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Ideal chains with fixed self-intersection rate
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We consider ideal chains in a hypercubic lattice Zd , d � 3, with a fixed ratio m of self-intersection per
monomer. Despite the simplicity of the geometrical constraint, this model shows some interesting properties,
such as a collapse transition for a critical value mc. Numerical simulations show a self-avoiding-walk-like
behavior for m < mc, and a compact cluster configuration for m > mc. The collapse seems to show the same
characteristics as the canonical thermodynamical models for the coil-globule transition.
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I. INTRODUCTION

Polymer models have been the subject of extensive theo-
retical and numerical studies. Most of these models are based
on ideal flexible chains, with the addition of various kinds of
interactions between monomers, to include some nontrivial
properties of real systems [1,2].

Very important is the excluded volume effect, which
significantly modifies the fractal properties (the chains behave
like self-avoiding walks, SAW); and the coil-globule (CG)
transition, in which a flexible chain collapses from an extended
coil to a liquid-like globule [2,3].

Most of the thermodynamic models that show the CG
transition usually consider a competition between interactions
of different geometrical nature. For instance, one can consider
a lattice random chain with repulsive on-site interactions and
attractive nearest-neighbor links. The transition arises from the
competition of these interactions.

Let ω = {S0,S1, . . . ,Sn} be an n-step simple random walk
(SRW) on the Zd lattice (Si are lattice vectors), and define
the number of visits to each site x as ψx = ∑

i δ(x − Si). A
canonical model, incorporating excluded volume and a CG
transition, is described by the Hamiltonian

H[ψ] = ε0

∑
x

ψ2
x − ε1

∑
〈x,y〉

ψxψy, (1)

where 〈x,y〉 indicates nearest neighbors (taking ε1 = 0 will
lead to the Domb-Joyce model; see [4]).

A few years ago an interesting thermodynamic model that
shows a transition with only on-site interactions was proposed
[5]. However, a competition between two geometrically
different constraints is still present since a self-avoidance is
incorporated through restricting the maximal number of visits
per site.

To our knowledge all the thermodynamic models proposed
so far, having only one kind of short-range interaction, do not
allow for the CG transition in the Boltzmann parameter.

In this work we will show how excluded volume effects,
the CG transition, and liquid-like clusters can be obtained by
imposing a single global geometric constraint. We consider
ideal chains in a hypercubic lattice Zd , d � 3, with a fixed
ratio m of self-intersections per monomer.
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This model shows a CG transition for a critical ratio mc: Nu-
merical simulations (obtained by a standard implementation
of the pruned-enriched Rosenbluth method, PERM, see [6–9])
indicate a SAW-like behavior for m < mc (for a review of
SAW see [10–12]) and a cluster configuration for m > mc.
In addition the model is among the simplest with a crossover
from SAW to cluster behavior. Our focus will be on d � 3
lattices because in these lattices, as we shall see, the transition
occurs at nontrivial values of mc.

II. MODEL DEFINITION

Consider an ideal chain ω of n steps on Zd (without loss
of generality we take S0 = 0). We call R[ω] the range of
ω (number of distinct lattice sites visited by the path), and
M[ω] = (n + 1) − R[ω] the number of self-intersections.

Let Pn(M) be the fraction of SRW, of length n, with exactly
M ∈ [0,n − 1] self-intersections. We introduce mean value
〈Mn〉 and variance 〈�M2

n〉 = 〈M2
n〉 − 〈Mn〉2 of the distribution

Pn(M). It is well known (see [4]) that for SRW in d � 3, d �= 4,

〈Mn〉 = Cdn − �dn
2−d/2 + O(1), (2)

where Cd is the probability that an infinite length walk contains
its starting site at least twice (for numerical values of Cd , see
[13]), and �d is exactly known [for d = 4 the main fluctuation
is actually �4 log(n)] [4,13]. Concerning the variance, Jain
and Pruitt have shown that 〈�M2

n〉 ∝ n log(n) for d = 3, and
〈�M2

n〉 ∝ n for d � 4 [4,14]. They have also shown that for
d � 2

ξ = lim
n→∞(M − 〈Mn〉)/

〈
�M2

n

〉
(3)

is normally distributed, from which it follows that Pn(M) is
peaked around its mean value for long walks.

We are interested in chains in which the rate of intersections
per monomer is fixed at a certain value m ∈ [0,1] in the
thermodynamic limit. We define the ensemble �m of n-step
walks with exactly M = 	m(n − 1)
 intersections, and �, the
ensemble of all n-step SRW; we call 〈·〉m the average on �m,
and 〈·〉 that of �.

For large n we can approximate 	m(n − 1)
 � mn. Hence-
forth we will work under this approximation. We introduce
the fraction of m-intersection rate walks as Pn(m). From the
properties of Pn(M) it follows that Pn(m) is peaked around
〈m〉 = Cd when n → ∞.
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FIG. 1. Exponents νd (m) vs m/Cd from simulations at various
lattice dimensions. The graph shows the behavior of νd (m), obtained
from fits of log(〈S2

n〉m) vs log(n). The range for all fits is n ∈
[0.8nM,nM ]. Maximal length for simulated walks was nM = 2 × 103

for d = 2, nM = 103 for d = 3, nM = 103 for d = 4, nM = 0.5 × 103

for d = 5, and nM = 0.3 × 103 for d = 6. Moreover, for d = 3, the
log(〈S2

n〉m) has been achieved by using m = C3M/〈Mn〉, with an n

dependence, to take into account the finite size of the chains (see
Fig. 2). For d > 3, the finite size effects are much weaker and this
correction is not necessary. The picture for d = 4, m < mc shows
an exponent slightly larger than 1 [a correction of order O(10−2)],
consistent with the expected logarithmic correction (for chains of
length 103 an exponent of 2ν � 1.070 would be predicted). In the
n → ∞ limit, νd (m) is expected to be a step function (see Fig. 3).
The present graph shows the step at mc: For d = 3,4 we expect
mc = Cd ; for d � 5 simulations suggest mc > Cd .

Let 〈S2
n〉m be the mean square end-to-end distance on �m.

From our simulations we find that the relation 〈S2
n〉m ∝ n2νd (m)

holds for any dimension considered, with the exponent νd (m)
dependent on m and d. Again, for d � 3, the simulations
show the existence of a critical value mc ∈ (0, 1) beyond
which the chains collapse into a compact liquid-like globule,
with νd (m) = 1/d. If instead m < mc we have the SAW-like
behavior (Figs. 1 and 2; see also Fig. 3). As a preliminary
observation we can state that, since for m = 0 we have the
self-avoiding walk, then 〈S2

n〉0 � Ddn
2νd (νd is the correlation

length exponent for the SAW, see [10]). On the other hand,
from Eq. (3) it follows that the relation

∫ bn

−bn

dε
〈
S2

n

〉
Cd+ε

Pn(Cd + ε) � n (4)

should hold in the large n limit and bn = o(1). This is clearly
confirmed by our simulations.

III. GENERAL RESULTS

We will briefly discuss the recurrent cases d = 1,2. For
d = 1 we have a rather simple situation: In a linear lattice chain
the end-to-end distance is proportional to the range, hence
proportional to n, ∀m < 1. A unidimensional SRW is recurrent
(C1 = 1; see [4]); therefore no drop of ν1(m) is expected for

FIG. 2. Exponent ν3(m) vs m, a comparison of simulations with
and without finite-size corrections. The chart, from fits in the form
log(〈S2

n〉m) vs log(n), compares m = M/n (empty circles) with m =
C3M/〈Mn〉 (full circles); 〈Mn〉 is obtained from Eq. (2). Essentially,
M is rescaled with the average value of the support (range) 〈Rn〉 =
n − 〈Mn〉; this procedure leads to a significant improvement of the
accuracy, at least for m > C3 (vertical dotted line). Given that the
two curves in the limit n → ∞ must converge, it is clear that for
nM = 103 we are still far from the asymptotic regime. This fact is
emphasized in Fig. 3 in which we can see how the drop band for
d = 3 vanishes very slowly compared to d > 3.

m < 1. At d = 2 the picture is conceptually similar. We find
ν2(m) = ν2 (data in Fig. 1), and since the square lattice SRW
is still recurrent (C2 = 1; from [4]) from Eq. (4) we expect that

FIG. 3. Slope of νd (m) in the drop band. The graph shows (in
log-log scale) the maximum slope Gd (n) = −[∂mνd (m)]min of νd (m)
for different lengths n, which is an estimator of the drop band width
[proportional to G−1

d (n)] in which νd (m) falls from νd to 1/d . Gd (n)
seems to increase with a power law, supporting the idea that νd (m) is
a step function in the limit n → ∞. Dotted lines are power law Bnα

fits to the data: α = 0.29 ± 0.01 for d = 3 (without the finite-size
correction C3/〈Mn〉), α = 0.67 ± 0.03 for d = 4, α = 0.83 ± 0.05
for d = 5, and α = 1.02 ± 0.07 for d = 6. From this data we can
notice that the width of the drop band decreases faster in n as lattice
dimension d increases.
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this relation holds for any m < 1 (see later discussion about
the case d = 3).

The most important case is clearly d = 3: From simulations
we find that ν3(m < mc) = ν3, and ν3(m > mc) = 1/3. The
last statement needs some attention; we point out that ν3(m >

mc) = 1/3 is reached only after a long crossover. Figure 2
shows ν vs n−1M and C3M/〈Mn〉. The former does not
consider the finite size of the system, while the latter takes into
account fluctuations of the walk mean support (range) 〈Rn〉
at finite n (see [15]). This enhancement allows a significant
improvement of the accuracy for d = 3 [while is useless in
higher dimensions, since, by Eq. (2), the range converges
rapidly to its asymptotic behavior].

From Eq. (4) we can locate mc for d = 3. If 〈S2
n〉m has the

SAW-like behavior (with ν3 > 1/2; see [11]) for m < mc, and
cluster-like for m > mc, then the drop of ν3(m) must lie within
the range of integration of Eq. (4). It follows that mc = C3

for n → ∞. As for the exponent at the critical point, Eq. (4)
tells us that νd (m → Cd ) = 1/2, from which it follows that
ν3(mc) = 1/2. This observation is supported by Figs. 1 and
2, where we see that 2ν3(m) passes through 1 at the expected
critical point mc = C3.

This latter fact is of some importance, since the transition
for d = 3 would show the same behavior as that described
by the Hamiltonian in Eq. (1). If the two models belong to
the same universality class this would be very interesting,
since in our model the transition arises from the necessity of
maximizing the configurational entropy, without the need for
any further interactions. Indeed, at the critical point mc there
is a radical change in the optimal strategy to achieve the global
constraint m (which is actually a long-range correlation).
For m < mc, the best way to change the ratio m is to
compress (or expand) the chain locally, keeping the SAW-like
fractal structure. In this situation the monomers intersect (on
average) only within a certain distance along the chain. For
m > mc instead, it becomes entropically convenient to assume
a compact configuration, also allowing intersections between
monomers very far apart in terms of position along the chain.

We also studied higher dimensions; the results are consis-
tent with a CG transition of the same kind. For d = 4 we have
ν4(m > mc) = 1/4 and ν4(m < mc) = 1/2, but the random-
coil behavior shows logarithmic corrections. Simulations fit
the conjecture that 〈S2

n〉m ∝ n log(n)1/4, as in the SAW case
[10]. If this is true, from Eq. (4), we should again find mc = C4.

As expected, for d � 5, m < mc, we find the mean field
behavior νd (m) = 1/2 (as for the SRW), and νd (m) = 1/d for
m > mc. Since for d � 5 νd (m < mc) is the same as for the
SRW, we neither use Eq. (4) to locate mc nor find νd (mc),
but our simulations [extremes of the drop zone of νd (m), d =
5,6 in Fig. 1] strongly suggest that mc > Cd . All results and
conjectures about the behavior of 〈S2

n〉m have been summarized
in Table I.

We would like to point out that all results for d � 3, m �
mc, are consistent with a remarkable exact work by van den
Berg, Bolthausen, and den Hollander [16] on the moderate
deviations for the volume of a Wiener sausage (WS), which is
a neighborhood of the trace of a standard Brownian motion up
to a time t , given by taking all points within a fixed distance
a of Brownian motion (essentially a continuous version of our
model; see [17]). Let η(t), t � 0 be the standard Brownian

TABLE I. Summary of predictions for νd (m). For d = 5,6 we
were unable to look at the critical behavior, while the critical point
mc is evaluated by the drop zone of νd (m). The l.c. indicates SAW
logarithmic correction in d = 4.

d ν(m < mc) ν(m = mc) ν(m > mc) mc/Cd

3 ν3 1/2 1/3 1
4 1/2 l.c. 1/2 1/4 1
5 1/2 1/5 1.5 ∼ 2.7
6 1/2 1/6 2.1 ∼ 4.4

motion in Rd starting at the origin. The WS Wa(t) with radius
a is the process defined by

Wa(t) =
⋃

0�s�t

Ba(η(s)), (5)

where Ba(x) is the open ball with radius a around x ∈ Rd . This
paper considers the probability of having a Wiener sausage
Wa(t) of volume |Wa(t)| � bt , b ∈ [0,κa] [κat is the long-time
behavior of 〈|Wa(t)|〉], showing that there exists a critical value
bc below which the sausage is supposed to collapse in a swiss-
cheese like compact configuration [a nonpercolating cluster
with random holes of size O(1)]. They rigorously showed that
bc ∈ (0,κd ) for d � 5 only, while for d = 3,4 the transition is
at bc = κa exactly.

IV. ORDER PARAMETER

Typically the order parameter considered for a CG transition
is n−1〈S2

n〉β (with 〈·〉β being the thermodynamic average); we
propose here a slightly different parameter:

�d (m) = lim
n→∞

√〈
S2

n

〉
m
/
〈
S2

n

〉
0. (6)

This function vanishes beyond the critical point, similarly to
the magnetization for spin systems. If the analogy with the CG
transition from Eq. (1) holds, we should expect a second-order
transition, at least for d = 3.

Our simulations (Fig. 4) do not allow us to clarify whether
the transition is continuous at mc. However, for d = 3 we can
get some insights by a mean-field analysis of the Stanley model
(SM; see [18]), a model of correlated random walks defined
by the following partition function:

Zn(β) ∝
n∑

M=0

Pn(M)e−βM. (7)

Given that variable ξ in Eq. (3) is normally distributed, it is
easy to show that for small β

lim
n→∞ n−1〈Mn〉β � C3 − δm(β), (8)

where 〈Mn〉β is the mean number of intersections in the
SM at temperature β, and δm(β) vanishes for β → 0. From
Eq. (3) we have a Gaussian shape Pn(M) near M = C3n, with
〈�M2

n〉 ∝ n log(n). By replacing M → mn in Eq. (7) we find

Zn(β) ∝
∫ 1

0
dm exp

[
− n

2

(
2βm + n

〈
�M2

n

〉−1
δm2

)]
(9)
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FIG. 4. Order parameter �d (m) vs m/Cd from simulations at
various lattice dimensions. The graph shows 〈S2

n〉m/〈S2
n〉0: n = 103 for

d = 3, n = 2 × 103 for d = 4, n = 103 for d = 5, and n = 0.5 × 103

for d = 6. The vertical dotted line is the expected transition point
for d = 3,4 as n → ∞. The asymptotic behavior near mc is only
hinted, since our PERM implementation, which requires us to store
the microcanonical density of states at many n, has not allowed us
to simulate longer chains. Better pictures could surely be achieved,
by more focused techniques, for every dimensions except d = 4. For
d = 4 and m < C4 we expect n−1〈S2

n〉m to be only O( log(n)1/4),
implying the asymptotic behavior would be difficult to demonstrate
clearly even by simulation for very large chains.

for small β, with δm = (C3 − m) � 0. Whereas there is a
positive constant a0 such that 〈�M2

n〉 > a0n for large n,
performing a saddle point integration on Eq. (9) with n → ∞
we obtain δm(β) > c0β (for small β and c0 > 0).

From simple mean-field arguments (see [21]) it is reason-
able to assume that the SM can be approximately described by
the Flory theory. Consider the following Flory energy:

Fβ(r) ∼ βn2r−d + r2

2n
− (d − 1) log(r) + �(n), (10)

where r = |Sn| is the end-to-end distance, and �(n) is a
function independent of r [10]. We minimize the functional
under the assumption r ∼ βθnν ; thus

dβ1−θ(1+d)n2−ν(1+d) + (d − 1)β−θn−ν = βθnν−1. (11)

When νd < 2 we find ν = 3/(d + 2) and θ = 1/(d + 2),
otherwise ν = 1/2 and θ = 0. When d = 3 this theory predicts
θ = 1/5. A different estimation method uses path integrals;
results are in agreement [22].

Flory theory for SM where d = 3 predicts 〈S2
n〉β ∝ β2/5n6/5

for small β; inverting δm(β), and substituting in the expression
for 〈S2

n〉β , we find �3(m) < b0δm
1/5, with δm = (C3 − m) �

0, b0 > 0.
In the case d = 4 Flory theory cannot be used, since

the logarithmic correction to the mean-field behavior is not
captured. Note that the d � 5 theory predicts θ = 0, in
agreement with the prediction mc > Cd for d � 5.

The exponents found are certainly incorrect, since ν3 �=
3/5, but a power-law behavior �3(m) ∝ δmθ (with a likely
logarithmic correction) is reasonable, suggesting that in d = 3
the transition is of the second order, with mc = C3.

V. CONCLUSION AND OUTLOOK

In this paper we introduced a new athermal model of
interacting random walks, which shows a CG transition for a
critical ratio between the range and the number of monomers.
The transition seems to show the same characteristics as
that seen in canonical models. However, the relationship
between our microcanonical model and those canonical for
the CG transition is nontrivial (for a general discussion on the
differences between microcanonical and canonical ensembles
see [23]).

The Hamiltonian in Eq. (1), as well as the interaction
described in Ref. [5], operates a selection on the ensemble �

whose mechanisms are not easily connected to the ensemble
�m. Although this is a key issue, we do not discuss it here; a
work dedicated to this subject is currently under preparation,
where we will present a detailed study of the Pn(m) distribution
and its relation to some thermodynamic models.

Apart from more focused implementation of the simulations
here presented, other issues of interest could affect the
connectivity properties of collapsed clusters (an example is
found in [16]; collapsed WS clusters should be nonpercolating,
with O(n) holes sized O(1) distributed inside the range; is
reasonable to expect the same behavior for our model when
m > mc).

In general, this model certainly deserves attention since,
in our opinion, it could lead to substantial improvements in
understanding the geometry of CG transitions, as well as the
crossover between the SAW and the SRW.
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