronecker delta. In particular, we
write 〈λ0

χ | =: 〈1χ | and |λ0
χ 〉 =: |pS

χ 〉. We note that if χ = 0,
〈1χ | and |pS

χ 〉 reduce to 〈1| and |pS〉, respectively.

C. Decomposition of the entropy production

It is known that λ0
χ (α) is the cumulant generating function

of σ in the steady distribution with the parameter α. More
precisely, λ0

χ (α) satisfies

λ0
χ (α) = lim

τ→+∞
S(iχ ; α; τ )

τ
, (8)

where S(iχ ; α,τ ) is the cumulant generating function of σ

from 0 to τ with α fixed.
We then decompose the cumulant generating function into

two parts:

S(iχ ) = Shk(iχ ) + Sex(iχ ), (9)

where Shk(iχ ) is the housekeeping part defined as

Shk(iχ ) :=
∫ τ

0
λ0

χ (α(t))dt (10)

and Sex(iχ ) is the excess part defined as Sex(iχ ) := S(iχ ) −
Shk(iχ ). The average of the excess entropy production is given
by

〈σ 〉ex = ∂Sex(iχ )

∂(iχ )

∣∣∣∣
χ=0

. (11)

We note that the above decomposition is consistent with
that in Refs. [4,5]. In fact, from Eqs. (8) and (11) we can show

〈σ 〉ex = 〈σ 〉 −
∫ τ

0
〈σ̇ 〉hk;α(t)dt, (12)
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where 〈σ̇ 〉hk;α := ∂λ0
χ (α)/∂(iχ )|χ=0 is the long-time average

of the entropy production per unit time with α fixed.

III. MAIN RESULTS

We now discuss the main results of this paper, which we
will refer to as Eqs. (16) and (17). First of all, we expand
|pχ (t)〉 as

|pχ (t)〉 =
∑

n

cn(t)e�n
χ (t)

∣∣λn
χ (α(t))

〉
, (13)

where �n
χ (t) := ∫ t

0 λn
χ (α(t ′))dt ′. We can show that ċ0 =

−∑
n cn〈1χ |λ̇n

χ 〉e�n
χ −�0

χ and 〈1χ |λ̇n
χ 〉 = 〈1χ |Ṙχ |λn

χ 〉/(λn
χ −

λ0
χ ) hold. Therefore, if the speed of the change of the external

parameters is much smaller than the relaxation speed of the
system, we obtain

ċ0(t) 
 −c0(t)〈1χ (α(t))
∣∣ṗS

χ (α(t))
〉
. (14)

Here we have used that the real part of �n
χ − �0

χ is negative for
all n �= 0. We note that this result is similar (but not equivalent)
to the adiabatic theorem in quantum mechanics.

Assume that we quasistatically change the parameter α

between time 0 and τ along a curve C in the parameter space.
The solution of Eq. (14) is given by

c0(τ ) = c0(0) exp

(
−

∫ τ

0
dt

〈
1χ (α(t))

∣∣ṗS
χ (α(t))

〉)

= c0(0) exp

(
−

∫
C

〈1χ |d∣∣pS
χ

〉)
, (15)

where d on the right-hand side (rhs) means the total differential
in terms of α such that d|pS

χ 〉 := dα · ∂
∂α

|pS
χ 〉. Let the initial

distribution be the steady distribution |p(0)〉 = |pS(α(0))〉,
which leads to c0(0) = 〈1χ (α(0))|pS(α(0))〉. We then obtain
the excess part of the cumulant generating function as

Sex(iχ ) =
∫

C

〈1χ |d∣∣pS
χ

〉
+ ln〈1χ (α(0))|pS(α(0))〉 + ln

〈
1
∣∣pS

χ (α(τ ))
〉
, (16)

where the rhs is geometrical and analogous to the Berry phase
in quantum mechanics [27]; it depends only on the trajectory
C in the parameter space. More precisely, the rhs of Eq. (16) is
analogous to the noncyclic Berry phase [26,28]. We note that
�n

χ (τ ) is analogous to the dynamical phase. In this analogy,
|pS

χ 〉 and Rχ correspond to a state vector and a Hamiltonian,
respectively. The equality in Eq. (16) is our first main result.

In the terminology of the Berry phase, 〈1χ |d|pS
χ 〉 corre-

sponds to a vector potential or a gauge field whose base space
is the parameter space. The second and third terms on the
rhs of Eq. (16) confirm the gauge invariance of Sex(iχ ), as
is the case for quantum mechanics [28], where the gauge
transformation corresponds to the transformation of the left
and right eigenvectors of Rχ (α) as 〈1χ (α)| �→ 〈1χ (α)|e−θ(α)

and |pS
χ (α)〉 �→ eθ(α)|pS(α)〉 with θ (α) a scalar. We note that

several formulas that are similar to Eq. (16) have been obtained
for different setups [20–22,24–26].

By differentiating Eq. (16) in terms of iχ , we obtain
a simple expression of the average of the excess entropy
production: ∫

C

〈1′|d|pS〉 + 〈σ 〉ex = 0, (17)

where 〈1′| := ∂〈1χ |/∂(iχ )|χ=0. The equality in Eq. (17) is
the second main result, which is the full-order expression of
the average of the excess entropy production. In contrast to
Eq. (2), the first term on the lhs of Eq. (17) is not given by
the difference of a scalar potential SSST, but by a geometrical
quantity. We also refer to 〈1′|d|pS〉 as a vector potential.

We can explicitly calculate 〈1′|. By differentiating both
sides of 〈1χ |Rχ = λ0

χRχ in terms of iχ , we have 〈1′| =
−〈1|∂Rχ/∂(iχ )|χ=0R

† + k〈1|, where R† is the Moore-
Penrose pseudoinverse of R and k is an unimportant constant.
Therefore, we obtain

〈σ 〉ex =
∫

C

∑
νxyz

σ ν
xyR

ν
xyR

†
yzdp

S
z . (18)

Similar formulas for particle currents have been obtained in
Refs. [19,23].

We consider next the condition for the existence of the ther-
modynamic potential SSST that satisfies Eq. (2). For simplicity,
we assume that the parameter space is simply connected, i.e.,
there is no hole or singularity. The necessary and sufficient
condition for the existence of SSST is that the integral in the
first term on the lhs of Eq. (17) is always determined only by the
initial and final points of C or, equivalently,

∮
C
〈1′|d|pS〉 = 0

holds for every closed curve C. In addition, the Stokes theorem
states that

∮
C
〈1′|d|pS〉 = ∫

S
d(〈1′|d|pS〉) holds, where S is

a surface whose boundary is C and d means the exterior
derivative. By using the wedge product, we have

d(〈1′|d|pS〉) = d〈1′| ∧ d|pS〉 :=
∑

x

d1′
x ∧ dpS

x

=
∑
xkl

∂1′
x

∂αk

∂pS
x

∂αl

dαk ∧ dαl,

where 1′
x means the x component of the vector 〈1′| and αk is

the k component of α. Therefore, the necessary and sufficient
condition is that

d〈1′| ∧ d|pS〉 = 0 (19)

holds in every point of the parameter space. Equation (19) is
equivalent to

∑
x

(
∂1′

x

∂αk

∂pS
x

∂αl

− ∂1′
x

∂αl

∂pS
x

∂αk

)
= 0 (20)

for all (k,l). In the terminology of the gauge theory, d〈1′| ∧
d|pS〉 corresponds to the strength of the gauge field or the
curvature. For the case of the U (1)-gauge theory, the curvature
is the magnetic field.

In equilibrium thermodynamics, Eq. (19) holds due to the
Maxwell relation and 〈1′|d|pS〉 becomes the total differential
of the Shannon entropy, as we will see in the following section.
In contrast, Eq. (19) does not hold for transitions between
NESSs in general. In this sense, the vector potential 〈1′|d|pS〉
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plays a fundamental role instead of the scalar thermodynamic
potential (i.e., the Shannon entropy) in SST.

IV. SPECIAL CASES

In this section we discuss two special cases in which the
first term on the lhs of Eq. (17) reduces to the total differential
of a scalar thermodynamic potential.

A. Equilibrium thermodynamics

In general, we can explicitly show that Eq. (17) reduces
to the equilibrium Clausius equality if the detailed balance
is satisfied. Let Ex be the energy of state x. The transition
rate is given by Rxy = eβ(Ey−Wxy ) with Wxy = Wyx , the steady
distribution is given by pS

x = e−βEx /Z with Z the partition
function, and the entropy production in a bath is given by σxy =
−β(Ex − Ey) = −βQxy . In the quasistatic limit, the system
is in contact with a single heat bath with inverse temperature
β at each time, while β can be time dependent. We then obtain

〈1′|d|pS〉 =
∑

x

βExdp
S
x = d

(
−

∑
x

pS
x ln pS

x

)
, (21)

which means that 〈1′|d|pS〉 is the total differential of the
Shannon entropy.

B. KNST’s extended Clausius equality

We now show that Eq. (17) reduces to KNST’s extended
Clausius equality [4,5] in the lowest order of nonequilibrium.
Here we assume that for every (x,y) there exists at most a
single ν that satisfies Rν

xy �= 0, so that we can remove the index
ν. This is the same assumption as in Refs. [4,5]. Moreover,
we formally introduce the time reversal of states: The time
reversal of the state x, denoted by x∗, is assigned in the phase
space. Since we are considering stochastic jump processes
that usually do not have any momentum term, we just interpret
the correspondence x �→ x∗ as a formal mathematical map.
Correspondingly, we should replace ln(Rν

xy/R
ν
yx) in Eq. (3)

by ln(Rν
xy/R

ν
y∗x∗ ). Only with this replacement do all of the

foregoing arguments remain unchanged in the presence of the
time reversal. We also assume that in thermal equilibrium,
pS

x = pS
x∗ holds. We define

η :=
∑
xyz

ln
(
pS

x∗
/
pS

y∗
)
RxyR

†
yzdp

S
z =

∑
x

(
ln pS

x∗
)
dpS

x (22)

and R̃xy := Ry∗x∗pS
x∗/pS

y∗ . Here R̃ is the adjoint of R for the
cases of x = x∗ [9,12]. We note that

∑
x R̃xy = 0 holds for

every y. Since R = R̃ holds if the detailed balance is satisfied,
we characterize the nonequilibrium of the dynamics by ε :=
maxxy |(R̃xy − Rxy)/Rxy |. We then obtain

〈1′|d|pS〉 + η =
∑
xyz

ln(R̃xy/Rxy)RxyR
†
yzdp

S
z

=
∑
xyz

(R̃xy − Rxy)R†
yzdp

S
z + O(ε2�)

= O(ε2�), (23)

1 2 3 4 5

0.05

0.10

0.15

L

S

(a) (b)

-Δ
L

uR

FIG. 1. (a) Schematic of the model of a quantum dot. A single
electron is transferred to and from the two heat baths with chemical
potentials μL and μR . (b) 〈σ 〉ex (solid line) and −�S (dashed line)
for quasistatic processes. They are coincident with each other up to
second order of the nonequilibrium of the final state, which is denoted
by u.

where � := maxx |dpS
x | characterizes the amount of the

infinitesimal change of the steady distribution. In addition,

η = d

(∑
x

pS
x ln

√
pS

x pS
x∗

)
+ O(ε2�) (24)

holds [5]. From Eqs. (23) and (24) we obtain

〈1′|d|pS〉 = d

(
−

∑
x

pS
x ln

√
pS

x pS
x∗

)
+ O(ε2�), (25)

which implies KNST’s extended Clausius equality, where the
first term on the rhs is the total differential of the symmetrized
Shannon entropy. We note that if we gradually change the
parameter α from an equilibrium distribution, then KNST’s
extended Clausius equality is valid up to O(ε2) because � =
O(ε) holds.

V. EXAMPLE

As a simple example that illustrates the absence of a scalar
thermodynamic potential, we consider a stochastic model of a
quantum dot that is in contact with two baths that are labeled
by ν = L and R [see also Fig. 1(a)] [18]. This model describes
the stochastic dynamics of the number of electrons in the dot
by a classical master equation.

An electron is transferred from the baths to the dot one
by one or vice versa. We assume that the states of the dot
are x = 0 and 1, which respectively denote that the electron
is absent and occupies the dot. The probability distribution is
described by |p〉 = [p0,p1]T and the transition rate is given
by R = ∑

ν=L,R Rν with

Rν =
[−γνfν γν(1 − fν)

γνfν −γν(1 − fν)

]
, (26)

where γν is the tunneling rate between the dot and bath ν

and fν = (eβ(E−μν ) + 1)−1 is the Fermi distribution function
with β the inverse temperature of the baths, μν the chemical
potential of bath ν, and E the excitation energy of the dot.
The entropy production is given by σ ν

00 = σ ν
11 = 0 and σ ν

10 =
−σ ν

01 = σν with σν := β(μν − E). For simplicity, we set γL =
γR =: γ . Without loss of generality, we assume that the control
parameters are σL and σR .
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We can explicitly calculate the vector potential as

〈1′|d|pS〉=− 1
4 (σL + σR)[fL(1 − fL)dσL + fR(1 − fR)dσR]

(27)

and the curvature as

d〈1′| ∧ d|pS〉 = 1
4 [fL(1 − fL) − fR(1 − fR)]dσL ∧ dσR.

(28)

Therefore, the curvature vanishes only if μL = μR or 2E =
μL + μR holds. The former case corresponds to equilibrium
thermodynamics. Since the curvature vanishes only on the
two lines in the two-dimensional parameter space, any scalar
potential cannot be defined on the entire parameter space.
We note that the quantities that we have calculated here are
different from those in previous research [20–22,24,25].

As a simple illustration, we consider the following situation.
The dot is initially in thermal equilibrium with σL = σR = 0.
We then quasistatically change σL from 0 to u, while σR is
not changed. We calculate 〈σ 〉ex = ∫ u

0 σLfL(1 − fL)dσL/4
for this process. For comparison, we also calculate the
difference of the Shannon entropy between the initial and final
distributions of the dot, denoted as �S. Figure 1(b) shows
〈σ 〉ex (solid line) and −�S (dashed line) versus u. They are
coincident with each other up to O(u2), which is consistent
with the extended Clausius equality discussed in Sec. IV B
with u = O(ε) = O(�).

VI. CONCLUSION

We have derived the geometrical expressions of the excess
entropy production for quasistatic transitions between NESSs:
Eq. (16) for Sex(iχ ) and Eq. (17) for 〈σ 〉ex. Our results
imply that the vector potentials 〈1χ |d|pS

χ 〉 and 〈1′|d|pS〉 play

important roles in SST. We have also derived the condition
Eq. (19) that a scalar thermodynamic potential exists.

We note that the arguments in Secs. II and III are not
restricted to the case of entropy production σ ν

xy , but can be
formally applied to an arbitrary quantity f ν

xy that satisfies
f ν

xx = 0. In fact, even if we replace σ ν
xy by any f ν

xy , the formal
expressions of the main results in Sec. III remain unchanged.
However, we have explicitly used the properties of σ ν

xy such as
Eq. (3) in Sec. IV.

We also note that, as is the case for the gauge theory, we
can rephrase our results in Eqs. (15) and (16) in terms of
differential geometry [32]. We consider a trivial vector bundle
whose base manifold is the parameter space {α}. The fiber
is C and c0(t) in Eq. (13) is an element of the fiber. Then
〈1χ |d|pS

χ 〉 is a connection form and Eq. (14) describes the
parallel displacement of c0 with the connection along curve C.

In this paper we have assumed that nonequilibrium dynam-
ics is modeled by a Markovian jump process with transition
rate R being diagonalizable. The generalization of our results
to other models of nonequilibrium dynamics is a future
issue. For example, it is worth investigating whether our
result can be generalized to Langevin systems. Moreover, the
investigation of the usefulness of our results in nonequilibrium
thermodynamics is also a future challenge.
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