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Mode-coupling theory predictions for the dynamical transitions of partly pinned fluid systems
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The predictions of the mode-coupling theory (MCT) for the dynamical arrest scenarios in a partly pinned
(PP) fluid system are reported. The corresponding dynamical phase diagram is found to be very similar to that
of a related quenched-annealed (QA) system. The only significant qualitative difference lies in the shape of the
diffusion-localization lines at high matrix densities, with a reentry phenomenon for the PP system but not for
the QA model, in full agreement with recent computer simulation results. This finding clearly lends support to
the predictive power of the MCT for fluid-matrix systems. In addition, the predictions of the MCT are shown to
be in stark contrast with those of the random first-order transition theory. The PP systems are thus confirmed as
very promising models for differentiating tests of theories of the glass transition.
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A partly pinned (PP) fluid system is a model of a fluid
in contact with a disordered substrate which is obtained
by instantaneously arresting the motion of a fraction of
the particles in an equilibrium bulk system and letting the
remaining mobile fraction evolve under the influence of the
static random environment generated by the pinned particles.
The pinning process can be homogeneous, if, for instance, the
pinned particles are randomly chosen in the whole volume
of the bulk system, or heterogeneous, if the arrested particles
are those located in a predefined region of space. In the first
case, one gets a model of a fluid adsorbed in a statistically
homogeneous disordered porous solid; in the second one, a
model of a fluid confined by amorphous rough walls.

Because of their peculiar preparation process from an
equilibrium bulk fluid in which the future mobile and pinned
components influence each other, these systems display a
number of interesting features. For instance, one can show
that the realization-averaged configurational properties of a
PP system exactly match those of the bulk fluid from which it
is prepared [1,2]. Stated otherwise, the pinning step does not
alter the average configurational properties of the system. This
obviously represents a major simplification when studying
these quenched-disordered models, which, over the years, have
been considered in various fields of liquid-state theory.

In the theory of adsorption in disordered porous solids,
they appear as special cases of fluids adsorbed in depleted
or templated matrices. Indeed, the first class corresponds to
models of porous solids obtained by freezing equilibrium
configurations of a fluid and removing at random a fraction
of its particles [3,4], the second one to models obtained by
freezing equilibrium configurations of a binary mixture and
removing one component called the template [5–8]. Thus, it is
clear that a homogeneous PP system corresponds to a depleted
or templated fluid-matrix system in which the depleted or
template particles are reinjected as the confined fluid [2]. Both
the depleted and templated models are extensions of the con-
cept of the quenched-annealed (QA) system, first introduced
by Madden and Glandt [9], in which the porous matrix is
obtained by simply quenching equilibrium configurations of a
fluid without any subsequent particle removal. The properties
of these different models have been compared by Van Tassel
et al. [3–8]. An interesting finding that will be useful in the

following is that, for a given matrix density, the depleted
and templated matrices generically show stronger correlations
and a more open accessible volume than a quenched matrix
obtained by simply freezing equilibrium configurations of a
fluid [3–5].

In computational studies of the dynamics of fluids in
confinement have also regularly appeared PP systems [1,
10–21]. Here, the use of these models can turn out highly
advantageous. Indeed, the configurations of the fluid particles
obtained immediately after the pinning step are automatically
equilibrium configurations by construction [1,2]. Hence, an
acceptable initial configuration is always readily available,
while finding one can be a very nontrivial task for other models
(see Ref. [22] for the case of QA systems), and it does not have
to be equilibrated [1,12]. This is clearly very interesting for
studies of dense and/or glass-forming systems.

Following insightful pioneering works where PP systems
had been investigated in order to measure the spatial extent
of dynamical correlations in confined glass-forming liquids
[1,12–14], it was realized that these systems could also be
used to probe the existence of nontrivial static correlations in
bulk glassy liquids. The key here is to consider the pinning
process as a constraint imposed on the fluid and to measure
how the configurations of the constrained particles influence
the accessible states of the free ones, via the computation
of point-to-set correlations [23–27], for instance. Numerous
studies of PP systems have recently appeared along this line
[28–36].

In this Rapid Communication, we contribute to the study
of the glassy dynamics in PP systems and report on the
predictions of the mode-coupling theory (MCT) [37] for
the dynamical arrest scenarios in the homogeneous case. To
this end, we use a recent extension of the MCT to fluids
imbibed in disordered porous solids [38–41] and compute the
dynamical phase diagram of the pinned system deriving from
the one-component hard-sphere fluid, which, thanks to the
overall mathematical structure of the theory and the robustness
of the associated bifurcation schemes [37], can be expected to
be a representative example.

The motivation for this work is twofold. First, computer
simulation studies of the slow dynamics of fluids confined in
disordered porous matrices have recently appeared [19–22,42,
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43], allowing comparisons with the previous predictions of
the MCT [38–41]. In many respects, they demonstrate that
the MCT offers a consistent, though idealized, picture of the
dynamics of these systems. For instance, the observed changes
in the density fluctuation relaxation pattern with increasing
confinement agree well with the theoretical picture of a
crossover from type B (bulk-like) bifurcation scenarios at low
matrix densities to type A (Lorentz-gas-like) scenarios at high
matrix densities. However, a potential issue with the theory is
also pointed out. Indeed, while the MCT predicts a dynamical
reentry phenomenon at high matrix densities for the equisized
hard-sphere QA system, no sign of it is actually visible in the
simulation data [19–22,42,43]. But, interestingly, Kim et al. do
clearly find such a reentry phenomenon in their results for the
PP variant of this system [19–21]. One aim of the present work
is to show, after some clarifications, that, at least at the level of
the self-dynamics, the MCT is in complete agreement with the
results of the computer simulations with respect to this reentry
phenomenon at high matrix densities, even with the seemingly
negative result obtained for the hard-sphere QA system.
Difficulties however remain for the collective dynamics.

Second, the effect of pinned particles on the glass transition
has recently been investigated in the framework of the random
first-order transition (RFOT) theory [44,45] by Cammarota and
Biroli, who find a very interesting and nontrivial scenario [34].
It is widely believed that the RFOT theory and the MCT have
strong connections, because they have some mathematical
structures in common. However, actual calculations sometimes
reveal major discrepancies, like when the spatial dimension is
changed [46–48]. It thus seems very natural to wonder how the
two theories compare in the present context. As we will show,
it turns out that the scenario predicted by the MCT differs very
significantly from the one obtained by Cammarota and Biroli.

The application of the MCT scheme to fluid-matrix systems
results in self-consistent equations for the time evolution of
φq(t), the normalized connected autocorrelation function of
the fluid density fluctuations, and φs

q(t), the autocorrelation
function of the tagged-particle density fluctuations, at wave
vector modulus q [40,41]. In the infinite time limit, from which
the state of the system can be determined, they reduce to
equations for the nonergodicity parameters fq = limt→∞ φq(t)
and f s

q = limt→∞ φs
q(t), which read

fq

1 − fq

=
∫

d3k
(2π )3

[
V

(2)
q,kfkf|q−k| + V

(1)
q,kfk

]
, (1)

f s
q

1 − f s
q

=
∫

d3k
(2π )3

[
v

(2)
q,kf

s
k f|q−k| + v

(1)
q,kf

s
k

]
, (2)

V
(2)

q,k = 1

2
nfS

c
q

[
q · k
q2

ĉc
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where nf is the fluid density, Sc
q the connected structure factor,

Sd
q the disconnected structure factor, ĥd

q the Fourier transform
of the disconnected total pair correlation function, and ĉc

q the
Fourier transform of the connected direct correlation function
defined as nf ĉc

q = 1 − 1/Sc
q [49–52]. All these quantities

depend on both the fluid and matrix densities.
While Refs. [38–41] explicitly mention QA systems, no

assumption about the statistics of the disordered solid is
actually made during the derivation of the MCT. It follows that
it can be applied to any fluid-matrix model, and in particular to
homogeneous PP systems. Such a possibility has sometimes
been challenged [1,16]. Indeed, as already mentioned, the pin-
ning protocol exactly preserves the configurational properties
of the bulk fluid from which a PP system is prepared [1,2],
but it can have a strong effect on the dynamics [1,10–21].
At first sight, this looks incompatible with the use of the
MCT, which is known to take only structural quantities as
input in order to predict the dynamics. The present worked
example should clearly show that no such difficulty actually
exists, the key being that, for fluid-matrix systems, one has
to properly take into account the fact that the correlation
functions generically split into connected and disconnected
components in the presence of quenched disorder, due to
broken symmetries at the microscopic level [53]. In other
words, even if this is not visible at the level of simple
configurational properties, the structure does actually change
in a pinned system (see the Supplementary Material of
Ref. [35] for an illustration) and this is reflected in an explicit
dependence of the connected and disconnected correlation
functions on the pinning fraction. Similar care should be taken
when discussing the thermodynamics of PP systems, since
the thermodynamic susceptibilities such as the heat capacity
and the compressibility are given by connected correlations in
disordered systems [52,54].

In addition to the results for the equisized hard-sphere PP
system, those for the analogous QA system, which already
appeared in Refs. [38–41], will be recalled for comparison. The
difference between the two models is subtle. In both cases, the
fluid and the matrix consist of hard-sphere particles of the same
diameter and the control parameters are the volume fractions
occupied by the fluid and matrix particles, denoted by φf

and φm, respectively. Only the preparation protocol is slightly
modified. In the QA system, the configurations of the matrix
particles are drawn from those of an equilibrated hard-sphere
fluid of compacity φm, then a fluid of mobile particles with
compacity φf is inserted in the obtained disordered samples.
In the PP system, a hard-sphere fluid of compacity φf + φm

is first equilibrated, then a fraction x = φm/(φf + φm) of
the particles is pinned down to form the porous matrix of
compacity φm, while the remaining ones become the mobile
fluid component with compacity φf . So, while the matrix in the
QA system is prepared independently of the fluid that will be
adsorbed in it, the matrix in the PP system is prepared under its
direct influence. This is the reason for the generically stronger
correlations and more open accessible volume of the matrix in
the PP system [3–5]. Note that by construction, both models
coincide when φf or φm vanish.

The required structural input is computed for both systems
within the Percus-Yevick approximation [49–51,55], which
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FIG. 1. (Color online) Mode-coupling dynamical phase diagrams
of the equisized hard-sphere quenched-annealed (QA) and partly
pinned (PP) fluid-matrix models. φf and φm denote the volume
fractions occupied by the fluid and matrix particles, respectively.
The dotted vertical line is a guide to emphasize the reentrant behavior
of the diffusion-localization line of the PP system.

leads to analytic expressions for the hard-sphere PP system,
as was recently realized [2]. The numerical procedure used
to solve the above equations is described in Refs. [40,41], to
which the interested reader is referred for technical details,
together with Ref. [56] where an in-depth study of the
difficulties arising from the presence of an infrared divergence
in the MCT equations is reported.

The resulting phase diagrams are plotted in Fig. 1. Both
have much in common. Three phases are found: fluid when
fq = f s

q = 0 is the only solution, localized when fq = 0 and
f s

q �= 0, and glassy when fq �= 0 and f s
q �= 0. The systems

enter the glassy phase by crossing an ideal glass transition
line, which corresponds to the freezing of the collective
dynamics and along which the bifurcation scenario changes
from type B to type A as the confinement gets stronger.
Furthermore, this line is preceded at high enough matrix
densities by a diffusion-localization transition line associated
with a continuous arrest of the self-dynamics only. For the
PP system, there might be a very short glass-glass transition
line at the junction between the type A and B glass transition
branches, but given its very limited extent and the possible
sources of inaccuracies in the numerical calculations, such
as the discretization of the integrals in Eqs. (1) and (2), no
definite conclusion can be reached at this point. In practice,
both systems can be said to have phase diagrams with the same
topology.

Now considering the shape of the phase diagrams, another
shared feature of both models is a significantly reentrant
ideal glass transition line, the effect being more pronounced
for the PP system. But, and quite remarkably, the MCT
delivers contrasting predictions with respect to the behavior of
the diffusion-localization transition lines. Indeed, no reentry
phenomenon is visible in Fig. 1 for the QA system, while
one is clearly present for the PP system [57]. For both types
of transition, the overall trend, which is that the ergodicity-

breaking events occur at higher densities in the PP system, is
perfectly in line with the fact that it is characterized by a more
open accessible volume [3–5], thus confirming an argument
by Kim et al. [19–21].

The diffusion-localization transition lines are precisely
those investigated by Kim et al. in their simulations [19–21].
Indeed, the criterion they use to define the dynamically arrested
phase is based on the mean-squared displacement, a self
dynamical quantity. This is confirmed by the careful analysis
of the interplay between the collective and self dynamics led by
Kurzidim et al. [22,43]. Hence, the conclusion: The MCT does
correctly capture the fact that the subtle structural differences
between the QA and PP models result in different reentry
behaviors of their self dynamics in the high matrix density
regime, in full agreement with the simulation results [19–21].

Unfortunately, the situation is less clear with respect to
the collective dynamics, which has been studied in detail for
the QA system only [22,42]. Indeed, in qualitative agreement
with the prediction of distinct transition lines for the self and
collective dynamics at moderate and high matrix densities,
a wide separation of time scales between the two dynamics
is observed in simulations, but with no sign of a reentrant
collective dynamics. The problem might lie in the theory or
in the simulations. Indeed, on the one hand, it is possible that
the standard formulation of the MCT based on equilibrium
quantities breaks down if the particles cannot redistribute
themselves across the system, as is precisely the case in a
localized state. On the other hand, the simulations, which are
very difficult in this density regime, do not seem consistent
with the expectation that the collective and self dynamics
coincide in the limit of vanishing fluid density. So, more work
is definitely needed to clarify this point. Here, the PP systems
could be very useful, thanks to the possibility to easily generate
equilibrated samples even at high densities.

We now turn to the comparison with the predictions of the
RFOT theory [34]. For this, it is more convenient to consider
the dynamical phase diagram of the PP system in the plane
defined by the total volume fraction φf + φm and the pinning
fraction x, as in Fig. 2. In passing, we note that, thanks to this
representation, the total densities at the various transitions are
clearly shown to be decreasing functions of x, in line with the
rather natural expectation that pinning down particles slows
down the dynamics.

Within the RFOT theory, the PP systems are found to
occupy a very special place [34]. Indeed, at different levels
of calculation (mean-field or real-space renormalization group
analysis), the theory consistently predicts for them ideal glass
transition lines starting at x = 0 (bulk limit) and ending at
some critical value xc < 1. This means that one can go from
the fluid to the glassy phases without crossing any transition,
simply by moving around this terminal point as one can do with
the critical point of the liquid-gas transition. However, this is
an isolated case. For other types of random environments,
including QA systems, it is predicted that the glass transition
never disappears, but only becomes continuous for strong
disorder, very much like in the MCT scenario with the type
A bifurcations. It is then impossible to reach the glassy phase
without crossing a transition.

So, while the predictions of the MCT and the RFOT
theory tend to agree for generic cases of fluids in disordered
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FIG. 2. Mode-coupling dynamical phase diagram of the equisized
hard-sphere partly pinned fluid-matrix model. φf + φm is the total
volume fraction occupied by both the fluid and matrix particles; x =
φm/(φf + φm) is the pinning fraction.

environments, they are in stark contrast for the PP systems.
Indeed, within the MCT, the PP systems appear as rather
ordinary fluid-matrix systems, as illustrated by Fig. 1, and
the transition lines run up to x = 1, so that the system always
has to cross a dynamical transition line in order to enter the
glassy phase, as shown in Fig. 2. The PP systems are thus
a clear example of diverging predictions between the two
considered theoretical schemes and, as such, would probably
deserve much attention in the future. We note that, based on the
presently available data and, in particular, on the joint study
of QA and PP systems by Kim et al. [19–21], no obvious
inconsistency with the MCT scenario has appeared yet, but,
as pointed out above, some issues are still pending and more
work is needed.

In summary, in this Rapid Communication, the predictions
of the MCT for the slow dynamics of a homogeneous PP
system have been worked out and compared to previous
findings for a related QA system [38–41], to the results
of recent computer simulation studies [19–21], and to the
scenario derived within the framework of the RFOT theory
[34]. It is found that the dynamical phase diagrams of the
QA and PP systems are very similar within MCT. The
only significant qualitative difference is in the shape of the
diffusion-localization lines at high matrix densities, with a
reentry phenomenon for the PP system but not for the QA
model. In the light of these results, the simulation data, which
could first appear as a challenge to the theory, are actually
found to represent a nice confirmation of its predictions.
Finally, the comparison between the MCT and the RFOT
theory shows that the two approaches make predictions that
are in stark contrast.

The latter result might have serious consequences. Indeed,
two different points of view might be adopted on PP systems.
On the one hand, seen from the theory of simple liquids and
adsorption phenomena, they are fluid-matrix models among
others [3–8]. They display interesting and possibly useful
configurational properties [1,2], but these are merely acciden-
tal and no peculiar physics beyond confinement phenomena
should be expected. This is what the MCT supports. On
the other hand, seen from the theory of disordered systems,
they are very special physical objects, ideally and uniquely
suited to track hidden forms of order and the related phase
transitions in amorphous systems [23–36]. This is what the
RFOT theory illustrates. Finding which point of view is
the most appropriate for glass-forming liquids could have
a profound influence on future directions in glass transition
theory.

It is a pleasure to thank G. Biroli, C. Cammarota, K. Kim,
and K. Miyazaki for useful discussions.
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