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Persistence in reactive-wetting interfaces
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In this paper, we report on persistence results of reactive-wetting advancing interfaces performed with mercury
on silver at room temperature. Earlier kinetic roughening studies of reactive-wetting systems at room temperature
as well as at high temperatures revealed some limited information on the spatiotemporal behavior of these systems.
However, by calculating the persistence exponent, we were able to identify two distinct kinetic time regimes
in this process. In the first one, while the interface is moving but its width is not yet growing, the persistence
exponent is θ = 0.55 ± 0.05, which is typical for a random, noisy behavior. In the second regime, there is an
effective growth of the interface width with a growth exponent β = 0.67 ± 0.06 followed by saturation, according
to the Family-Vicsek description of interface growth. The persistence exponent in this regime is θ = 0.37 ± 0.05,
which indicates that the relation θ = 1 − β seems to hold even for this nonlinear experimental system.

DOI: 10.1103/PhysRevE.84.050602 PACS number(s): 68.08.Bc, 05.40.−a, 89.75.Da, 02.50.−r

Many problems in physics require an understanding of the
stochastic dynamics of spatially extended objects. Tradition-
ally, the spatial and dynamical properties of such systems are
described in terms of space- and time-dependent correlation
functions and scaling exponents [1]. In recent years, there
has been significant interest in studies of the first-passage
properties of dynamical fluctuations [2], quantified in terms
of persistence probability. The persistence probability P (t) is
the probability that a stochastic variable will never cross some
reference level within time interval t . The persistence prob-
ability was calculated and measured for several theoretical,
numerical, and experimental systems [3–7] and was shown to
decrease with time as a power law,

P (t) ∼ t−θ , (1)

where θ is the persistence exponent. The persistence exponent
θ is a nontrivial exponent that depends on the history of the
system and is sensitive to hidden temporal correlations. This
high sensitivity is particularly useful in systems in which the
assignment of a universality class is ambiguous [8].

The highly widespread process of wetting, e.g., the spread-
ing of a liquid droplet on solid substrates, is important in
many fields and has been studied extensively. One of the
more interesting cases is reactive wetting [9–11], where the
materials involved in the wetting process also react chemically.
The reaction changes dramatically the characteristics of the
process and induces different kinetic behavior as well as
nonlinear effects [12]. Our reactive-wetting room-temperature
experimental system is a small Hg droplet spreading on a thin
Ag substrate. The geometry and dynamics of the interface
between the two metals, i.e., the triple line, are the focus of
this study. A typical optical microscope top-view snapshot of
a small part of the interface is shown in Fig. 1.

The kinetic roughening properties of an interface of length
L0 are defined on the basis of its width W (L,t), which is
simply the second moment of the interface height h(x,t) (see
Fig. 1),

W (L,t) =
√

〈h2(x,t)〉 − 〈h(x,t)〉2, (2)
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where the angular brackets denote spatial averaging over
interface segments of length L. According to the Family-
Vicsek relation [1],

W (L,t) ∼
{
tβ, t � t∗,
Lα, t � t∗,

(3)

where t∗ is given in terms of the system size L0 as

t∗ ∼ L
α/β

0 . (4)

The growth exponent β describes the dynamics of the interface,
while the roughness exponent α, which is measured after the
interface width reaches saturation, describes the morphology
at the final stages. Naturally, a relation between the two
temporal measures, the growth exponent β and the persistence
exponent θ , is expected. Indeed, it was shown [5] that in linear
systems,

θ = 1 − β. (5)

This implies, e.g., that the persistence exponent of a random
walk, whose growth exponent is known to be β = 1/2, is
θ = 1/2 [5]. Relation (5) was proved for linear systems only;
however, it was found to be valid not only in linear experi-
mental systems [13] but also in some nonlinear experimental
systems [7], Therefore this relation might be more general.

For the nonlinear Kardar-Parisi-Zhang (KPZ) equation
[14], the persistence exponent value depends on the direction
in which the reference level is crossed, i.e., θ± is the persistence
exponent of the probability not to cross the reference level from
bottom up (+) and from top down (−), respectively [12]. This
difference, originating from the up-down symmetry breaking
in nonlinear systems [1], was not supported by experimental
results [7,15].

In this work, we study the persistence probability in
the above-mentioned reactive-wetting experiment at room
temperature. This study utilizes the persistence concept for this
complex, yet partially understood, reactive-wetting interface
phenomenon. We show that implying the new persistence
statistical tool contributes valuable information into this
complex process.

The reactive-wetting process of a 150 μm Hg droplet
spreading on a 4000-Å-thick Ag substrate is observed using an
optical microscope (Zeiss) and is recorded by a charge-coupled
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FIG. 1. (Color online) Typical top-view snapshot of the Hg-Ag
interface at a given time. The height of the interface is h(x,t) and its
second moment is defined as the interface width W(L,t) [see Eq. (2)].

device (CCD) camera that is mounted on top of the microscope
(a detailed description of the experimental setup is available in
[9,10,16–19]). The real-time recording of the reactive-wetting
evolution from the top view is cut into a series of snapshots
with a time interval of 0.5 s between successive frames. This
time interval was chosen as it is much larger than the time scale
of reaction (less than a millisecond) and much smaller than the
time scale of the entire process (several minutes). The interface
shape and position are extracted from each frame, so that one
has a series of h(x,t) data describing the interface shape at
each time (see Fig. 1). From these numerical data, we compute
W (L,t) for each window size from 1 pixel (∼0.083 μm) to
L0/2 (∼12.5 μm), and for each time.

We define the persistence measure in our experimental
system as follows: We first define the stochastic variable in
the system as the net height h∗ of a given point x on the
interface with respect to the spatial average of the interface
height 〈h(x,t)〉 at each time, h∗(x,t) = h(x,t) − 〈h(x,t)〉. This
definition of the net height eliminates the overall motion of the
contact line. We then plot the net height trajectory of this
single point as a function of time and divide the time axis
into intervals of different lengths [Fig. 2(a)]. The reference
level, up to which a point will be considered “persistent,” is
the location of the point at the beginning of each time interval
h∗(x,t0). For each interval length t , we calculate the probability
P (x,t0,t0 + t) [6],

P (x,t0,t0 + t) = Pr{sgn[h∗(x,t0 + t ′) − h∗(x,t0)]

remains the same for all 0 < t ′ < t}. (6)

We next average over all possible t0 and all points x on the
interface in order to get the persistence probability,

〈〈P (x,t0,t0 + t)〉t0〉x → P (t). (7)

A closely related first-passage measure is the survival prob-
ability S(t) [6]. The survival probability is similar to the
persistence, except from the reference level, which is fixed
for all intervals at the origin, h∗ = 0 [Fig. 2(b)]. Hence the
probability for a point to “survive” is

S(x,t0,t0 + t) = Pr{sgn[h(x,t0 + t ′)]
remains the same for all 0 < t ′ < t}, (8)

and then 〈〈S(x,t0,t0 + t)〉t0〉x → S(t).
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FIG. 2. (Color online) Trajectory of a single interface point.
(a) Persistence. Two intervals of length t = 5 s are marked. Each
reference level is defined by h∗ at its starting point t0. The interval
starting at t0 = 1 s (blue) is “persistent” but the one starting at t0 = 9
s (red) is not. (b) Survival. The reference level is fixed at the origin,
h∗ = 0. Two intervals of length t = 5 s are marked. The one starting
at t0 = 1 s (green) is “surviving” but the one starting at t0 = 15 s
(orange) is not.

This seemingly minor change in the definition generates
large difference in the probability distribution. While the
persistence probability decays as a power law [Eq. (1)], the
survival probability decays exponentially, with a survival time
scale τs [13],

S(t) ∝ e−t/τs . (9)

More than a dozen independent experiments were analyzed
in this study. For each single experiment, we calculated the
persistence and survival probabilities as well as the growth
and roughness exponents.

According to Eq. (3), the interface width W as a function of
time in a log-log scale should yield a straight line with a slope β

followed by saturation to the regime where α can be calculated.
In Fig. 3(a), we show W (t) for a typical single experiment. This
plot resembles the one predicted by Eq. (3), but there is also a
preliminary regime where W (t) is approximately constant. In
this regime, the interface develops, its shape is changing, but its
overall width is (nonzero) constant. This calls for a sensitive
microscopic tool, such as the persistence probability, which
can reflect the fine progression of the interface in this regime.
Furthermore, the nonlinear experimental system provides an
opportunity to examine whether Eq. (5) is restricted only to
linear systems or whether it can be valid also in nonlinear
processes such as reactive-wetting interfaces. Therefore, we
find it adequate to imply the persistence concept for this
complex system.

We first calculate the persistence probability of each
experiment. Surprisingly, we find that in most experiments the
probability function is not just the known power-law decay.
As shown in Fig. 3(b), the persistence probability decays
as a power law, with an average persistence exponent of
θ = 0.55 ± 0.05 along the preliminary time regime. However,
at the border between the preliminary to the growth regime,
it “breaks” to a much larger negative slope. This behavior
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FIG. 3. (Color online) (a) W(t) (log-log scale) of a single reactive-
wetting experiment, for different segment sizes L (from bottom up:
2.5, 6, 9, and 12.5 μm). (b) W(t) and P(t) (log-log scale) for a
single experiment (and for L = 12.5 μm). At the initial regime,
the persistence exponent is θ = 0.5, then P(t) breaks into a much
larger slope. (c) Same data as in (a) but the time axis is shifted so
that tg = 0 is where the growth regime starts. The slope is the growth
exponent β. (d) W(tg) and P(tg) (log-log scale) for the Family-Vicsek
regime. The persistence exponent is θ = 0.32 during both growth and
saturation regimes.

was reproducible in most experiments and was found to be
an accurate indicator of the border between the two regimes,
which is often unclear due to the noisy nature of W (t) and to
the variation between different sets of experiments. Moreover,
the value of the persistence exponent in the first regime hints
at the random-noisy nature of the reactive-wetting process
in its early stages, since the persistence exponent of θ ≈ 0.5
corresponds to a random walk [5]. We next address the known
Family-Vicsek relation by shifting the time axis so that tg = 0
is where the persistence probability loses its initial slope
[Fig. 3(c)]. The persistence measure is sensitive to the initial
conditions and to the entire history of the process, hence after
cutting the first regime out, one needs to repeat the calculation
for the growth regime only.

In Fig. 3(d), we show the results for a single experiment
in which θ ≈ 0.32. An average over all experiments yields a
persistence exponent in the growth regime, θ = 0.37 ± 0.05.
In this calculation, the power-law trend of the persistence
probability extends into the saturation regime. This indicates
an essential difference between the initial and saturation
regimes. In both regimes, the width is a nonzero constant;
however, while the saturation is a part of the entire growth
process, a different mechanism is generating the system in the
initial regime. It changes when the growth starts, and results
in a “break” in the persistence probability function.

The overall growth of the interface width is accompanied
by a persistence exponent that is smaller than that in the
early regime, meaning that the system is more persistent.
It is indeed reasonable that points along the interface are
more “persistent” during growth, i.e., points that are moving
forward keep advancing and points that are far behind keep
dawdling, causing the effective width to grow. Averaging over
all the experiments, the growth exponent β in this regime is
found to be β = 0.67 ± 0.06. This value is in agreement with
former experiments in a similar system and with simulation

results of the quenched Kardar-Parisi-Zhang (QKPZ) equation
[17,20–22]. This also means that relation (5) is valid in the
growth regime, θ + β = 1.04 ± 0.07. This is unexpected since
the reactive-wetting experiment is known to be nonlinear;
however, in the nonlinear experiment of the slow combustion
of paper [7], the persistence and growth exponents of the
combustion front were also found to obey relation (5). We
also calculated separately the persistence probability so as not
to cross the reference level from bottom up, P+, and from
top down, P−. Although we found that usually P+ > P−,
due to the overall drift of the interface upward, no significant
difference in the persistence exponent values was found, i.e., in
this system θ+ ≈ θ− ≈ θ . This result is also in agreement with
the nonlinear experimental system of the slow combustion of
paper fronts [7].

For the survival probability in our reactive-wetting system,
we found that the survival time τs depends strongly on the
total measurement time T , therefore we calculated the ratio
τs/T , i.e., the relative survival time. In the preliminary regime,
the survival time is about 35% of the entire measurement
time, τs/T = 0.35 ± 0.03, while in the Family-Viscek regime
it is much larger, τs/Tg = 0.63 ± 0.03, where Tg is the total
duration of the Family-Viscek regime. Again, it is reasonable
that a longer survival time characterizes growth because it
describes the trend of points along the interface staying far
from the average for longer times. A detailed discussion about
the survival probability in this experiment is available in [15].

To summarize, in the first preliminary regime, the persis-
tence exponent indicates that the main mechanism that drives
the interface is simply noise, which generates small random
fluctuations in the initially smooth interface. In the growth
regime, relation (5) is unexpectedly fulfilled, strengthening the
conjecture that it is more general than theoretically predicted
and is probably valid in nonlinear systems as well.

These different stages in the kinetic roughening of the
reactive-wetting process resemble the microscopic description
of interface development represented by the various terms in
a family of nonlinear continuum equations [23]. A typical
example is the KPZ equation [14]. In this equation,

∂h(x,t)

∂t
= υ∇2h(x,t) + λ

2
(∇h)2 + η(x,t), (10)

where stochastic noise η generates small spatial gradient ∇h

on the initially flat interface. This gradient grows nonlinearly
(∇h)2 and eventually competes with the relaxation term ∇2h.
These three terms determine the interface dynamics. We use
the rational of this model in order to explain the macroscopic
stages of the reactive-wetting experiment. In the first regime,
the main mechanism is noise, which is not dominant enough to
immediately cause overall growth, but its effect on the interface
is accumulative. At some point, the accumulative noise leads
to the overall growth of the interface width. This growth has
to compete with relaxing mechanisms such as diffusion and
surface tension; hence, there are usually fluctuations around
the growth trend in this regime [20,21]. Finally, the process
reaches quasiequilibrium and the interface width saturates.
However, this is far from achieving true equilibrium because
fine-structure changes still take place. The persistence concept
allows one to better understand and clearly define these
regimes.
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The definitions of the different stages in the reactive-wetting
process and their meaning, as revealed by the persistence
measure, are complementary to recent findings about the
reactive-wetting process (at high temperatures) from a chemi-
cal point of view [24]. This work defines four sequential stages
of reactive-wetting in metal-metal systems. First, there is a
very early and rather short (less than a second) time regime,
in which the liquid spreads with no discernable morphological
or chemical change of the interface. The very early regime
is undetectable in our reactive-wetting experiment described
above. The second regime, referred to in [24] as the reactive-
wetting regime, is where reaction exerts a first-order effect on
the spreading, and significant chemical changes of the interface
can occur. Even though this regime is chemically dramatic, the
interface shape in this stage is still not developing. Therefore,
this regime, which is an essential part of the reactive-wetting
process, cannot be described in the framework of standard
kinetic roughening, i.e., the Family-Vicsek relation [Eq. (3)].
Indeed, according to our persistence study, the geometrical
changes of the interface are random at this stage. The third
regime is referred to in [24] as the kinetic roughening regime. In
this regime, the interface width grows according to the Family-

Vicsek relation [Eq. (3)]. This phenomenon was observed
in several metal-metal reactive-wetting systems [11,18]. The
fourth and final regime is when the interface stops advancing,
its shape is more or less fixed, and for all practical purposes the
experiment is over. The early stage of this regime is what we
call here saturation. However, this regime is not a true equi-
librium from both chemical and morphological points of view
because minor changes of the interface structure still occur
together with the slow chemical equilibration by diffusion [25].

In summary, the first-passage properties of the advancing
interface, particularly the persistence probability, are an impor-
tant tool for a better understanding of complex reactive-wetting
processes. The persistence exponent value in the different
regimes is a credible measure to identify the border between
the regimes and to better recognize the main mechanism
in each stage. In addition, this study gives further evidence
for a nonlinear experimental system that obeys relation (5),
supporting the conjecture that this relation is general.
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project, and C. Dasgupta, J. Krug, and T.J. Singler for useful
discussions.
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