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Fitting a data set with a parametrized model can be seen geometrically as finding the global minimum of the
x2 hypersurface, depending on a set of parameters {P;}. This is usually done using the Levenberg-Marquardt
algorithm. The main drawback of this algorithm is that despite its fast convergence, it can get stuck if the
parameters are not initialized close to the final solution. We propose a modification of the Metropolis algorithm
introducing a parameter step tuning that optimizes the sampling of parameter space. The ability of the parameter
tuning algorithm together with simulated annealing to find the global x2 hypersurface minimum, jumping across
x2{P;} barriers when necessary, is demonstrated with synthetic functions and with real data.
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I. INTRODUCTION

Fitting a parametrized model to experimental results is the
most usual way to obtain the physics hidden behind data.
However, as nicely reported by Transtrum et al. [1], this can
be quite challenging, and it usually takes “weeks of human
guidance to find a good starting point.” Geometrically, the
problem of finding a best fit corresponds to finding the global
minimum of the x 2 hypersurface. As this hypersurface is often
full of fissures, local minima prohibit an efficient search. The
human guidance consists usually of a set of tricks (depending
on every particular problem) that allow us to choose the starting
point in this landscape such that the first minimum found is
indeed the global minimum.

This problem is usually due to the mechanism that is behind
classical fit algorithms such as Levenberg-Marquardt (LM) [2]:
A set of parameters { P; } is optimized by varying the parameters
and accepting the modified parameter set as a starting point
for the next iteration only if this new set reduces the value of
a cost or merit function such as x2. From a geometrical point
of view, those algorithms allow only downhill movements in
the x2{P;} hypersurface. Therefore they can get stuck in local
minima or get lost in flat regions of the x? landscape [1]. This
means that they are able to find an optimal solution only if
they are initialized around the absolute minimum of the x>
hypersurface.

The challenge of finding the global minimum can be
alternatively tackled by Bayesian methods [3,4] as demon-
strated in different fields such as astronomy or biology [5],
solid-state physics [6], quasielastic neutron-scattering data
analysis [7], and reverse Monte Carlo methods [8]. We follow
a Bayesian approach to the fit problem in this contribution.
This method is based on another mechanism to wander
around in parameter space: Instead of allowing only downhill
movements, parameter changes that increase x> can also be
accepted if the change in x? is compatible with the data
errors.

To do that, a Markov chain Monte Carlo (MCMC) method is
used, where the Markov chains are generated by the Metropolis
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algorithm [9]. However, while in the case of the LM algorithm
the initialization of parameters is critical to the convergence
of the algorithm, it is here that the tuning of the maximum
parameter change allowed at each step (called parameter jumps
hereafter) is what will decide the success of the algorithm to
find the global x2{P;} minimum in an efficient way.

If the parameter jumps are chosen too small, the algorithm
will always accept any parameter change, getting lost in
irrelevant details of the x?{P;} landscape. If chosen too large,
the parameters will hardly be accepted, and the algorithm will
get stuck every now and then. Moreover, in the case of models
defined by more than one parameter, when parameter jumps are
not properly chosen, the parameter space can be overexplored
in the direction of those parameters with too small jump
lengths; in other words, the model would be insensitive to
the proposed change of these parameters. On the other hand,
some other parameters can be associated to a jump so big that
changes are hardly ever accepted.

Different schemes have been proposed in order to change
parameter jumps to explore the target distribution efficiently
using Markov chains under the generic name of adaptive
MCMC [10]. Using the framework of stochastic approxima-
tion [11] we present in this work an algorithm belonging
to the group of “controlled Markov chains” [12,13] where
the calculation of new parameter jumps takes the history
of the Markov chain and previous parameter jumps into
account.

Two main approaches are known that take the Markov
chain history into account: adaptive Metropolis (AM) al-
gorithms [14] (implemented, for example, in PyMC [15])
and algorithms that use rules following the Robbins-Monro
update [13,16,17]. In the first case, parameter jumps are tuned
using the covariance matrix at every step, so that once the
adaptation is finished the algorithm should be wandering with
a parameter jump close to the “error” of the parameter (defined
as the variance of the posterior parameter probability density
function [PDF]). In some cases, this kind of algorithm [10]
can get stuck if the acceptance ratio of a parameter is too
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high or too low. In this case the Markov chain stops learning
from the past history, and thus the optimization is stopped
with suboptimal parameter jumps. This problem is overcome
by Robbins-Monro update rules that change parameter jumps
so that they are accepted with an optimal ratio.

The main danger of optimized Metropolis algorithms is that
adaptation might cause the Markov chain to not converge to
the target distribution anymore. In other words, the Markov
chain might lose its ergodicity. For example in the case of
AM algorithms, the generated chain is not Markovian since it
depends on the history of the chain. However, as demonstrated
by Haario et al. [14], the chain is able to reproduce the
target distribution, i.e., is ergodic. In the second type of
algorithms, the Robbins-Monro type, ergodicity properties
must be ensured by updating only at regeneration times [16]. In
any case, as pointed out by Andrieu et al. [10], the convergence
to the target distribution is ensured if optimization vanishes. In
other words, if parameter jumps oscillate around a fixed value,
the ergodic property of the Markov chain is ensured.

The presented algorithm is based on the stochastic approach
of Robbins-Monro with an updating rule inspired by the one of
Gilks et al. [16]. Optimization of parameter jumps is therefore
performed with two goals in mind:

(1) To calculate them in such a way that all parameters are
accepted with the same ratio. Adjusting parameter jumps so
that all parameter changes will have the same acceptance ratio
is important to explore the x2{P;} landscape with the same
efficiency in all parameter directions.

(2) To adjust parameter jumps to a value tailored to the stage
of the fit. This will turn out to be important when exploring the
x2{ P;} hypersurface using the simulated annealing technique
[18], since this allows the parameter jumps to be optimized
to explore x2{P;} (see subsection fitting in a complex x>
landscape): At the beginning of the fit process the algorithm
will set parameter jumps to a large value to explore large
portions of the x? landscape, and at the final stages these
parameter jumps will be set to small values by the same
algorithm in order to find its absolute minimum.

Geometrically, we can interpret the algorithm as setting the
parameter step sizes to a value related to the hypersurface land-
scape. First, it modifies the parameter jump to take into account
the shape of the hypersurface along a parameter direction. If
x2{P:} (the cut along a parameter k) is flat (the parameter
direction is “sloppy” following Sethna’s nomenclature [19]),
the parameter step size is set to a larger value, and parameters
will move faster in this sloppy direction. On the contrary, in
the directions where the x?{ Py} has a larger slope (the “stiff”
direction following Sethna’s nomenclature), parameter steps
will be set to a smaller value so that they are accepted with the
same as the previous ones. Second, it modifies the parameter
jumps to take the shape of the global x? landscape into account
when the simulated annealing is used. At the beginning of the
fit parameter jumps will be set to a large value so that details
of Xz{ P}, i.e., local minima, will be smeared out, making it
easier to find the global minimum. However, during the last
steps of the fitting process, parameter steps will be set to a small
value by the algorithm so that the system will be allowed to
relax inside the minimum.

The present work gives a detailed description on how
the algorithm works and is organized as follows: We first
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recall briefly on the Metropolis method applied to generate
Markov chains. In the next section, the proposed algorithm
to optimize the parameter step size is introduced. Then we
check its robustness to find optimized parameter jumps using
a simple test function; and finally we test the ability of the
regenerative algorithm combined with the simulated annealing
technique to find the global minimum of x2, even with poor
initialization values, using a simple function with a complex
x2{P;} landscape. The algorithm presented in this work has
been implemented in the program FABADA (Fit Algorithm for
Bayesian Analysis of DAta) [20].

II. THE FIT METHOD

A. Fitting with the Bayesian ansatz

Fitting data using the Metropolis algorithm is based on an
iterative process where successively proposed parameter sets
are accepted according to the probability that these parameters
describe the actual data, given all available evidence. Hence
this method makes use of our knowledge of the error bars of
the data.

We now briefly recall how this can be done using a
Metropolis algorithm, to proceed in the next section with the
algorithm to adjust parameter jumps.

We should first start with the probabilistic bases behind the
x?2 definition. The probability P(H | D) that an hypothesis H is
correctly describing an experimental result D is related to the
likelihood P(D|H) that experimental data Dy (k =1, ... ,n)
are correctly described by a model or hypothesis H; (k =
1,...,n); using Bayes’ theorem [3,4],

P(D.|H)P(H,
P(H,|Dy) = W, )

where P(H|Dy) is called the posterior, the probability that
the hypothesis is in fact describing the data. P(Dy|Hy) is the
likelihood, the probability that the description of the data by
the hypothesis is good. P(H;) is called the prior, the PDF
summarizing the knowledge we have about the hypothesis
before looking at the data. P(Dy) is a normalization factor to
ensure that the integrated posterior probability is unity.

In the following we will assume no prior knowledge
(maximum ignorance prior [4]), and in this special case Bayes’
theorem takes the simple form

P(Hi|Dy) o< P(Di|Hy) = L, @)

where L is a short notation for likelihood.

Although this is by no means a prerequisite, we will assume
in the following that the likelihood that every single data
point D; described by the model or hypothesis H; follows
a Gaussian distribution. The case of a Poisson distribution was
discussed previously [21]. For data with a Gaussian distributed
uncertainty with width o, the likelihood for each individual
data point takes the form

LR [_1<_Hk_D’<)2} 3)
ovir Pl T2\ o ’

P(Dy|Hy) =
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and correspondingly, the likelihood that the whole data set is
P(Dy| Hy) o< [ Jexp [—

described by this hypothesis is
()]
k=1 Ok
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k
2
= exp <—X7> . 4)

The Metropolis algorithm will in this special case consist of
the proposition of successive sets of parameters {P;}. A new
set of parameters is generated changing one parameter at a
time using the rule

N

Pinew — Pl-Old + VAPimax’ (5)

where A P"* is the maximum change allowed to the parameter
or parameter jump and r is a random number between —1.0
and 1.0. The new set of parameters will always be accepted if
it lowers the value of x2, or, if the opposite happens, it will be
accepted with a probability

P(H{P"}Di) ( X —xﬁ)
—7Toien Ay =Pl ———— | (6)
B (1 {P]| D) 2

where x| and x{ correspond to the x? for the proposed new
set of parameters and the old one, respectively. Otherwise, this
new parameter value will be rejected, and the fit function does
not change during this step.

The Metropolis algorithm described here is very similar to
the one used in statistical physics to find the possible molecular
configurations (microstates) at a given temperature. In that
case the algorithm minimizes the energy of the system while
allowing changes in molecular positions that yield an increase
of the energy if it is compatible with the temperature.

Inspired by the similarities between fitting data using a
Bayesian approach and molecular modeling using Monte
Carlo methods, a simulated annealing procedure proposed by
Kirkpatrick [18] might optionally be used (see, for example,
Refs. [22,23]). Following the idea of that work, the x?
landscape might be compared with an energy landscape used
to describe glassy phenomena [24]. What we do is to start
at high temperatures, i.e., in the liquid phase, where details
of the energy landscape are not so important. By lowering
the temperature fast enough the system might fall into a local
minima, i.e., in the glassy phase. In that case the system is
quenched as is normally done by standard fitting methods.
The presented algorithm aims to avoid being trapped in
local minima using an “annealing schedule” as suggested by
Kirkpatrick. This is done by artificially increasing the errors
of the data to be fitted and letting the errors slowly relax until
they reach their true values. Because this is very similar to what
is performed in molecular modeling, the parameter favoring
the uphill movements in Eq. (7) is usually called temperature,
yielding the acceptance rule

P(H(P)|Dy) — exp < _ Xi1 — X12>. )

P (H (P/)| D) 2T
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As happens with Monte Carlo simulations, increasing the
temperature will increase the acceptance of parameter sets that
increase x2, thus making the jump over x2 barriers between
minima easier.

B. Adjusting the parameter step size

The objective of tuning the parameter step size is to choose
a proper value for A P in Eq. (5) to optimize the parameter
space exploration.

Given the total number of algorithm steps N and the
number of steps that yield a change in x?2, i.e., the number
of successful attempts, K, the ratio R of steps yielding a
X2 change is R = K/N. Ryesireq 1 defined as the ratio with
which some parameter should be accepted in a step. As we
want every parameter to be changed with the same ratio,
R; desired = Rdesirea/m wWhere m is the number of parameters.

The algorithm is initialized with a first guess for the
parameter step sizes. This first guess, as will be seen shortly,
is not important due to the fast convergence of the algorithm
to the optimized values. The calculation of a new A P™™ i.e.,
the regeneration of the Markov chain, is done after N steps,
i.e., at regeneration times, through the equation

ki ®)
R i,desired ’

AP[max,new — APimax,old
where R; is the actual acceptance ratio of parameter i. Follow-
ing the previous equation, if the calculated ratio R; / R; gesired 1S
equal to one, i.e., if all parameters are changing with the same
predefined ratio, A P/"™ will not be changed.

If during the fit process a change of parameter P; is too
often accepted, the parameter space is being overexplored with
regard to parameter i. The algorithm will then make A P/
larger in order to reduce its acceptance. The contrary happens
if the acceptance is too low for a parameter: The algorithm
makes A P™ smaller to increase its acceptance ratio. This
will set different step sizes for each parameter, making the
exploration of all of them equally efficient.

III. DEMONSTRATIONS OF FITTING FUNCTIONS

A. Fitting in a well-behaved x? landscape

The optimization of the parameter step size is shown using
the Gaussian function

)

() = A ox [_(x—C)2j|
TV, =Rt TR

where A is the amplitude, W is the width, and C is the
center of the Gaussian. A function has been generated with the
parameterset {A,W,C} = {10,1,5}, and anormally distributed
error with o = 0.1 was added. A series of tests with different
initial values for parameter jumps and different desired
acceptance ratios have been carried out (see below for details).
The initial parameters for the fit were {A,W,C} = {2,2,2}. In
all cases the algorithm was able to fit the data as can be seen
in Fig. 1.

The parameter step size was adjusted every 1000 steps.
Three cases are shown in Fig. 2: an initial A P/"** of 10 (a very
large jump compared to the parameter values, nearly always
resulting in a rejection of the new parameters) and an Ryesireq
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FIG. 1. (Color online) Circles: Generated Gaussian function to
test the algorithm with the parameters {A, W,C} = {10,1,5}. Dashed
line: Starting point for all performed tests ({A,W,C} = {2,2,2}).
Solid line: Best fit, i.e., minimum x? fit, of the Gaussian function.

of 66%, the same A P™ with an Ryesirea Of 9% and finally a
AP™ of 10~* (a very small jump compared to the parameter
values, resulting in a slow exploration of the parameter space)
and an Ryesireq 0f 9%. It can be seen that the algorithm manages
in all these extreme cases to adapt the jump size quickly and
reliably in order to make R equal to Ryesired-

In Fig. 3 we show the three individual acceptance ratios R;
for the different parameters as a function of the fit steps for
different initialization values of the parameter jumps AP;,
for different values of Rgesireds and setting the number of
steps to recalculate parameter jumps N to 1000. When the
total acceptance ratio is set to Ryesired = 66% (solid line), the
algorithm is able to change all parameter jumps [see Fig. 3(b)],
making the acceptance ratio R; of every parameter equal to
Raesired/m = 22% and thus the total acceptance ratio R to
66%. The same happens if the acceptance is set to 9%: The
algorithm finds the parameter step sizes [see dashed line in
Fig. 3(b)], which yield a total acceptance ratio of 9% within
the first 5000 steps, no matter how the parameter step sizes
were initialized.

To explicitly show how this is linked with the geometrical
features of the x2 landscape, the inset of Fig. 3(b) shows a
cut of the x? hypersurface along parameters A and C, leaving
parameter W fixed to its best fit value Wgg. As can readily
be seen, the x2{A,C,W = Wgg} hypersurface is sloppy in the

100F " T T A

75+ 166%

{19%

1 | 1 | 1 | 1
0 3000 6000 9000
steps
FIG. 2. Total acceptance ratio R as a function of the number
of steps when Ryesireq 1S set to 66% and 9% (solid and dashed or
dotted lines). In the second case (Rgyesired = 9%), dashed and dotted
lines represent the values of R as a function of algorithm step for

two different parameter step size initializations (AP™ = 10 and
APM* = 107*, respectively).
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FIG. 3. (Color online) (a) Acceptance ratio R; for parameters
A, W, C involved in the fit of the Gaussian following Eq. (9) (red
triangles, green squares, and blue circles, respectively) when Rgesired
is set to 66% and 9% (solid and dashed lines). (b) Parameter step size
as a function of the number of steps (line and symbols code as in
panel a). The inset shows a cut through the x? hypersurface along A
and C directions fixing W to the best-fit value.

direction of parameter A and stiff in the direction of parameter
C. The algorithm has thus correctly calculated a parameter
step size that is larger for A than for C, along whose direction
the x2 well is narrower. This fact makes the final parameter
step sizes proportional to the errors of each parameter—if
the global minimum is not multimodal and is quadratic in all
parameters, and those are not correlated.

In order to show the robustness of the algorithm, we have
also made disparate initial guesses for parameter step sizes
A P about three decades below the correct acceptance ratio,
setting Ryesired = 9%. As displayed in Fig. 3, after about 5000
steps the acceptance ratio R (N is again 1000 steps) has already
reached the desired value. It can be seen in Fig. 4(a) that the
acceptance ratio for each parameter reaches again the value
Raesired/ M = 3% and parameter step sizes are virtually equal
to those obtained previously as shown in Fig. 4(b).

To stress the relevance of the aforementioned algorithm
to explore the parameter space correctly, thus ensuring its
convergence, we have calculated the normalized A x*PDF in
all tested cases. As can be seen in Fig. 5, the Ax? PDF after
10° steps matches the x? distribution

m_ Ax?
Pax® o (ax)E ) exp (—TX) (10)
40 . . —  10'g - - e
: @ F% OF
~30- § 4 0% 3
Sl P
EVZO- 2. {0 ] h‘ﬁ’i&:&""@ﬁﬁ"wa-~-@-":@
| %6 10-2&_ o/‘ ]
10+ e 1
3% L xm R 107 ¢ E
Or &fé"? .U.wl R T R 104-"" R I R 1 R L .:
0 3000 6000 9000 0 3000 6000 9000
steps steps

FIG. 4. (Color online) (a) Acceptance ratio R; for parameters A
(triangles), W (squares), C (circles) involved in the fit of the Gaussian
following Eq. (9) when initial parameter step sizes are set to AP; =
10 (dashed line) and AP, = 10~* (dotted line). (b) Parameter step
size as a function of the number of steps (lines and symbols as in
panel a).
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FIG. 5. (Color online) The dashed line represents a x? distribu-
tion for three parameters, i.e., m = 3 (see text for details). Solid
line is the obtained PDF associated to Ax2? when calculated for
103 steps. Circles represent the same distribution when calculated
using only 10* steps. The inset shows the x> PDFs when calculated
with parameters allowed to change with AP; = 1074, AP, = 10,
AP = 0.1P;. Successive PDFs are displaced on the ordinate axis for
clarity of the figure.

with m = 3 as expected [2]. In Fig. 5 we show the A x> PDF
obtained after 10* steps for different cases: first, setting A P
equal to the value calculated by the algorithm and, second,
setting A P/"™ equal to the initial guess, and finally to a value,
calculated a posteriori, which is proportional to the best-fit
parameters A P/"* = 0.1 P; (inset of Fig. 5)

As can be seen in Fig. 5, when A P/™* is set much higher
than the optimal step sizes, the Metropolis algorithm scans the
whole parameter space {P;}, but jumping between disparate
regions with very different values of x?2, therefore with a
low acceptance rate of new parameter sets (dashed line in
Fig. 5). This causes a poor exploration of parameter space. In
contrast, a small value overexplores only a restricted portion of
{ P;}, falling very often in local minima of the parameter space
(dotted line in the same figure). Also choosing parameter jumps
proportional to the final parameters leads to a poor exploration
of parameter space (solid line in the same figure). Finally, after
the same number of steps, when using the optimized parameter
step sizes obtained by the algorithm the x? PDF follows the
theoretical expectation, meaning that the parameter space is
correctly sampled.

B. Fitting in a complex x? landscape

As pointed out before, one of the main problems when
dealing with data fitting using the LM algorithm is to find
a proper set of initial parameters close enough to the global
minimum of the x2{ P;} hypersurface. As an example we show
in Fig. 6 the function sin(x/ W) for W = 5 affected by anormal
distributed error with o = 0.1. In Fig. 7(a) we show the x>{W}
landscape associated to the generated function. As can be seen,
the x2{W} landscape for this function has a great number
of local minima and a global minimum at W = 5. We have
fitted the function using the LM algorithm and initializing the
parameter at W; = 2 and W; = 15 (see Fig. 6). As expected,
both fits were not able to find the global minimum that fits
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sin(X/w)

FIG. 6. (Color online) Synthetic sin(x/5) function (circles)
together with the best fit using parameter step sizes tuning together
with simulated annealing (line). Dashed lines are the fits using the
LM algorithm with starting parameters W; = 2 and W; = 15.

the function. In fact, only if the LM algorithm is initialized
between W = 3.6 and W = 9.0 is it able to succeed in fitting
the data.

We now test the ability of our algorithm to jump across
x? barriers delimiting successive local minima to find the
global one. For this task we have used the simulated annealing
method, decreasing the temperature one decade every 3000
steps from 7 = 1000 to 1. The parameter jump calculation
has been performed every N = 1000 steps. While the initial
temperature allows to explore wide regions of the parameter
space, the last temperature will let the acceptance be deter-
mined only by the real errors of the data.

In Fig. 7(b) we show the parameter W as a function
of algorithm step for the two aforementioned initializations
together with the 2 landscape (a). Parameter step sizes were
initialized after a first run of optimization of 2000 steps. As can
be seen in this figure, after 3000 steps both runs have already
reached the absolute x> minimum. Successive steps just relax
the system to the final temperature 7 = 1.

o
o
o
a
Q
[
———T=1000] 1
0 1 " 1 " 1
10 15 20

w

FIG. 7. (Color online) (a) x>{W} landscape obtained for the
function sin(x/ W) with a normal error associated of o = 0.1 (see
Fig. 6). (b) Algorithm steps for two different initializations, black
solid line for W; = 2 and red dashed line for W; = 15, as a function
of parameter W.
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As it can be seen in Fig. 7, the way the minimum is reached
depends on the parameter initialization. Parameter step sizes
are larger for the run started with W; = 15 with a flat local
minimum. The contrary happens with the run initialized at
W; = 2, parameter step sizes are set small due to the narrow
wells of the x2 landscape in this region. However, both runs
are able to avoid getting stuck in local minima, jumping over
rather high x? barriers and successfully reaching the best fit.

IV. CONCLUSION

Classical fit schemes are known to fail when the parameters
are not initialized close enough to the final solution. We have
proposed in this work to use an Adaptive Markov Chain
Monte Carlo Through Regeneration scheme, adapted from
that of Gilks et al. [16], combined with a simulated annealing
procedure to avoid this problem.

The proposed algorithm tunes the parameter step size in
order to assure that all of them are accepted in the same
proportion. Geometrically the parameter step size is set large
when a cut of Xz{ P;} along this parameter is flat, i.e., when
the change of the x2{P;} hypersurface along this parameter is
sloppy. Similarly the parameter step size is set small if x2{P;}
wells are narrow.

Moreover, the step sizes can be modulated by a temperature
added to the acceptance equation that makes jumps across x>
barriers easier, i.e., using a simulated annealing method [18].
From a geometric point of view, a high temperature makes the
x2{ P;} wells artificially broader, smearing out details of local
minima. This is important at the first stages of a fit process.

PHYSICAL REVIEW E 84, 046711 (2011)

At final stages of the fitting, temperature is decreased, making
parameter jumps smaller, and thus allowing the system to relax,
once it is inside the global minimum.

By fitting simulated data including statistical errors we
verified that our algorithm actually fulfills the requirements
of ergodicity (it converges to the target distribution), ro-
bustness (the ability to reach the x> minimum independent
of the choice of starting parameters), and ability to escape
local minima and to explore efficiently the x? landscape
and guarantees that it will self-tune to converge to the
global minimum avoiding an infinite search with large
steps.

More complex problems have already successfully been
studied with this algorithm such as model selection using
quasielastic neutron-scattering data [25], nonfunctional fits
in the case of dielectric spectroscopy [26], or finding the
molecular structure from diffraction data with a model defined
by as many as 27 parameters [27]. In the last case, the proper
initialization of parameters to use a LM algorithm would have
been a difficult task, made easy by the use of the presented
algorithm.
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