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Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization
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We investigate thermal and isothermal symmetric liquid-vapor separations via a fast Fourier transform thermal
lattice Boltzmann (FFT-TLB) model. Structure factor, domain size, and Minkowski functionals are employed
to characterize the density and velocity fields, as well as to understand the configurations and the kinetic
processes. Compared with the isothermal phase separation, the freedom in temperature prolongs the spinodal
decomposition (SD) stage and induces different rheological and morphological behaviors in the thermal system.
After the transient procedure, both the thermal and isothermal separations show power-law scalings in domain
growth, while the exponent for thermal system is lower than that for isothermal system. With respect to the density
field, the isothermal system presents more likely bicontinuous configurations with narrower interfaces, while the
thermal system presents more likely configurations with scattered bubbles. Heat creation, conduction, and lower
interfacial stresses are the main reasons for the differences in thermal system. Different from the isothermal
case, the release of latent heat causes the changing of local temperature, which results in new local mechanical
balance. When the Prandtl number becomes smaller, the system approaches thermodynamical equilibrium much
more quickly. The increasing of mean temperature makes the interfacial stress lower in the following way:
σ = σ0[(Tc − T )/(Tc − T0)]3/2, where Tc is the critical temperature and σ0 is the interfacial stress at a reference
temperature T0, which is the main reason for the prolonged SD stage and the lower growth exponent in the
thermal case. Besides thermodynamics, we probe how the local viscosities influence the morphology of the phase
separating system. We find that, for both the isothermal and thermal cases, the growth exponents and local flow
velocities are inversely proportional to the corresponding viscosities. Compared with the isothermal case, the
local flow velocity depends not only on viscosity but also on temperature.
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I. INTRODUCTION

Multiphase flows and heat transfers are ubiquitous in nature,
industrial processes, as well as daily life, e.g., oil-water
systems, bubble flows, petroleum processing, paper making,
and power plants [1]. Therefore, establishing accurate pre-
diction models to investigate the underlying physical essence
of these phenomena is of great academic significance and
industrial practical value. However, due to the complex nature
and inherent nonlinearities of multiphase flows, theoretical
solutions are usually limited to a small class of problems in
one dimension and with numerous simplifying assumptions
and generalizations [2]. On the other hand, experimental
approaches for multiphase flows are generally expensive
and some problems are still being unsolved in accurate
measurement technology (e.g., interfacial area measurement)
for this process [3]. Consequently, it is reasonable to consider
numerical simulation, to some extent, as a primarily useful
tool in studying the underlying physics of multiphase flows
and providing some insights into understanding the kinetic
process, which are difficult to obtain from theoretical analysis
or experiments.

Molecular dynamics (MD) is a nice microscopic approach,
but it is too computationally expensive to access dynamic
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behaviors with spatiotemporal scales comparable with exper-
iments [4]. Moreover, many macroscopic behaviors are, in
fact, not sensitive to degrees of freedom at the molecular level.
Traditional fluid dynamics does not work well for systems
where nonequilibrium effects are pronounced, for example,
multiphase system. In addition, from the computational ex-
penses point of view, the direct simulation of fluid behaviors
in such a system is also a challenging work, since it is not
easy to track the deformable macroscopic interfaces and to
incorporate the complex microscopic interactions [5].

Between these two approaches, as a mesoscopic approach,
the lattice Boltzmann (LB) method has enjoyed substantial de-
velopment and has become a very promising and versatile tool
for simulating complex phenomena in various fields during the
past two decades [6], ranging from magnetohydrodynamics
[7,8], to compressible flows [9–12], wave propagations [13],
hydrodynamic instabilities [14,15], etc. Apart from fields listed
above, the versatile method is particularly promising in the
area of multiphase systems [16–37]. This is mainly owing
to its intrinsic kinetic nature, which makes the interparticle
interactions (IPIs) be incorporated easily and flexibly and, in
fact, the IPI is the underlying microscopic physical reason
for phase separation and interfacial tension in multiphase
systems. So far, many LB models for multiphase flows have
been proposed, among which the three well-known ones
are the Chromodynamic model by Gunstensen et al. [16],
the pseudo-potential model by Shan and Chen [17,30], and
the free energy model by Swift et al. [18].
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The aforementioned models have been successfully applied
to study a wide variety of multiphase flow problems in
science and engineering, such as contact line motion [19,20],
wetting [21], drop breakup [22,23], drop collision [24],
chemically reactive fluid [25], phase separation and phase
ordering [16–18,26–28,33,35–37], etc. Despite this, to date,
most studies focus on the isothermal systems (except for
models reported in Refs. [36,37]), because, in these models,
only mass and momentum conservations are kept; hydro-
dynamic behaviors due to temperature field are not taken
into account. However, thermal effects are significant, even
dominant, in many cases. Examples include phase separations
in the boiling process, distillation and condensation processes,
thermal nuclear reactors, etc. In these systems, the evolutions
of the temperature and flow fields are spontaneously coupled
with each other [38,39]. Therefore, it is a fundamental and
essential work to develop thermal LB (TLB) models for
multiphase system. But due to the complexity of this problem,
the progress has been rather slow.

The most obvious obstacle lies in the fact that, when
the interparticle forces are incorporated, how to ensure the
total energy conservation becomes challenging in the discrete
model. To overcome this difficulty, extensive efforts have been
made over the past few years. But until very recently, only a
few TLB models for multiphase flows have been proposed and
can be roughly divided into two approaches. The first is the
passive scalar approach [40,41]. In this approach, evolutions
of the density field and the momentum field are solved by
an isothermal LB model, while the evolution of temperature
is determined by an additional passive scalar equation. The
coupling of these two parts is through a suitably defined
body force in the isotherm LB equation. This approach is
conceptually rather simple and as stable as the isothermal
LB models, because the energy conservation is not explicitly
implemented. Meanwhile, it can recover an equation of state
(EOS) for nonideal gas and capture the temperature field.
However, it should be pointed out that, in the passive scalar
approach, the viscous dissipation and compression work done
by the pressure are neglected [41].

The second is the multispeed approach, which implements
energy conservation by using larger and more isotropic
sets of velocities and by including higher-order velocity terms
in the equilibrium distribution. Examples of an ideal gas
include the works of Alexander et al. [42], Watari et al. [9],
Xu et al. [10,15], and others. However, applications of this
approach to thermal flows with high Mach number or flows
with high Knudsen number still have some challenges. The
challenges arise from the insufficient truncation in the equilib-
rium distribution function and the insufficient isotropy in the
discrete-velocity model (DVM). In an alternative way, using
the Hermite expansion approach, Shan et al. [43] presented
a systematic theoretical framework for constructing TLB
models that approximate the continuum Boltzmann equation
with higher accuracy. With the Hermite expansion approach,
hydrodynamic moments at various levels can be determined
in a straightforward way at a given order of truncations
of the Hermite polynomials. Almost simultaneously, similar
results were obtained by Philippi et al. [44] using a different
procedure. Although the above-mentioned TLB models work
only for ideal gas systems, they can be extended to multiphase

flows by the extra force method. The one developed by
Gonnella, Lamura, and Sofonea (GLS) [45] is typical. In this
model, an extra term Iki, accounting for interparticle forces,
is added into the LB equation to describe the van der Waals
(VDW) fluids. From the IPI point of view, it can be considered
as a bottom-up approach, similar to the Shan-Chen model.
To describe system with interfaces, gradient contributions to
free energy due to the inhomogeneity of fluid density are
also included. Compared with the passive scalar approach,
all observable fields, e.g., density, velocity, temperature, and
pressure, are directly derived from the same distribution
function, as in the standard kinetic theory.

In a recent work [46], we further develop the GLS model
so that the total energy conservation can be better held and
the spurious velocities can be damped to negligible scale
in numerical simulations. In the improved model, spatial
derivatives in the convection term and the force term are
calculated via the fast Fourier transform (FFT) and its inverse
(IFFT). For convenience of description, we refer to this model
as the FFT-TLB model. Via the FFT-TLB model, we study
the effects of temperature and viscosity on liquid-vapor phase
separation in the two-dimensional case. It is known that spatial
domains of homogeneous phases evolving during spinodal
decomposition (SD) show a large variety of complex spatial
patterns, and the system is globally in a nonequilibrium state.
How to effectively describe and pick up information from
such a complex system is still an open problem. In the present
work, besides the rheological behavior, we use the Minkowski
functionals [47] to characterize the isothermal and thermal
phase separations and conduct a comparison study on the
similarities and differences between these two cases.

The following parts of the paper are planned as follows.
The Minkowski functionals and the FFT-TLB model are
briefly reviewed in Secs. II and III, respectively. Simulation
results and corresponding physical interpretations are given in
Sec. IV. Section V presents conclusions and discussions.

II. MORPHOLOGICAL CHARACTERIZATION

In this section we briefly review the set of statistics known as
Minkowski functionals [47], which will be used to characterize
the physical fields in Sec. IV. Such a description has been
well known in digital picture analysis [48] and successfully
adapted to characterize the reaction-diffusion systems [49],
shocked porous materials [50], and patterns in phase separation
of complex fluids [27,51,52], etc.

According to a general theorem of integral geometry, all
properties of a d-dimensional convex set, which satisfy motion
invariance and additivity, are contained in d + 1 numerical
values [53]. For a pixelized map ψ(x), we consider the
excursion sets of the map, defined as the set of all map
pixels with value of ψ greater than some threshold ψth,
where x is the position, ψ can be a state variable such as
density ρ, temperature T , or pressure P ; ψ can also be the
velocity u or its components, or some specific stress, etc.
Then the d + 1 functionals of these excursion sets completely
describe the morphological properties of the underlying map
ψ(x). In the case of two- or three-dimensions, the Minkowski
functionals have intuitive geometric interpretations. For a
two-dimensional density map ρ(x), the three Minkowski
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functionals correspond geometrically to the fractional area
A of the high-density domains, the boundary length L

between the the high- and low-density domains, and the Euler
characteristic χ .

In this work we probe the effects of temperature and
viscosity on phase separation by checking the density map
ρ(x,t) and velocity map u(x,t), where time t is explicitly
denoted. When the density ρ(x,t) is beyond the threshold
value ρth, the grid node at position x is regarded as a white
vertex; otherwise it is regarded as a black one. For the square
lattice, a pixel possesses four vertices. A region with connected
white (black) pixels is defined as a white (black) domain. Two
neighboring white and black domains present an interface
or boundary. When the threshold contour level ρth increases
from the lowest density ρmin to the highest one ρmax, the white
area fraction A = Nw

A /N will decrease from 1 to 0, and the
qualitative features of the patterns will vary drastically, where
Nw

A is the number of pixels with a density larger than ρth,
N = Nx × Ny is the total number of pixels, Nx and Ny are the
lattice numbers along the x and y directions, respectively;
the boundary length L = NL/N is defined as the ratio between
the pixels separating the black and white domains, and the total
number of pixels. With the increasing of ρth, boundary length L

first increases from 0 at ρth = ρmin, then arrives at a maximum
value Lmax, and finally decreases to 0 again at ρth = ρmax;
the third morphological quantity is the Euler characteristic
χ , defined as the difference of the number of connected
white domains Nw

χ and black domains Nb
χ normalized by

N , χ = (Nw
χ − Nb

χ )/N . In contrast to the white area A and
boundary length L, the Euler characteristic χ describes the
connectivity of the domains in a purely topological way. It is
negative (positive) if many disconnected black (white) regions
dominate the image. A vanishing Euler characteristic indicates
a highly connected structure with equal numbers of black
and white domains. Despite having global meaning, the Euler
characteristic χ can be calculated in a local way using the
additivity relation [27,49,52]. Since the measures are normal-
ized by N , they can be used to compare systems with different
sizes.

III. FFT-TLB MULTIPHASE MODEL

In this section we present the FFT-TLB model for simu-
lating a thermal liquid-vapor system. The model is a further
development of the one proposed by GLS [45]. GLS intro-
duced an appropriate interparticle force term to describe the
VDW fluids. Our contribution is to propose an appropriate FFT
scheme, which is used to calculate the convection term and the
force term. With this new model, the nonconservation problem
of total energy due to spatiotemporal discretizations is much
better solved, and spurious currents in equilibrium interfaces
are significantly reduced in the numerical simulations.

A. TLB multiphase model by GLS

The GLS model includes the following two parts: (1) TLB
model by Watari-Tsutahara (WT) [9] and (2) an appropriate

interparticle force, Iki. The original WT model works only for
ideal gas. It uses the following DVM:

v0 = 0, vki = vk

[
cos

(
i − 1

4
π

)
, sin

(
i − 1

4
π

)]
,

k = 1,2,3,4; i = 1,2, . . . ,8,

(1)

where subscript k indicates the kth group of particle velocities
whose speed is vk and i represents the direction of particle’s
speed. Different from the standard LB model, the WT
model uses a second upwind finite-difference (FD) scheme
to calculate the convection term in the LB equation. The FD
LB model breaks the combination of discretizations of space
and time, which makes the particle speeds more flexible. The
values of the speeds vk may be determined in such a way
that the temperature gets a large interval around the critical
temperature Tc, under which the simulation is stable. This
is of great importance for phase separation studies where
long-lasting simulations are needed to determine the growth
behavior [26].

Compared to WT model, the main contribution of GLS
model is the introduction of the extra term Iki, which accounts
for interparticle forces

∂fki

∂t
+ vki · ∂fki

∂r
= − 1

τ

[
fki − f

eq
ki

] + Iki, (2)

where f
eq
ki is the local equilibrium distribution function, r the

spatial coordinate, and τ the relaxation time related to the
kinematic viscosity. The distribution function f

eq
ki is related to

the local density ρ, fluid velocity u, and temperature T through
the following moments:

ρ =
∑

ki

f
eq
ki , (3)

ρu =
∑

ki

vkif
eq
ki , (4)

ρT =
∑

ki

1

2
(vki − u)2f

eq
ki . (5)

Iki in Eq. (2) takes the following form:

Iki = −[A + Bα(vkiα − uα) + (C + Cq)(vkiα − uα)2]f eq
ki ,

(6)

with

A = −2(C + Cq)T , (7)

Bα = 1

ρT
[∂α(P w − ρT ) + ∂β�αβ − ∂α(ζ∂γ uγ )], (8)

C = 1

2ρT 2

{
(P w − ρT )∂γ uγ + �αβ∂αuβ − (ζ∂γ uγ )∂αuα

+ 9

8
ρ2∂γ uγ + K

[
− 1

2
(∂γ ρ)(∂γ ρ)(∂αuα)

− ρ(∂γ ρ)(∂γ ∂αuα) − (∂γ ρ)(∂γ uα)(∂αρ)

]}
, (9)

Cq = 1

2ρT 2
∂α[2qρT (∂αT )]. (10)

P w = 3ρT/(3 − ρ) − 9ρ2/8 is the VDW EOS. Since the
pressure is not monotonic in density, the thermodynamic phase
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transition may occur in such a system. By setting ∂P w/∂ρ =
0, ∂2P w/∂ρ2 = 0, we obtain the critical point Tc = ρc =
1. �αβ = M∂αρ∂βρ − [ρT ∂γ ρ∂γ (M/T )]δαβ − M(ρ∇2ρ +
|∇ρ|2/2)δαβ is the contribution of density gradient to pressure
tensor and M = K + HT allows a dependence of the surface
tension on temperature, where K is the surface tension
coefficient and H is a constant. It is noteworthy to point
out that, in this model, the Prandtl number Pr = η/κT =
τ/2(τ − q) can be changed by adjusting the parameter q in
the term Cq .

It has been shown that [45], under the Chapman-Enskog
expansion, the above LB model recovers the following
equations for VDW fluids:

∂tρ + ∂α(ρuα) = 0, (11)

∂t (ρuα) + ∂β(ρuαuβ + �αβ − σαβ) = 0, (12)

∂tetot + ∂α[etotuα + (�αβ − σαβ)uβ − κT ∂αT ] = 0, (13)

where �αβ = P wδαβ + �αβ is the nonviscous stress, and
σαβ = η(∂αuβ + ∂βuα − ∂γ uγ δαβ) + ζ∂γ uγ δαβ is the dissipa-
tive tensor with the shear and bulk viscosities η and ζ .
etot = ρT − 9ρ2/8 + K |∇ρ|2 /2 + ρu2/2 is the total energy
density. It should be mentioned that the force term also
accounts for the potential energy −9/8ρ2 and interfacial
energy K |∇ρ|2 /2, which are sources of the macroscopic
kinetic energy and the thermal energy.

B. Our contribution: Spatial discretization with FFT

In this subsection, we will review our improvements to the
TLB multiphase model: spatial derivatives in the convection
term vki · ∂fki/∂r and in the external force term Iki are
calculated via the FFT scheme and its inverse.

To illustrate the necessity, we present simulation results
for a thermal phase separation process by various numerical
schemes. Here the time derivative is calculated using the
first-order forward Euler FD scheme. Spatial derivatives in
Iki are calculated using the second-order central difference
(second CD) scheme. Spatial derivatives in convection term
vki · ∂fki/∂r are calculated using the the second CD scheme,
the Lax-Wendroff (LW) scheme, the nonoscillatory and
nonfree-parameter dissipation (NND) scheme [54], and the
fifth-order weighted essentially nonoscillatory scheme (5th
WENO) [55], respectively. As a result, we find that the total
energy density etot(t) is not conservative in simulations, even
though it is in theoretical analysis (see Fig. 1). The non-
conservation of energy is caused by errors of spatiotemporal
discretizations.

Aiming to solve the problem of energy nonconversation, we
proposed a new algorithm based on FFT and its inverse [46].
This approach is especially powerful for a periodic system and
also provides spatial spectral information on field quantities.
For completeness, let us start with the definition of Fourier
transform of a discrete function f (xj ):

f̃ (k) = �x

N−1∑
j=0

f (xj )e−ikxj , (14)

and its inverse

f (xj ) = 1

L

N/2−1∑
n=−N/2

f̃ (k)eikxj , (15)

where i is an imaginary unit, k = 2πn/L and L = N�x

is the length of the system divided into N equal seg-
ments. A general theorem of derivative based on FFT states
that [56–58]

f̃ ′(k) = ik × f̃ (k), (16)

where f̃ ′(k) is the Fourier transform of f ′(xj ), k is the module
of wave vector k. The theorem provides a way to calculate
the spatial derivative f ′(xj ), composed of the following steps:
(1) Transform f (xj ) in real space into f̃ (k) in reciprocal space;
(2) multiply f̃ (k) with ik; (3) take the inverse Fourier transform
(IFT) of f̃ ′(k), and then the spatial derivative f ′(xj ) can be
obtained. A higher-order derivative, such as the nth derivative
f (n)(xj ) (n � 2), can be obtained from a similar procedure
only if we multiply f̃ (k) with (ik)n,

f̃ (n)(k) = (ik)n × f̃ (k). (17)

High-order derivatives that can be calculated from this conve-
nient way is a main merit of FFT over FD scheme; otherwise,
we should choose more stencils (more points) to approximate
high-order derivatives.

The FFT approach has excellent accuracy properties,
typically well beyond that of standard discretization schemes.
In principle, it gives the exact derivative with infinite order
accuracy if the function is infinitely differentiable [57–60]. In
our manuscript, using this virtue, the FFT scheme is designed
to approximate the true spatial derivatives, as a result, to
eliminate spurious velocities near the interface region and
to guarantee energy conservation. However, the trouble in
proceeding in this manner is that, in many cases, it is difficult
to ensure that the infinite differentiability condition is satisfied.
For example, the function f ′(xj ) may have a discontinuity of
the same character as the square wave. Then the discontinuity
will induce oscillations, known as the Gibbs phenomenon. The
Gibbs phenomenon influences the accuracy of the FFT not only
in the neighborhood of the point of singularity, but also over
the entire computational domain. Since the Gibbs phenomenon
is related to the slow decay of the Fourier coefficients of
the discontinuous function, it is natural to use smoothing
procedures, which attenuate higher-order Fourier coefficients
to damp the oscillations [57,59,61,62]. A straightforward
way is to multiply each Fourier coefficients by a smoothing
factor σk , for instance, the Lanczons smoothing factor, the
raised cosine smoothing factor, or the Fejer smoothing factor,
etc. [57,61,62].

In the recent work [46], we presented a way to construct
smoothing factors. First, we expand k in Taylor series:

k = arcsin[sin(k�x/2)]

�x/2

= 1

�x/2

[
sin(k�x/2) + 1

6
sin3(k�x/2)
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+ 3

40
sin5(k�x/2) + 5

112
sin7(k�x/2) + · · ·

]

= 1

�x/2

∞∑
n=0

�(n/2)δ0,�(n)ε(−1 + n)√
πn�

(
n+1

2

) sinn(k�x/2), (18)

where �(n) = ∫ ∞
0 tn−1e−t dt is the Gamma function, �(n) =

Mod[−1 + n,2] is the Mod function, and ε(−1 + n) is the unit
step function. Next, in order to refrain the Gibbs oscillation, we
should filter out more high-frequency waves, or at least damp
the strengths of high-frequency waves. Therefore, k may take
the form of an appropriately truncated Taylor series expansion
of sin(k�x/2). For example, k can take the following forms:

k1= sin(k�x/2)

�x/2
, (19)

k2=k1 + sin3(k�x/2)/6

�x/2
, (20)

k3=k2 + 3 sin5(k�x/2)/40

�x/2
, (21)

and

k4=k3 + 5 sin7(k�x/2)/112

�x/2
, (22)

then the calculated spatial derivative is second-order, fourth-
order, sixth-order, and eighth-order in precision, respectively.
Moreover, it is found that k1 is consistent with the one used
in Ref. [63]. Finally, the smoothing factor for k1 can be
expressed as

σ1 = k1

k
= sin(jπ/Nx)

jπ/Nx

, j = −Nx/2, . . . ,Nx/2, (23)

and the ones for k2, k3, and k4 can be formulated in a
similar way.

As reported in our recent work [46], the lower-order
smoothing factors, such as σ1 and σ2, are much more effective
to damp the strengthens of high-frequency waves and may
result in excessively smeared approximations, which are
unfaithful representations of the true physics. On the other
hand, the higher-order smoothing factors, such as σ3 and σ4,
can reserve more higher-frequency waves but may not damp
the Gibbs phenomenon when the discontinuities are strong
enough, and then cause numerical instability. This is especially
true for the case with shock waves and/or discontinuities.
The smoothing factors should survive the dilemma of stability
versus accuracy. In other words, they should be minimal but
make the evolution stable. In the present study, we focus
on the liquid-vapor system without shock waves and strong
discontinuities. Therefore, the FFT scheme with higher-order
smoothing factor σ4 is used throughout our simulations.

For comparisons, we verify the proposed FFT algorithm
with the same problem described in Fig. 1 and display
variations of density �ρ(t), momentum �(ρu)(t), and total
energy density �etot(t) in Fig. 2, respectively. It is observed
that, when the FFT scheme with σ4 is adopted, variations of
density and momentum nearly decrease to machine accuracy.
For �etot(t), it oscillates at the beginning and then goes to
nearly a constant. Behaviors of �etot(t) can be interpreted
as follows. At the beginning of phase separation, the fluids

FIG. 1. (Color online) Variations of the total energy density
�etot(t) = etot(t) − etot(0) for a phase-separating system obtained
from the GLS model with various schemes. Initial conditions are
set as ρ = 1 + �, T = 0.85, ux = uy = 0, where � is a random
density with an amplitude of 0.01. The remaining parameters are
as follows: v1 = 1.00, v2 = 1.90, v3 = 2.90, v4 = 4.30, τ = 10−2,
�x = �y = 1/256, �t = 10−5, K = 5 × 10−6, H = 0, ζ = 0, q =
−0.004. Periodical boundary conditions (PBCs) are imposed on both
the x and y directions.

spontaneously separate into small regions with higher and
lower densities, and more liquid-vapor interfaces appear.
Subsequently, spatial discretization errors induced by the in-
terfaces (density gradients) arrive at their maxima, accounting
for the initial oscillations. As time evolves further, under the
action of surface tension, the total liquid-vapor interface length
decreases owing to the coalescence of small domains, and then
the discretization errors together with the amplitude of �etot(t)
decrease.

After about 106 time steps, the maximum derivation
of etot is only about 1.5 × 10−7, indicating that the FFT
scheme has more advantage to guarantee energy conservation.
Furthermore, we find that �etot(t) decreases with decreasing
the initial random density �. When � decreases to 0.001, the
maximum of �etot(t) will further decreases to 3 × 10−8 (not

FIG. 2. (Color online) Variations of density �ρ(t), momentum
�(ρu)(t), and total energy �etot(t) for the phase-separating system
described in Fig. 1.
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FIG. 3. (Color online) Temperatures versus time t for the FFT-
TLB scheme.

shown here). Numerically, this is owing to the smaller density
gradients in the interface regions as � decreases that reduce
the spatial discretization errors. Actually, � = 0.001 (0.1%
of the initial density) is enough to generate phase separation
and is more appropriate [28]. When � is larger, or the initial
temperature is far below the critical one, the initial state of
the system is very far from the equilibrium, and we may
encounter large values of the fluid velocity in the early stage
of simulation. Since the initial values of the velocity is zero
everywhere, this process is responsible for a strong decrease
in the local temperature (see Fig. 3).

Another interesting phenomenon is illustrated in Fig. 3.
The mean and maximum temperatures rise sharply at the
initial period of phase separation, while the minimum one
decreases significantly at first and rises rapidly at later times.
The difference between the minimum and the maximum ones
�T = Tmax − Tmin arrives at its maximum at about t = 0.25.
After that, �T decreases with time and goes to a constant value
(nearly vanishing) when t > 8. The reasons for behaviors of
temperatures are that: At the initial stage, the potential energy
−9/8ρ2, a part of the free energy, is high, so the system will
relax. During phase separation, part of the potential energy
transforms into the thermal energy ρT ; namely, latent heat is
locally released and conducts to the entire region. This is the
main reason why temperatures are rising during simulations
and the main difference from the isothermal case, where latent
heat is extracted from the system by fixing the temperature
in all lattice nodes. In addition, viscous dissipation is another
mechanism of heat generation. More preciously, heat is created
locally due to the fraction between fluid flows with different
velocities. After phase separation, interfaces form and the fluid
velocities go to zero everywhere. Then the macroscopic kinetic
energy transforms into thermal energy totally.

In our recent work, the FFT-TLB multiphase model has
been validated successfully by two sets of typical bench-
marks [46]. Simulation results demonstrate that the FFT-TLB
model can capture both qualitatively and quantitatively the
interface properties in accord with the VDW theory. In
addition, with the new model, spurious velocities near the

liquid-vapor interface are significantly reduced, and, as a
result, phase diagrams of the liquid-vapor system obtained
from simulations are more consistent with that from theoretical
calculations.

IV. SIMULATION RESULTS, RHEOLOGICAL
AND MORPHOLOGICAL CHARACTERIZATIONS

When a system is suddenly quenched into the two-phase
region, the original single phase becomes unstable, and
then phase separation occurs through the formation and the
subsequent growth of domains. Eventually, the system arrives
at a new equilibrium state. In the past few decades, this
phenomenon has been extensively studied [6,17,18,26–28,
36–39,64–73], by theoretical derivations, experiments, and
numerical simulations. Among others, the most significant
finding is the domain growth law, which states that, at
late times, the characteristic domain size R(t) grows as a
power with time t , R(t) ∼ tα . The value of exponent α

is believed to be universal, depending only on the growth
mechanism, and has been well known in isothermal system,
α = 1/2 and 2/3 for higher and lower viscosities, respectively
[28,65,66,69,71]. However, behaviors of phase separation
with temperature field are far from clear. The aim of this
section is to clarify effects of temperature dynamics on
both the rheological and morphological behaviors of phase
separation.

A. Patterns for isothermal and thermal cases

Simulations for isothermal and thermal phase separations
are performed on lattices with Nx × Ny = 512 × 512 nodes.
PBCs are imposed on both two directions. Here we consider
only symmetric mixtures; namely, we set liquid:vapor mass
fractions to 1:1, for which at late times these domains will form
a bicontinuous structure with sharp interfaces in the isothermal
case [72,73]. Therefore, the initial conditions are set as
follows:

(ρ,ux,uy,T ) = (1.042 + �,0.0,0.0,0.9), (24)

where 1.042 is the mean density of liquid and vapor at
T = 0.9, and � is a random density noise with an amplitude
of 0.001. Parameters are set to be τ = 10−3, �t = 10−5, K =
5 × 10−6, �x = �y = 1/256, and others are unchanged.
Density distribution patterns at representative times t = 0.4,
1.0, 2.5, and 8.0 are shown in Fig. 4 for the isothermal case
[see Figs. 4I(a)–I(d)] and thermal case [see Figs. 4II(a)–II(d)].
For the isothermal case, after about 25 000 time steps, the fluid
has begun to separate spontaneously into small regions with
higher and lower densities. As time evolves, small domains
merge with each other and larger domains appear under the
action of surface tension at t = 0.4. From patterns at t = 0.4,
1.0, and 2.5, as excepted, higher and lower densities domains
evolve in an equal way, leading to an interwoven bicontinuous
pattern. The growth of domains continues at t = 8.0, and,
eventually, the system will reach a completely separated state
for a large enough time.

Compared with configurations in the isothermal case,
several distinctive differences can be found in the thermal case:
(1) The average size of domains in each case tends to increase
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FIG. 4. (Color online) Snapshots in two
processes of phase separations. The temper-
ature is fixed at T = 0.9 in process I. See
panels I(a)–I(d). The initial temperature in
process II is T = 0.9. See panels II(a)–II(d).
The relaxation time is fixed at τ = 10−3 in the
two processes. The time t = 0.4, 1.0, 2.5, and
8.0 in panels (a), (b), (c), and (d), respectively.
The lattice size here is 512 × 512.

in an effort to decrease the interfacial energy, while at the same
moment, in the isothermal case, it is bigger than its counterpart,
which demonstrates that domains grow faster in this case;
(2) for the isothermal case, interfaces between vapor and liquid
are much clearer, which indicates that the liquid-vapor inter-
faces in this case are much narrower; (3) the density difference
between the maximum and minimum densities �ρ = ρmax −
ρmin in the isothermal case is much larger than the one in the

thermal case, showing that the phase separation in this case is
deeper; (4) contrary to interpenetrating bicontinuous structures
formed in the isothermal case, isolated and nearly circle vapor
droplets suspending in the liquid phase appear in the thermal
case. These differences are interesting and meaningful. In
the following subsections, we will analyze these differences
with the help of rheological description and Minkowski
functionals.
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FIG. 5. (Color online) Spherically averaged structure factor
S(k,t) versus wave number k for the procedures shown in Fig. 4.
Panel (a) is for the isothermal case, and panel (b) is for the thermal
case. In each figure, S(k,t) at times t = 0.25, 0.3, 0.5, 0.6, and 0.8
are shown in the inset, while those at times t = 1.0, 2.0, 3.0, 4.0, 5.0,
6.0, 7.0, and 8.0 are shown in the main frame.

B. Rheological characterization

In order to further quantify the results shown in Fig. 4, time
evolution of the circularly averaged structure factor S(k,t) is
employed, which is defined as the Fourier transform of the
density-density correlation function. For a discrete system, it
can be stated as

S(k,t) =
∣∣∣∣∣
∑

x

[ρ(x,t) − ρ̄(t)]eik·x
∣∣∣∣∣ /N , (25)

where k = (2π/N )(mî + nĵ ) is the wave vector in the recip-
rocal space with m = 1,2, . . . ,Nx , n = 1,2, . . . ,Ny . S(k,t) is
further smoothed by averaging over an entire shell in k space
to obtain the circularly averaged structure factor:

S(k,t) =
∑

k

S(k,t)
/ ∑

k

1. (26)

In Fig. 5 we present the time evolution of S(k,t) for the
isothermal case in panel (a) and thermal case in panel (b),
respectively. All curves in Fig. 5 can be roughly divided into
two different time regimes: the SD stage and the domain
growth (DG) stage. From Fig. 5(a), at early times, such as
t = 0.25 and 0.3, we observe that the peak in S(k,t) increases
in height without the position of the peak changing in time.
This behavior is indicative of the initial sharpening of domains,
without detectable phase separation taking place. In the second
stage, the peak of S(k,t) increases in height and shifts to
smaller wave number, indicating the coarsening of domains.
At t = 0.5, 0.6, and 0.8, we observe the appearance of a
second peak in S(k,t), which merges with the main peak
later. This behavior manifests that there is more than one
typical domain size at that moment. From t = 6.0 onward,
the peak seems to stop drifting to the left but only oscillates
in amplitude, demonstrating that the finite size effects are
pronounced.

Similar results can also be found in the thermal case.
Nevertheless, careful comparisons of these two cases will
show you some distinctions: (1) The first stage continues up
to t = 0.8, which is longer than that in the isothermal case.
The existence of temperature field significantly decelerates
the speed of domain formation, an effect that has also been
seen in Fig. 4. (2) Over the period from t = 4.0 to t = 6.0,
the peak of S(k,t) varies only in height but very little in

FIG. 6. (Color online) Domain growths in isothermal and thermal
systems with (a) τ = 10−3 and (b) τ = 10−4. The squares and
diamonds are for results from FFT-TLB simulations. Lines are shown
in each plot to guide the eyes.

wave number. This phenomenon is usually observed at the
initial stage of phase separation, leading us to think that the
system has steered to a new SD stage before reaching the finial
late time stage. Essentially, during this stage, the dynamics
is mainly making the interfaces thinner while the average
domain sizes barely change. (3) At the same time, the peak
of S(k,t) in the isothermal case is much larger than the one
in the thermal case, but the corresponding wave number is
much smaller, which means that both the density difference
between the two phases and the characteristic domain size are
much larger in the isothermal case. These results agree well
with Fig. 4.

Next, the characteristic domain size R(t) is used to further
describe the kinetic process quantitatively. R(t) is derived from
the inverse first moment of S(k,t):

R(t) = 2π
∑

k

S(k,t)
/ ∑

k

kS(k,t). (27)

In Fig. 6 we display behaviors of R(t) versus iterations for
τ = 10−3 in panel (a), and τ = 10−4 in panel (b), in a log-log
scale. In each figure the top and bottom scatter symbols
correspond to simulation results for the isothermal and thermal
cases, respectively. Straight lines in each plot are linear fits of
the simulation results. Discarding both the early time transient
regime and the very late time regime, where finite-size effects
are pronounced, we find, for the isothermal case, the behaviors
of R(t) during the DG stage are R(t) ∼ t0.52 for τ = 10−3, and
R(t) ∼ t0.64 for τ = 10−4. These results are in good agreement
with the generally accepted theoretical predictions of R(t) ∼
t1/2 and R(t) ∼ t2/3 at high and low viscosities by the
Allen-Cahn theory [74] and LB models [28,65,66,69]. But
for the thermal case, the growth exponents decrease to 0.46
for τ = 10−3 and 0.58 for τ = 10−4, respectively. This can be
regarded as another proof for our conclusion, which states that
domains grow faster at lower temperature. In addition to the
above differences, another piece of information also deserves
our attention. For the isothermal case with τ = 10−3, the SD
stage lasts about for 25 000 time steps [see the upper horizontal
solid line in Fig. 6(a)]. Nevertheless, for the thermal case, it
lasts for 80 000 time steps [see the lower horizontal dash dot
line in Fig. 6(a)]. Similar results can also be found in the case
with τ = 10−4. These findings suggest that, compared to the
isothermal case, the SD stage is significantly prolonged by
the existence of the temperature field in the thermal case. In
the following parts, the morphological functionals are used to
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verify similarities and differences between these two cases,
and the corresponding physical interpretations are given.

C. Morphological characterization and physical interpretations

1. Similarities and differences

To perform Minkowski functional analysis for the density
map, we choose a density threshold ρth and pixelize the
map into high-density regions (with ρ > ρth) and low-density
regions (with ρ < ρth). Figure 7 depicts the time evolution
of Minkowski measures for the procedures shown in Fig. 4.
For the isothermal case, from Fig. 7I(a), we see that, when
ρth = 0.40, the white area fraction A keeps nearly 1.0 during
the whole procedure shown here, which means no local density
is lower than 0.40 in the system up to t = 8.0. However, when
the threshold increases to 1.70, A keeps nearly zero during the
whole process. Thus, no local density is higher than 1.70 in the
system. As a direct consequence of SD, A increases with time t

when ρth > 1.0, and decreases when ρth < 1.0. Consequently,
most curves (except for the uppermost curve for ρth = 0.40
and the lowermost curve for ρth = 1.70) are evolving toward
the horizontal central line from about t = 0.25. Afterwards, at
the DG stage, the curve for ρth = 1.05 (mean density of the
system) overlaps with the horizontal central line, and other
curves are symmetric to it. The outer two curves are for
the cases with ρth = 0.45 (the red ball) and ρth = 1.60 (the
dark yellow hexagon), respectively. We mention that these
two densities are just the equilibrium densities of vapor and
liquid at T = 0.9. Obviously, the outer two curves mark the
reach of the correct equilibrium state. As time evolves further,
the proportion between these two curves decreases, showing
that these small domains reach local equilibrium. Moreover,
the proportion between any two curves can be conveniently
obtained from Fig. 7I(a).

Now we go to the second and the third Minkowski
measures, the boundary length L and Euler characteristic χ .
As shown in Fig. 7I(b), for each case, L increases sharply to its
maximum at about t = 0.25, and then decreases slowly. The
first increase and the subsequent decrease in L are due to the
appearance of liquid-vapor interfaces during the SD stage and
the following coarsening of the high- and low-density domains
during the DG stage, respectively. At the SD stage, when
ρth < 1.0, χ decreases to be evidently less than zero, meaning
that the number of domains with ρ < ρth increases. On the
other hand, when ρth > 1.0, χ increases to be evidently larger
than zero, indicating that the number of domains with ρ > ρth

increases. These results demonstrate that the phase separation
process is in progress. Furthermore, we mention that, at about
t = 0.25, the case with ρth = 0.45 has the minimum Euler
characteristic and the case with ρth = 1.60 has the maximum
one, but the two cases get the minimum boundary length L.
These results present the following information: For the first
case, many scattered black domains with ρth < 0.45 appear
in the high-density background with ρth > 0.45, while for
the second case, the high-density domains with ρth > 1.60
are scattered in the low-density background with ρth < 1.60.
These domains are so small that the total boundary length is
nearly zero. From Figs. 4I(c)–4I(d), we observe that the density
maps show highly connected structures with nearly equal and
very small numbers of black and white domains. Hence, the

FIG. 7. (Color online) Time evolution of Minkowski measures for
the procedures shown in Fig. 4. The left column is for the isothermal
case, and the right column is for the thermal case.

Euler characteristic χ keeps close to zero in the DG stage [see
Fig. 7I(c)].

From Figs. 7II(a)–II(c), for the thermal case, one can also
distinguish two different stages. At early times (t < 0.8),
due to the growth of density fluctuations and the buildup of
interfaces, the density area fraction A belonging to the liquid
phase increases, while the one belonging to the vapor phase
decreases. The changes also result in the increase in boundary
length L [see Fig. 7II(b)]. The appearance of liquid-vapor
interfaces has an additional effect. They separate the system
with disconnected minority domains. As a result, the absolute
value of Euler characteristic χ increases in the SD stage.
In contrast to the first stage, as a direct consequence of the
coalescence of relatively small domains, the characteristic
length scale increases but the number of domains decreases.
Therefore, the DG stage (t > 0.8) is characterized by the
decrease in L and χ .

In the end of the second stage, an interesting phenomenon
occurs. There are two small proportions for ρ < 0.65 and
ρ > 1.35 during the second stage, and they reach their maxima
at about t = 3.0 [see Fig. 7II(a)], but are gradually diminishing
afterwards. This phenomenon shows that a recombination
process is taking place owing to the increasing temperature
that interrupts the original process and forces the system to
evolve toward a new equilibrium state decided by the variable
temperature.

Compared with figures illustrated in Fig. 7, the main
differences between these two cases are analyzed and listed
as follows: (1) For isothermal case, the portion with a density
between [0.45,1.60] accounts for only 20% at t = 4, and
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FIG. 8. (Color online) Portions of the density and temperature gradient distributions at (a) t = 0.8 and (b) t = 7.0 for the thermal case with
τ = 10−3. The lengths of the temperature gradient vectors are magnified by (a) 400 times and (b) 4000 times.

decreases further with time t . But for the thermal case, the
portion with a density between [0.75,1.25] reaches to 50% at
t = 8. This indicates that for the thermal case the system has a
shallower separation depth but a wider interface width, which
can be clearly seen in Fig. 7II(b). (2) The maxima of L and χ

can be used to mark the transition from the SD stage to DG
stage [27,52]. The transition time for the isothermal case is
about 0.25, but for the thermal case, it drastically increases
to about 0.8. The result further confirms our conclusion:
i.e., phase separation occurs faster in the isothermal case.
From another point of view, this can also be obtained from
the slope of the A(t) curve. For most cases, after the initial
quick changing period, the changing of A with time t shows
a slowing down. The slope of the A(t) curve corresponds
approximately to the speed of phase separation. For the same
density threshold, the slopes of the A(t) curves in the two cases
are quite different. For example, when ρth = 0.65, the A(t)
curve decreases sharply in the isothermal case, while for the
thermal case, it decreases much more slowly. (3) Connectivity
of patterns in the isothermal case is much better than that in the
thermal case. This feature can be achieved from the evolution
of χ . χ decreases enormously and almost vanishes at about
t = 0.5 in the isothermal case, but it is negative for the vapor
structure until about t = 6.0 in the thermal case, which is
consistent with density patterns exhibited in Fig. 4II(d).

2. Physical interpretations of the prolonged SD stage
and the lower growth exponent in the thermal case: Effects

of temperature and viscosity

In Sec. IV, we find, compared to the isothermal case, the
SD stage is significantly prolonged, and the growth exponent
is lowered in the thermal case. In this subsection, effects of
temperature and viscosity are investigated to provide proper
interpretations.

First, in Fig. 8, we display portions of the density and
temperature gradient distributions at two representative times
for the thermal case with τ = 10−3. To illustrate the structure
of the temperature gradient fields clearly, the lengths of the
vectors are multiplied by 400 in Fig. 8(a) and 4000 in Fig. 8(b),
respectively. As shown in Fig. 8(a), many tiny droplets and
bubbles appear in the system, and the temperature gradient
vectors are toward the droplets. Thus, the local temperatures
within droplets are slightly higher than the mean temperature
of the system, while the local temperatures within bubbles are
slightly lower than the mean temperature. With the separating
process, the local temperatures in the two phases deviate more
from the mean temperature, and an overshoot phenomenon
is observed. This procedure continues up to an extent,
after which the local phases with high (low) temperatures
partly begin to transform back from liquid (vapor) to vapor
(liquid). In this way, both the local high temperatures and
low temperatures approach the mean temperature, and the
system approaches thermodynamical equilibrium quickly at
lower Pr number (Pr = 0.1 for τ = 10−3). This process is
evident by Fig. 8(b), where there is no determinate relationship
between temperature gradients and liquid (vapor) domains.
Moreover, the temperature difference between the highest
and lowest ones decreases enormously to 0.014. The system
approaches to thermodynamical equilibrium so quickly that
the temperature difference becomes so small during phase
separation. Therefore, in this case, temperature cannot be
regarded as an ideal physical quantity to describe this
process.

In another way, we employ enthalpy and latent heat to
describe this process, and the enthalpy is defined by

h = ε + P/ρ, (28)

where ε = ρT − 9/8ρ2 + K|∇ρ|2/2 is the internal energy
density including the gradient contribution. The difference of
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FIG. 9. (Color online) Density (a) and enthalpy (b) distributions at t = 6.0 for the thermal case with τ = 10−3.

enthalpy between two states determines the latent heat Lh:

Lh = h2 − h1. (29)

Figure 9 presents the density and enthalpy distributions at
t = 6.0 for the thermal case with τ = 10−3. Comparisons of
the two figures manifest that the enthalpy of vapor is relatively
higher than that of liquid. In order to study the dynamic charac-
teristics of the pattern, we show the spatial distribution of latent
heat Lh = ht=8.0 − ht=3.0 in Fig. 10(a) and density change
�ρ = ρt=8.0 − ρt=3.0 between these two states in Fig. 10(b).
Careful observations between these two figures suggest that
when the latent heat Lh is positive, the corresponding density
difference �ρ is negative. Droplets (bubbles) absorb latent
heat, and evaporation occurs simultaneously. Subsequently, the
density decreases. A negative Lh corresponds to an increase

of density, and then the droplets (bubbles) have a coagulation
trend. It should be noted that, owing to the transformation of
potential energy into thermal energy, the total latent heat is
released during the whole process. The released heat conducts
over the entire region rapidly at low Pr number and increases
the mean temperature of the system (see Fig. 11), while in an
isothermal system, latent heat is extracted from this system by
fixing the temperature in all lattice nodes.

As well, another piece of information can be obtained from
Fig. 11. The mean temperature scarcely increases at the first
stage due to no detectable phase separation taking place and
no remarkable latent heat is released. Subsequently, in the
next stage, the temperature rapidly increases to 0.97 and,
later, keeps almost zero growth. Afterwards, under the almost
unchanged temperature, phase separation evolves in accord
with the isothermal case.

FIG. 10. (Color online) Distribution of latent heat (a) Lh = ht=8.0 − ht=3.0 and the corresponding distribution of density change (b)
�ρ = ρt=8.0 − ρt=3.0 for the thermal case with τ = 10−3.
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FIG. 11. (Color online) Time evolution of the mean temperature
and released latent heat for the procedure shown in panels 4 II(a)–
II(d).

So far, we have not discussed in detail surface tension
between liquid and vapor. For a planar interface, it can be
computed from the following formula [75–77]:

σ = K

∫ ∞

−∞

(
∂ρ

∂z

)2

dz, (30)

or from the VDW theory [78–80]:

σ = (aK)1/2

b2
σ ∗ = (2aK)1/2

b2

∫ ρ∗
l

ρ∗
g

[�∗(ρ∗) − �∗(ρ∗
l )]1/2 dρ∗,

(31)

where

�∗ = ρ∗ξ − ρ∗T ∗[ln(1/ρ∗ − 1) + 1] − ρ∗2, (32)

ξ = T ∗ ln(1/ρ∗
s − 1) − ρ∗

s T
∗/(1 − ρ∗

s ) + 2ρ∗
s , s = v, l. (33)

ρ∗ = ρb, T ∗ = bT /a, with a = 9/8 and b = 1/3 in this
model. It is necessary to point out that Eq. (31) is espe-
cially convenient, since it can be evaluated directly without
determining the density profile. Now, we calculate surface
tension with Eq. (30) for both the isothermal and thermal cases
from profiles along the x axis and, at the same time, calculate
theoretical values from Eq. (31). These results are plotted in
Fig. 12. It is to be seen that, in the isothermal case, after
the formation of liquid-vapor interface, the surface tension σ

keeps nearly constant and oscillates slightly around the exact
value, while in the thermal case, σ is much smaller than the
theoretical value before interfaces are well formed (before
the mean temperature reaches 0.96). After that, it decreases
obviously with the increase of temperature and can be verified
in the following form:

σ = σ0.9[(Tc − T )/(Tc − 0.9)]3/2, (34)

where σ0.9 is the surface tension at T = 0.9. The increasing
temperature lowers the density gradient, as well as the surface
tension that is the driving force for diffusive growth. As a
result, domains grow more slowly than that in the isothermal
case.

Essentially, during the whole process, compared to the
isothermal case, two competition mechanisms exist. The first

FIG. 12. (Color online) Time evolution of surface tension for the
procedures shown in Fig. 4. (a) The isothermal case; (b) the thermal
case.

one is heat generation and conduction mechanism or temper-
ature rising mechanism. The release of latent heat results in
a rising temperature, and the rising temperature results in a
new dependence of pressure density [38,39]. In other words, it
leads to a new local mechanical balance. The second one is the
hydrodynamic flow generation and development mechanism,
or liquid-vapor equilibrium mechanism, decided by viscosity,
diffusivity of the fluid, etc. They compete with and influence
each other, deciding the final morphology jointly.

In addition to the temperature effects, we now consider how
the local viscosities influence the hydrodynamic flows, the
morphology of the phase-separating system, and the growth
exponent. Figure 13 shows time evolution of the high-velocity
|u| area fraction for the procedures displayed in Fig. 4. From
it, also, two stages can be found, corresponding to the nearly
zero value of the white area fraction for all |u|th, the rapid
increase and the subsequent slow decrease. For the isothermal
case, |u| ∈ [0,0.09], while for the thermal case, |u| ∈ [0,0.02].
This implies that velocities are damped not only by viscosity
but also by the rising temperature. In fact, this is owing to
the latent heat released or absorbed at the interface that makes
temperatures within bubbles (droplets) almost homogeneous
[38,39], as shown in Fig. 8(b). As a result, the Marangoni
convection arising from the surface tension gradient is much
suppressed. The maximum velocity in the isothermal case can
reach up to 0.09 or even higher. Consequently, in contrast
to the thermal case, hydrodynamic effects can not be totally
neglected in the isothermal case. The appearance of larger flow
velocities offers more opportunities for coalescence between
domains. Under the action of diffusion and hydrodynamic
flows, a faster DG process is taking place, and a bigger
growth exponent can be observed. When τ decreases to 10−4,

FIG. 13. (Color online) High flow velocity area fraction A versus
time t for the procedures shown in Fig. 4. (a) The isothermal case;
(b) the thermal case.
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FIG. 14. (Color online) High flow velocity area fraction A versus
time t for two phase separation procedures with τ = 10−4. (a) The
isothermal case; (b) the thermal case.

behaviors of |u| exhibit similar trends (see Fig. 14). Due to
the lower viscosity, velocities are more sufficiently developed.
Figures 13 and 14 demonstrate that, in the thermal case,
compared to the thermodynamic and diffusion mechanisms,
hydrodynamic flows are less important than that in the
isothermal case and, therefore, cannot be regarded as a
dominant factor governing the growth exponent.

In Fig. 15 we display time evolution of each part of total
energy for the procedure shown in Figs. 4II(a)–II(d), providing
a clear image about energy evolution during phase separation.
It is found that ρT and −9ρ2/8 are the main parts of total
energy, and they evolve in the opposite way. Kinetic energy
and surface energy are much smaller than the two former ones.
The maximum of K|∇ρ|2/2 corresponds to the appearance
of nuclei and formation of small domains. Afterwards, it
decreases gradually due to the increasing temperature and the
decreasing interfacial area. The macroscopic kinetic energy
ρu2/2 is so small that the viscous dissipation induced by it
can be neglected. Therefore, in the thermal case, compared to
latent heat, the effects of kinetic energy on temperature are
less important.

V. CONCLUSIONS AND DISCUSSIONS

Thermal and isothermal symmetric liquid-vapor separa-
tions are simulated via the FFT-TLB method. Structure factor,
domain size, and Minkowski functionals are used to describe
the density and velocity fields and, at the same time, to
understand the configurations and the kinetic processes. Sim-
ulations and physical analysis present the following scenarios
for thermal phase separation. When the separation starts,
many tiny droplets and bubbles appear in the system. The

FIG. 15. (Color online) Time evolution of each part of total
energy for the procedure shown in panels 4II(a)–II(d).

local temperatures within droplets are slightly higher than the
ones within bubbles. With separating, neighboring droplets
(bubbles) coalesce, and the mean domain size increases. The
local temperatures in the two phases deviate more from the
mean temperature. This procedure continues up to a stage,
after which the local phases with high (low) temperatures
partly begin to transform back from liquid (vapor) to vapor
(liquid). In this way, both the local high temperatures and
low temperatures approach the mean one, and the system
approaches thermodynamical equilibrium.

Simulation results also indicate that phase separation in the
thermal and isothermal cases can be generally divided into
two stages: the SD stage and the DG stage. Different from
the isothermal case, the SD stage is significantly prolonged,
and different rheological and morphological behaviors are
induced by the variable temperature field in the thermal
case. After the transient procedure, both the thermal and
isothermal separations show power-law scalings in the domain
growth, while the exponent for thermal system is lower
than that for isothermal system. With respect to the density
field, the isothermal system presents more likely bicontinuous
configurations with narrower interfaces, while the thermal
system presents more likely configurations with scattered
bubbles.

Compared with the isothermal case, heat creation, con-
duction, and lower interfacial stresses are the main reasons
for the differences in thermal system. Latent heat is released
during the separating process, which is the main reason for the
rising temperature. The changing of local temperature results
in new local mechanical balance. When the Prandtl number
becomes smaller, the system approaches thermodynamical
equilibrium more quickly. The increasing local temperature
has an additional effect: It makes the interfacial stress lower.
This behavior in simulations is quantitatively verified by the
theoretical formula, σ = σ0[(Tc − T )/(Tc − T0)]3/2, where Tc

is the critical temperature and σ0 is the interfacial stress at a
reference temperature T0. Besides thermodynamics, we find
that the local viscosities also influence the morphology of the
phase separating system. For both the isothermal and thermal
cases, growth exponents and local flow velocities are inversely
proportional to the corresponding viscosities. Compared with
the isothermal case, the local flow velocities in the thermal
case depend not only on viscosity but also on temperature.

The FFT scheme can also be applied in systems that have
walls in the x and/or y directions [36,37,45,70] provided that
the following simple treatments are made. For example, for
a system with left and right walls, we can simply double
the computational domain by making a mirror reflection of
the original one around the right (or left) wall. Thus, for the
extended computational domain, the left and the right walls
are exactly the same. We can consider the system periodic,
and the FFT scheme can be used in the horizontal direction. In
future studies, we will increase the depth of separation that the
FFT-TLB model can undergo, and investigate quantitatively
how the Prandtl number affects the separation procedure.
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