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Numerous schemes have been proposed to incorporate a bulk forcing term into the lattice Boltzmann equation.
In this paper we present a simple and straightforward comparative analysis of five popular schemes [Shan and
Chen, Phys. Rev. E 47, 1815 (1993); Phys Rev Lett. 81, 1618 (1998); He et al., Phys. Rev. E 57, R13 (1998);
Guo et al., Phys. Rev. E 65, 046308 (2002); Kupershtokh et al., Comput. Math. Appl. 58, 965 (2009)] in which
their differences and similarities are identified. From the analysis we classify the schemes into two groups; the
behaviors of the schemes in each group are proven to be identical up to second order. Numerical test simulating the
two-dimensional unsteady Taylor-Green vortex flow problem demonstrate that all five schemes are of comparable
accuracy for single-phase flow. However, for two-phase flow the situation is different, which is demonstrated
by incorporating these schemes into different Shan-Chen-type multiphase models. The forcing scheme in the
original Shan-Chen (SC) multiphase model turns out to be inaccurate in terms of the resulting surface tension for
different density ratios and relaxation times. In the numerical tests, a typical equation of state and interparticle
interactions including next-nearest neighbors were incorporated into the SC model. Our results confirm that the
surface-tension values obtained from the original SC lattice Boltzmann method (LBM) simulation depend on
the value of the relaxation time τ . For τ < 0.7�t , the surface tension agree well with the analytical solutions.
However, when τ > 0.7�t , the surface tension turns out to be systematically larger than the analytical one,
exceeding it by more than a factor of 2 for τ = 2�t . In contrast, with the application of the scheme proposed
by He et al., the SC LBM produces very accurate surface tensions independent of the value of τ . We also found
that the densities of the coexisting liquid and gas can be adjusted to match those at thermodynamic equilibrium
if the particle interaction term includes next-nearest-neighbor contributions. The obtained results will be useful
for further studies of two-phase flow with high density ratios using the SC LBM approach.
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I. INTRODUCTION

Over the past decade, the lattice Boltzmann method (LBM),
which is based on mesoscopic kinetic equations, has become
a numerically robust and efficient technique for simulating
both single-phase and multiphase fluids [1–4]. For both
single-phase and multiphase flows, the correct treatment of
the forcing term in the LBM is an important issue. Guo
et al. [5] and Buick and Greated [6] discussed various
schemes in the literature. In the course of the derivation of
the Navier-Stokes (NS) equation from the lattice Boltzmann
equation (LBE), Guo et al. [5] analyzed important properties as
well as the accuracy of different forcing strategies. However,
in the previous studies the connections between the forcing
schemes of the Shan-Chen-type multiphase models [1] and
Luo [7] were not investigated. Based on a straightforward
theoretical analysis, we demonstrate that they are identical
when neglecting terms of O( F2�tτ

ρ
). Recently, Kupershtokh

et al. [8] proposed the so-called exact difference method. After
a simple analysis, we demonstrate that this forcing scheme is
identical to the one used by Shan and Chen [1] and Luo [7] up
to terms of O( (F�t)2

ρ
).

The present authors are unaware of previous studies investi-
gating the connection between the forcing scheme proposed by
He et al. [9] and that proposed by Ladd and Verberg [5,10]. The
analysis given herein shows that the two schemes are identical
at the macroscopic level when omitting terms of O(u3). These
analytical results will be confirmed by simulations of the
unsteady Taylor-Green vortex flow problem, which, due to

the availability of an analytic solution, is a suitable benchmark
to test the accuracy of numerical schemes in general and the
various forcing schemes in particular.

For simulations of two-phase flows, the forcing-term strat-
egy is of critical importance. Some popular LBM multiphase
models, e.g., the color-gradient-based LBM [11–13] and the
free-energy-based LBM [14], usually do not involve forcing
terms explicitly. However, the popular models proposed by He
et al. [4,15] and Shan and Chen [1] depend on accurate forcing
strategies. Different discretization schemes for the forcing
term in the model of He et al. [4,15] have been discussed by
Wagner [16] and Kikkinides et al. [17] in detail. Kikkinides
et al. [17] discovered that in order to make the model [15]
thermodynamically consistent, the surface tension is limited to
a very narrow range. In addition, they showed that only through
a special discretization of the forcing term can thermodynamic
consistency for the model of He et al. [15] be achieved [17].

The Shan-Chen (SC) model has been shown to lack
thermodynamic consistency [18,19] and the surface tension
in the model cannot be adjusted independently of the density
ratio. However, in many applications this thermodynamic in-
consistency is not of primary importance. Recently, Sbragaglia
et al. [20] argued that surface tension can be adjusted for
constant density ratios. The proposed method [20] extended the
interparticle action up to next-nearest neighbors. Kupershtokh
also proposed a similar strategy [8]. In contrast, to improve
numerical stability, Yu and Fan [21] extended the SC model to
a multiple-relaxation-time version. In this work we will focus
exclusively on the SC Bhatnagar-Gross-Krook (BGK) model.
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In the SC model, by incorporating a forcing term into the
corresponding LBE, the ideal-gas equation of state (EOS)
in single-phase LBMs is substituted by a nonmonotonic
EOS. Several researchers [3,22,23] have proposed a simple
implementation strategy to incorporate different EOSs into
the SC LBM to achieve high density ratios. Yuan and Schaefer
[22] investigated the magnitude of spurious currents and the
resulting coexistence curves for five different EOSs. However,
the important issue of surface-tension variations in the SC
LBM has not been discussed. This issue will also be addressed
in this work.

In Ref. [18] the surface tension obtained from the SC
model with τ = 0.6�t is consistent with analytical solutions.
However, the effect of varying τ on the results is not addressed.
We will show that both the resulting density ratio and the
surface tension strongly depend on τ when using the original
SC model by carrying out simulations with different τ values
for two typical EOSs. The numerical tests will be performed for
both the original SC model and variants with a different forcing
strategy. In addition, we will also investigate the midrange
interaction in the SC model [20] involving a stencil exceeding
nearest neighbors. The SC model in combination with the
forcing strategy of He et al. [9] is found to generate a much
more accurate surface tension than the original SC model.

In the following we first briefly review and analyze the five
forcing schemes by conducting numerical tests to evaluate
their accuracy for a single-phase flow problem. Then these
schemes are incorporated into the SC model. The original
SC model and the forcing-scheme models of He et al. [9]
and Kupershtokh et al. [8] are compared in detail. In the
comparison, the resulting surface tension and density ratios
of a typical EOS will be discussed in detail.

II. LATTICE BOLTZMANN METHOD

In order to simplify the discussion, we focus on two-
dimensional problems. It is expected that the results will be
qualitatively identical for three-dimensional problems. The
LBM can be derived from the BGK approximation of the
Boltzmann equation [7]

∂f

∂t
+ ξ · ∇f + F · ∇ξf = −f − f eq

τ
, (1)

where f (x,ξ ,t) is the single-particle distribution function in
the phase space (x,ξ ), f eq(x,ξ ) is the Maxwell-Boltzmann
distribution function, ξ is the microscopic velocity, F(x,t) is a
body force, and τ is the relaxation time.

In the lattice BGK method, a distribution function fi is
introduced to implicitly represent all relevant properties of the
fluid. This distribution function satisfies the following lattice
Boltzmann equation [7]:

fi(x + ei�t,t + �t) = fi(x,t) − �t

τ
[fi(x,t)

− f
eq
i (x,t)] + Si(x,t), (2)

where fi(x,t) is the density distribution function related to the
discrete velocity direction i, τ is a relaxation time that is related
to the kinematic viscosity by ν = c2

s (τ − 0.5�t), and Si(x,t)
is the source term added into the standard lattice Boltzmann

equation. The equilibrium distribution function f
eq
i (x,t) can

be calculated as [7]

f
eq
i (x,t) = wiρ

(
1 + ei · u

c2
s

+ (ei · u)2

2c4
s

− (u)2

2c2
s

)
. (3)

In Eqs. (2) and (3), ei is the discrete velocity. For the D2Q9
model, they are given by [7]

[e0,e1,e2,e3,e4,e5,e6,e7,e8]

= c

[
0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

]
.

In Eq. (3) we have wi = 4/9 (i = 0), wi = 1/9 (i =
1,2,3,4), wi = 1/36 (i = 5,6,7,8), and cs = c√

3
for the D2Q9

model, where c = �x
�t

is the ratio of lattice spacing �x and
time step �t. Here we define one lattice unit �x as 1 l.u., one
time step �t as 1 t.s., and one mass unit as 1 m.u. In Eq. (3),
ρ is the density of the fluid, which can be obtained from the
discrete zeroth-order moment ρ = ∑

i fi and the fluid velocity
u = 1

ρ

∑
i fiei for Si = 0.

III. FORCING TERM

To mimic the body force Fα in the incompressible Navier-
Stokes equations

∂tρ + ∂αρuα = 0,

∂tρuα + ρuβ∂βuα = −∂αp + ρν∂β (∂βuα + ∂αuβ) + Fα,
(4)

usually an extra forcing term Si is added to the LBE. Subscripts
α and β indicate the coordinates x or y for the two-dimensional
cases considered here. The Einstein summation convention is
adopted. Numerous schemes have been proposed to include
the forcing term in the LBM, five of which [1,5,7–10], labeled
I–V, are discussed below.

A. Schemes to incorporate the body force

1. Scheme I

This scheme was proposed by Shan and Chen [1]. After
the collision step, the momentum of the fluid particle is
calculated as

ρuα =
∑

i

fieiα. (5)

If a momentum Fτ acts on the fluid particle from internal
or external body forces, the momentum of the fluid particle
would reach a new equilibrium state with ρueq after �t = τ .
From Newton’s law of motion, the equilibrium velocity ueq is
calculated by

ueq
α = uα + τFα

ρ
. (6)

According to the SC model, this velocity should be
substituted into Eq. (3) to calculate f

eq
i . In Eq. (6), the force

acting on the fluid includes the interparticle force Fint and
external force Fext. In this study Fext = 0.
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However, in the model the actual fluid velocity is not
defined as ueq, but as u∗, which, according to Ref. [18], can be
calculated by

u∗
α = uα + Fα�t

2ρ
. (7)

Note that, in this scheme, the equilibrium velocity ueq, which
is plugged into Eq. (3), and the physical velocity u∗ may not
be identical. For schemes II–IV, the true fluid velocity u∗ and
the equilibrium velocity ueq are identical and u∗ = ueq = u.

2. Scheme II

Luo [7] described another scheme to incorporate the body
force into the LBM that was derived from a nonideal-gas
Boltzmann equation. Accordingly, the forcing term to be added
into the LBE is [7]

Si = wi

(
1

c2
s

(eiγ − uγ ) + 1

c4
s

eiαuαeiγ

)
Fγ (8)

and the velocity is defined according to Eq. (5).
We also note the scaled forcing term introduced by

Junk et al. [24]. In the scaled strategy, Si = λSi(x,t) + (1 −
λ)Si(x + ei�t,t + �t), where λ should satisfy 0 � λ � 1.
However, how to choose λ for a specific flow problem is not
illustrated explicitly in Ref. [24]. In their practical tests, usually
λ = 1 is adopted [24]. If λ = 1, it is identical to scheme II.
Here we do not discuss the effect of the parameter λ and this
scaled forcing strategy is not discussed in our study.

3. Scheme III

The idea of the scheme proposed by He et al. [9] is simple.
On the left-hand side of Eq. (1) there is a force term F · ∇ξf . If
f eq is the leading part of f and the gradient of f eq has a major
contribution to the gradient of f , one finds [9] F · ∇ξf ≈
F · ∇ξf

eq = −F · ξ−u
c2
s

f eq. Considering discrete lattice effects,
the corresponding formula for the forcing term according to
Ref. [9] is

Si =
(

1 − 1

2τ

)
1

ρc2
s

Fγ (eiγ − uγ )f eq
i (9)

and the velocity should be calculated as

uα =
∑

i

fieiα + Fα�t

2ρ
. (10)

4. Scheme IV

Ladd and Verberg [10] proposed that the forcing term in
the LBM should be expanded in a power series in the particle
velocity, i.e.,

Si = wi

(
A + Bγ

1

c2
s

(eiγ ) + Cαγ

1

2c4
s

(
eiαeiγ − c2

s δαγ

))
,

(11)

and the velocity should be defined by Eq. (10), where A, Bγ ,
and Cαγ are determined by a Chapman-Enskog expansion.
Based on a careful derivation from the LBE to the NS
equations, Guo et al. [5] suggested

Si =
(

1 − 1

2τ

)
wi

(
1

c2
s

(eiγ − uγ ) + 1

c4
s

eiαuαeiγ

)
Fγ .

(12)

5. Scheme V

Recently, Kupershtokh et al. [8] proposed the exact differ-
ence method, which is derived directly from the Boltzmann
equation. In this scheme, the source term in the LBE
should be

Si = f
eq
i (ρ,ueq + �u) − f

eq
i (ρ,ueq), (13)

where

�u = F�t

ρ
. (14)

In this scheme, the true fluid velocity u∗
α = ∑

i fieiα +
Fα�t

2ρ
and the equilibrium velocity u

eq
α = ∑

i fieiα are not
identical [8].

From the introduction above we can see that three terms
may be modified by the presence of a body force: (i) the
equilibrium velocity, (ii) the physical velocity, and (iii) the
additional forcing term in the LBE. An overview of the five
forcing schemes is shown in Table I. In schemes II–IV the true
fluid velocity and the equilibrium velocity are identical, but for
schemes I and V the velocities are slightly different. Scheme
I is the only scheme that does not need an additional forcing
term in the LBE.

TABLE I. Overview of the forcing schemes.

Scheme Equilibrium velocity ueq
α Physical velocity u∗

α Additional forcing term?

I
∑

i fieiα + τFα

ρ

∑
i fieiα + Fα�t

2ρ
no

II
∑

i fieiα

∑
i fieiα yes

III
∑

i fieiα + Fα�t

2ρ

∑
i fieiα + Fα�t

2ρ
yes

IV
∑

i fieiα + Fα�t

2ρ

∑
i fieiα + Fα�t

2ρ
yes

V
∑

i fieiα

∑
i fieiα + Fα�t

2ρ
yes
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We will prove that schemes I, II, and V are identical and
schemes III and IV are identical with very minor differences.
The former three and the latter two schemes are thus classified
into two groups: A and B, respectively.

B. Theoretical analysis

We start by comparing the scheme in the original SC
model (scheme I) to that of Luo [7] (scheme II). In the
original SC model, the forcing term is incorporated by defining
ueq = u + 1

ρ
τF = 1

ρ
(
∑

i fiei + τF) and in the collision step

ueq is substituted into f
eq
i . We note that the LBE can be

rewritten as

fi(x + ei�t,t + �t) = fi(x,t) − �t

τ

[
fi(x,t) − f

eq
i (ueq)

]
= fi(x,t) − �t

τ

[
fi(x,t) − f

eq
i (u)

]
+

(
�t

τ

[
f

eq
i (ueq) − f

eq
i (u)

])
, (15)

where the terms in large parentheses can be regarded as the
source term in Eq. (2). Hence, in the SC model the explicit
source term is

Si = �t

τ

[
f

eq
i (ueq) − f

eq
i (u)

] = �t

τ

{
wiρ

[
1 + 1

c2
s

eiα

(
uα + Fατ

ρ

)
+ 1

2c4
s

eiα

(
uα + Fατ

ρ

)
eiβ

(
uβ + Fβτ

ρ

)

− 1

2c2
s

(
uα + Fατ

ρ

) (
uα + Fατ

ρ

)]
− wiρ

(
1 + 1

c2
s

eiαuα + 1

2c4
s

eiαuαeiβuβ − 1

2c2
s

uαuα

) }

= wi

(
1

c2
s

(eiα − uα) + 1

c4
s

eiβuβeiα

)
Fα�t + wiρ

�t

τ

[
1

2c4
s

eiαeiβ

FαFβ

ρ2
τ 2 − 1

2c2
s

(
Fατ

ρ

)2
]

. (16)

If terms of O[�t
τ

(FαFβτ 2

ρ
)] are neglected, scheme I is identical to

scheme II [7]. We note that through expanding the distribution
function in the Boltzmann equation on the basis of the Hermite
orthogonal polynomials in velocity space, recently Shan et al.
[25] derived a correction of f

eq
i (ueq). According to their study

[25], in order to obtain second-order accuracy, the corrected
f

eq
i (ueq)′ should be

f
eq
i (ueq) − wiρ

�t

τ

[
1

2c4
s

eiαeiβ

FαFβ

ρ2
τ 2 − 1

2c2
s

(
Fατ

ρ

)2
]

.

We observe that this correction is consistent with our present
simple analysis because with this correction, the terms

O[�t
τ

(FαFβτ 2

ρ
)] in Eq. (16) can be canceled.

In our numerical simulations presented below we found

that the terms O[�t
τ

(FαFβτ 2

ρ
)] have a very minor effect on

single-phase flow. However, in the following SC multiphase

flow simulations, the terms O[�t
τ

(FαFβτ 2

ρ
)] are found to be of

significant importance. Starting from
∑

i Sieiαeiβ = uαFβ +
uβFα + �t

τ
(FαFβ

τ 2

ρ
), through a Chapman-Enskog expansion

one can readily see the resulting NS equations with an extra
body force of O[∇ · �t

τ
(FαFβ

τ 2

ρ
)] on the right-hand side

(rhs) of the equations. In other words, what the original SC
multiphase model really mimics is Eq. (4) with an extra
complex nonlinear force term on the rhs.

We continue with the comparison of schemes V [8] and
II [7]. In scheme V the source term is given by

Si = f
eq
i (ρ,u + �u) − f

eq
i (ρ,u) = wiρ

[
1 + 1

c2
s

eiα

(
uα + Fα�t

ρ

)
+ 1

2c4
s

eiα

(
uα + Fα�t

ρ

)
eiβ

(
uβ + Fβ�t

ρ

)

− 1

2c2
s

(
uα + Fα�t

ρ

)(
uα + Fα�t

ρ

)
− wiρ

(
1 + 1

c2
s

eiαuα + 1

2c4
s

eiαuαeiβuβ − 1

2c2
s

uαuα

)]

= wi

(
1

c2
s

(eiα − uα) + 1

c4
s

eiβuβeiα

)
Fα�t + wiρ

[
1

2c4
s

eiαeiβ

FαFβ

ρ2
�t2 − 1

2c2
s

(
Fα�t

ρ

)2
]

. (17)

Similar to the case of Eq. (16), if we omit terms of

O(FαFβ�t2

ρ
), we observe that this formula is identical to the

one proposed in the study of Luo [7]. Thus, for this scheme
we encounter the same problem as the SC model analyzed

above, i.e., it involves an extra nonlinear force in the NS
equations. Hence we proved that schemes I, II, and V are

identical if terms of O(FαFβ�t2

ρ
) are omitted in schemes

I and V.
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Next we compare schemes III [9] and IV [5,10] in group B. In scheme III [9] the source term is given as

Si =
(

1 − 1

2τ

)
1

ρc2
s

Fγ (eiγ − uγ )f eq
i =

(
1 − 1

2τ

)
1

ρc2
s

Fγ (eiγ − uγ )wiρ

(
1 + 1

c2
s

eiαuα + 1

2c4
s

eiαuαeiβuβ − 1

2c2
s

uαuα

)

=
(

1 − 1

2τ

)
wi

(
1

c2
s

(eiγ − uγ ) + 1

c4
s

eiαuαeiγ

)
Fγ

+
[(

1 − 1

2τ

)
wi

(
− 1

c4
s

eiαuαFγ uγ + 1

2c6
s

eiαuαeiβuβFγ (eiγ − uγ ) − 1

2c4
s

uαuαFγ (eiγ − uγ )

)]
. (18)

In comparison to the schemes of Ladd and Verberg [10] and
Guo et al. [5], i.e., Eq. (12), Eq. (18) yields extra terms S ′

i .
Omitting terms of O(u3), we find that the extra terms are

S ′
i =

(
1 − 1

2τ

)
wi

(
− 1

c4
s

eiαuαFγ uγ + 1

2c6
s

eiαuαeiβuβFγ eiγ

− 1

2c4
s

uαuαFγ eiγ

)
. (19)

By means of simple algebra, we find that
∑

i S
′
i = 0,∑

i S
′
ieiκ = 0, and

∑
i S

′
ieiκeiδ = 0.

For the derivation of the NS equations from the LBE, only
the zeroth- to second-order momenta of Si are used. The Si

in Eq. (18) satisfies
∑

i Si = 0,
∑

i Sieiκ = (1 − 1
2τ

)Fκ , and∑
i Sieiκeiδ = (1 − 1

2τ
)(uκFδ + uδFκ ), which can be used to

derive NS equations correctly [5]. Hence the extra terms S ′
i in

scheme III do not affect the derivation. In other words, if terms
of O(u3) are neglected, scheme III and IV are identical. As a
preliminary conclusion, we proved that the schemes proposed
by Luo [7], Kupershtokh et al. [8], and Shan and Chen [1]

are identical when terms of O(FαFβ�t2

ρ
) are omitted and the

schemes proposed by He et al. [9], Guo et al. [5], and Ladd
and Verberg [10] are identical when omitting terms of O(u3).

C. Numerical analysis for single-phase flow

We now validate these conclusions by simulating the
unsteady Taylor-Green vortex flow. The analytical solutions
for horizontal velocity ua , vertical velocity va , and pressure
are [5]

ua = −u0 cos(k1x) sin(k2y)e−ν(k2
1+k2

2 )t ,

va = u0
k1

k2
sin(k1x) cos(k2y)e−ν(k2

1+k2
2 )t , (20)

p = p0 − G

4

(
cos(2k1x) + k1

k2

2

cos(2k2y)

)
e−2ν(k2

1+k2
2 )t ,

where k1 and k2 are the wave numbers in the x and y directions,
respectively, which are fixed to unity in our simulations.
The arbitrary pressure constant is set equal to p0 = 1.0. The
physical domain of our simulations is x,y ∈ [−π,π ].

In our simulations, the body force is a
function of not only spatial position but also
time, Fx = −ρk1

G
2 sin(2k1x)e−2ν(k2

1+k2
2 )t and Fy =

−ρk2
1

G
2k2

sin(2k2y)e−2ν(k2
1+k2

2 )t , respectively, where G = u2
0

represents the force magnitude and ν is the kinematic viscosity.
A uniform mesh consisting of 128 × 128 grid nodes is used,

which means �x = 2π
128 . Periodic boundary conditions are

applied in both directions. We note that ν = 1
3

�x2

�t
( τ
�t

− 0.5)
and ν = 0.005 is fixed in our simulations. For τ = 0.9�t ,
�t in the simulation is about 0.06424. The flow is initialized
by the analytical velocity and pressure (density) at t = 0. To
eliminate the compressibility effect, u0 is set equal to 0.001
l.u./t.s., which is small in our simulations. In our code, all the
forcing schemes are implemented as follows: (i) streaming;
(ii) compute density, equilibrium velocity, and real fluid
velocity; (iii) compute forces; (iv) collision; (v) go back to (i).

We define the error of the velocity field as

E(t) =
√∑ {[u(t) − ua(t)]2 + [v(t) − va(t)]2}∑

[ua(t)2 + va(t)2]
, (21)

where the summation is over all grid nodes. We note that
there seems to be a typographical error in the error definition
[Eq. (29)] in Ref. [5] because, according this definition, E(t)
is found to be a constant in the simulation equal to

√
2.

From Fig. 1 we can see that when body force is not applied,
the error decreases steadily with time. However, when body
force is applied, the error decreases in an oscillatory way. From
Figs. 1(b)–1(d) we can see that in the simulations with τ =
1.0�t,1.5�t,0.7�t , the error curves collapse onto a single
curve. It is difficult to distinguish one from the others. All
error curves decrease from 1.2% to 0.3% when time increases
from t = 0 to 150. The error for these five schemes are almost
identical. Although some study intended to exaggerate the
difference between different schemes [5] by checking the error
differences, the small difference between different schemes
is beyond any practical significance. Hence, for single-phase
flow, the five schemes result in almost identical accuracy.

IV. INTERPARTICLE FORCES IN THE
SC MULTIPHASE LBM

In the original SC model, the interparticle force is defined
as [2]

Fint(x,t) = −gψ(x,t)
∑

i

wiψ(x + ei�t,t)ei , (22)

where g is a parameter that controls the strength of the
interparticle force and ψ is a mean-field potential. In Ref. [1],
ψ(ρ) = ρ0[1 − exp(−ρ/ρ0)], where ρ0 is a constant. Here
the interaction is applied only to nearest neighbors. This
interparticle force is subsequently referred to as interparticle-
force model A.
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FIG. 1. (Color online) Error of the velocity field (a) when there is no body force applied and (b)–(d) as a function of the nondimensional
time t for (b) τ = 1.0�t , (c) τ = 1.5�t , and (d) τ = 0.7�t , when body force is applied.

If interactions with next-nearest neighbors are also involved
in the force computation, the value of the surface tension
may be adjusted without changing the density ratio [20]. This
interparticle force is defined as [20]

Fint(x,t) = −ψ(x,t)
∑

i

wi[g1ψ(x + ei�t,t)

+ g2ψ(x + 2ei�t,t)]ei , (23)

where g1 and g2 are parameters that control the interactions
with the nearest and next-nearest neighbors, respectively. It is
referred to as interparticle-force model B.

For interparticle-force model A [Eq. (22)], one finds from
the Taylor expansion as described in Appendix A in Ref. [19]

Fα = −gψ
∑

i

wiψ(x + eiα�t)eiα

= −gψ

( ∑
i

wieiαψ + �t
∑

i

wieiαeiβ∂βψ

+ 1

2
�t2

∑
i

wieiαeiβeiγ ∂β∂γ ψ

+1

6
�t3

∑
i

wieiαeiβeiγ eiδ∂β∂γ ∂δψ

)
+ · · ·

≈ −g

2
�tc2

s ∂αψ2 − g

2
�t3c4

s ψ(∂α∇2ψ). (24)

The interparticle force can be translated into an excess pressure
with respect to that of the ideal gas by

−∂αpαβ + ∂β(c2
s ρ) = Fβ. (25)

Then the total pressure tensor can be obtained as follows:

pαβ = [
c2
s ρ + 1

2gc2
s ψ

2 + 1
2gc4

s

(
ψ∇2ψ + 1

2 |∇ψ |2)]δαβ

− 1
2gc4

s ∂αψ∂βψ. (26)

Compared with the well-known form of the pressure ten-
sor [26] pαβ = [p − κρ∇2ρ − 1

2κ(∇ρ)2]δαβ + κ∂αρ∂βρ, we
know that if κ = − 1

2gc4
s and ψ ∝ ρ, the pressure tensor is con-

sistent with this well-known form. Hence the thermodynamic
pressure is

p = c2
s ρ + c2

s g

2
ψ2, (27)

which can be determined from a nonideal-gas EOS. We can
use the following strategy [3,22,23]:

ψ =
√

2(p − c2
s ρ)

c2
s g

, (28)
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to incorporate different EOSs into the SC LBM.
For interparticle-force model B, the corresponding pressure

tensor can be derived similarly [20]. Here we propose using
the following formula to incorporate different EOSs into the
SC model:

ψ =
√

2
(
p − c2

s ρ
)

c2
s (g1 + 2g2)

. (29)

A. Typical equations of state used in the simulations

Here we illustrate some popular equations of state which are
subsequently investigated in the context of the SC model. The
van der Waals (vdW) EOS is the simplest and most well-known
cubic EOS [22]:

p = ρRT

1 − bρ
− aρ2, (30)

where a = 27(RTc)2

64pc
, b = RTc

8pc
, R is the gas constant, and T is

the temperature. The Carnahan-Starling (CS) EOS is given
by [22]

p = ρRT
1 + bρ/4 + (bρ/4)2 − (bρ/4)3

(1 − bρ/4)3
− aρ2, (31)

with a = 0.4963R2T 2
c /pc and b = 0.18727RTc/pc.

For the vdW EOS, we set a = 9/49, b = 2/21, R = 1, and
the critical density ρc = 3.5. For the CS EOS, the parameters
are a = 1, b = 4, R = 1 and ρc = 0.1136. In the following
study, if not specified, usually the CS EOS is used because it
allows one to achieve the highest density ratio [22].

B. Derivation of the analytical surface tension

The following derivation of the analytical surface tension
in the SC LBM is identical to those described in Refs. [18,19].
We repeat the essential steps for the readers’ convenience.
In the following discussion, we assume that a flat interface
parallel to the x-z plane separates liquid and gas. The phase
interface implicitly defined by ρ = (ρl + ρg)/2 is chosen as
the origin of the y axis. For interparticle-force model A, the
normal component of the pressure tensor pyy obtained from
Eq. (26) is

pyy = c2
s ρ + 1

2gc2
s ψ

2 + 1
2gc4

s

(
ψ∂yyψ − 1

2∂yψ∂yψ
)
. (32)

In both phases far from the interface the pressure p0 satisfies
the following relation [18,19]:

p0 = c2
s ρg + 1

2gc2
s ψ

2(ρg) = c2
s ρl + 1

2gc2
s ψ

2(ρl). (33)

One obtains the density profile dρ/dy by solving Eqs. (32) and
(33) assuming dρ/dy = 0 at y = ±∞. A simple change of
variables simplifies Eq. (32). In order to get a formal solution,
we set (dρ/dy)2 = z and notice that d2ρ

dy2 = 1
2

dz
dρ

; then Eq. (32)
can be transformed as follows [18,19]:

pyy = c2
s ρ + 1

2
gc2

s ψ
2 + 1

4
gc4

s

ψ2

ψ ′
d

dρ

(
z
ψ ′2

ψ

)
, (34)

where ψ ′ = ∂ψ/∂ρ. By direct integration and using the
definition of Eq. (27), one can obtain the following solution
for z(ρ) [18,19]:

z(ρ) = 4ψ

gc4
s (ψ ′2)

∫ ρ

ρg

(
pyy − c2

s ρ − 1

2
gc2

s ψ
2

)
ψ ′

ψ2
dρ

= 4ψ

gc4
s (ψ ′2)

[(
−p0

ψ
+ pyy

ψ

)∣∣∣∣
ρ

ρg

−
∫ ρ

ρg

dpyy/dρ

ψ
dρ

]
.

(35)

To satisfy the boundary condition [i.e., Eq. (33)], we require∫ ρl

ρg

(
pyy − c2

s ρ − 1

2
gc2

s ψ
2

)
ψ ′

ψ2
dρ = 0. (36)

The quantities p0, ρl , and ρg can be simultaneously obtained
numerically from Eq. (36). Then, by solving Eq. (35), the
density profile in the vicinity of the interface can be obtained.
Finally, the surface tension can be computed from [18,19]

σ = −1

2
gc4

s

∫ +∞

−∞
(∂yψ)2dy = −1

2
gc4

s

∫ +∞

−∞
ψ ′2[z(ρ)]1/2dρ.

(37)

For interparticle-force model B, one can obtain the pressure
tensor by an analogous procedure. The result is similar to
Eq. (26) [20]:

p∗
αβ = [

c2
s ρ + 1

2A1c
2
s ψ

2 + 1
2A2c

4
s (ψ�ψ + 1

2 |∇ψ |2)
]
δαβ

− 1
2A2c

4
s ∂αψ∂βψ, (38)

where A1 and A2 are constants related to g1 and g2 in Eq. (23),

A1 = g1 + 2g2, A2 = g1 + 8g2. (39)

The corresponding surface tension is

σ ∗ = −1

2
A2c

4
s

∫ +∞

−∞
(∂yψ)2dy. (40)

V. RESULTS AND DISCUSSION ON MULTIPHASE FLOWS

In this section we study the properties of the original
SC model and the SC model in combination with the other
four forcing strategies. All simulations in this section use
interparticle-force model A, except for Sec. V G.

In our study, not only were the cases of a cylindrical
droplet simulated, but also the cases of a flat interface. For
the cases of a flat interface, the computational domain is Nx ×
Ny = 10 × 200, with periodic boundary conditions in both
directions. The central region (50 � y � 150) and the other
region were filled with liquid and gas, respectively. The density
field was initialized as ρ(y) = ρgas + ρliquid−ρgas

2 [tanh( 2(y−50)
W

) −
tanh( 2(y−150)

W
)], where W is the initial interface thickness,

which is always chosen as 5 l.u. in our simulations. The units of
the density and the surface tension are m.u./l.u.3 and m.u./t.s.2,
respectively.

For the cylindrical droplet cases, if not specified, the
computational domain consists of 200 × 200 grid nodes and a
central circular area with liquid was initialized in the domain
and the other part was initialized as a lower density area (gas).
Periodic boundary conditions were applied in both directions.
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The analytical densities at a specified temperature and zero
velocity were used as initial conditions. The density field was
initialized as

ρ(x,y) = ρliquid + ρgas

2
− ρliquid − ρgas

2

×
[

tanh

(
2(

√
(x − x1)2 + (y − y1)2 − R0)

W

)]
,

where (x1, y1) is the center position of the domain and R0 is
the initial radius of the droplet. The convergence criterion is∑ |[u(t) − u(t − 2000)]| + |[v(t) − v(t − 2000)]|∑ |u(t)| + |v(t)| < 10−7

and the summation is taken over the whole computational
domain. We checked that this criterion is sufficient to let the
flat interface and the droplet reach the equilibrium state.

A. Spatial accuracy

The single-phase LBM is usually second-order accurate in
space. One may be interested in the spatial accuracy of the
LBM for multiphase flows. The spatial accuracy of the SC
model combined with the five schemes is tested by the cases
of a cylindrical droplet first. To test the accuracy, different
mesh sizes Nx × Ny = 50 × 50, 100 × 100, 150 × 150, and
200 × 200 are used. The radius of the droplet is R0 = 1

4Nx .
Here we assume that the mesh 200 × 200 is the finest mesh and
the result at this mesh is accurate. The error of mesh size Nx is
defined as Error(Nx) = |ρ(Nx) − ρ(200)|, where ρ(Nx) means
the density of liquid or gas obtained by mesh size Nx × Nx .
The errors of different schemes are illustrated in Fig. 2, where
we can see that schemes I, III, and V are approximately second-
order accurate in space. This conclusion is not relevant to the
τ value. For example, errors of scheme I with τ = 0.7�t and
1.0�t exhibit almost the same spatial accuracy (the result
of τ = 1.0�t is not shown). Hence, here we confirm that
the LBM for multiphase flow has approximately second-order
spatial accuracy. Note that here the error of scheme IV is
identical to that of scheme III. Scheme II is not evaluated
here because it gives the wrong results in multiphase flow
simulations, which will be illustrated in the following.

B. Droplet-size effect

In the following study, the effective surface tension of a
numerical scheme is obtained from the simulation results of
a droplet immersed in the gas, which can be described by
the Laplace law. After the drop radius R0 and the pressure
difference inside pin and outside pout the drop are measured,
the surface tension σ can be determined from σ

R0
= pin − pout,

where R0 is the distance between the center of the circle and a
point where ρ = (ρin + ρout)/2.

As the drop size may slightly affect the equilibrium density
contrast and the surface tension in all multiphase LBMs with
force strategy [17], we investigate these drop-size effects
by simulating cases with different initial drop sizes. In the
simulations, the original SC model (scheme I) is used and
the other parameters are T

T0
= 0.825 and τ = �t . In the final

equilibrium state, two cases with droplet radii of 19.3 and
59.3 l.u. result in density contrasts of 0.2949/0.024 88 and

FIG. 2. (Color online) Error of the densities of liquid and gas as a
function of mesh size. The slope of the top thick line is −2. The line
represents the exact second-order spatial accuracy, which is used to
guide the eyes. The other solid, dashed, and dotted lines correspond
to schemes I, III, and V, respectively.

0.2935/0.023 96 and the surface tensions are 5.747 × 10−3

and 5.916 × 10−3 m.u./t.s.2, respectively. The relative density
ratio and surface tension difference in the two cases are less
than 3.3%.

For the SC model with scheme III, to test the droplet-size
effect, cases of T

T0
= 0.825 and τ = �t were simulated. In the

final equilibrium state, two cases with droplet radii of 16.2 and
35.4 l.u. result in density contrasts of 0.2920/0.016 67 and
0.2908/0.015 40 and the surface tensions are 3.397 × 10−3

and 3.506 × 10−3 m.u./t.s.2, respectively. The relative density
ratio and surface tension difference in the two cases are less
than 3.1%. Hence we conclude that the drop-size effects are
negligible for the problems under consideration.

For the SC model with other schemes, the drop-size effect
is also found to be negligible. In the following simulations the
drop radius is set as approximately 30 l.u.

C. Comparison between schemes in group B

We start by comparing schemes III and IV. In the preceding
analysis, these schemes were proved to be the same when
terms of O(u3) are neglected (group B). Here numerical tests
are performed. A case of the CS EOS, with T

Tc
= 0.85 and

τ = 1.0�t , was simulated. The |umax| obtained by schemes III
and IV are 0.001 402 12 and 0.001 402 11 l.u./t.s., respectively.
The densities ρl/ρg are 0.277 143 747 3/0.022 913 706 6
and 0.277 143 747 5/0.022 913 706 5, respectively. The
corresponding surface tensions are 0.002 671 921 and
0.000 267 192 2 m.u./t.s.2, respectively. Here we can see
that to an accuracy of 10−7, the spurious currents, densities,
and surface tensions of the two schemes are identical. For
other cases with different τ and T

Tc
, in terms of the spurious

currents, densities, and surface tensions, numerical tests also
confirmed that to O(u2), schemes III and IV are identical,
which is consistent with our theoretical analysis. Hence, in
the following study, only scheme III will be discussed.
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TABLE II. Density ratios and surface tension obtained from the original SC model (scheme I) with τ/�t = 0.6.

Droplet Flat interface Analytical
T

Tc
ρl/ρg σ (×10−3) ρl/ρg ρl/ρg σ (×10−3)

0.95 0.2099/0.06500 0.4892 0.2087/0.06366 0.2097/0.06553 0.5690
0.90 0.2464/0.04014 1.421 0.2454/0.03908 0.2471/0.04299 1.638
0.85 0.2770/0.02283 2.766 0.2759/0.02171 0.2781/0.02781 3.061
0.80 N/A N/A N/A 0.3060/0.01674 4.834

D. Comparison between schemes in group A

For schemes I (the original SC model), II, and V, the
situation is different from the preceding. First we compare
schemes I and V.

It is worth mentioning that for τ = �t , the results of
schemes I and V are found to be identical (down to an accuracy
of 10−15) for the same parameter set, while for τ 
= �t the
results of the two schemes show significant deviations from
each other. The τ effect will be discussed in Sec. V E.

The density ratios and surface tensions obtained from
schemes I and V are shown in Tables II and III, respectively.
Both densities in the cases of the cylindrical droplet and the
flat interface are listed in the tables. Analytical solutions are
also illustrated. In this paper, if not specified, the analytical
solutions are obtained through the mechanical stability con-
dition [19], which means that the densities ρl and ρg satisfy
Eq. (36). In contrast, in the case of thermodynamic consistency,
ρl and ρg can be obtained from the Maxwell equal-area
construction in the p-v diagram of the EOS [which requires∫ vg

vl
(p0 − p)dv = 0, where v = 1

ρ
and p0 is a constant for a

specific temperature]. From Eq. (36) we can see that only if
ψ(ρ) ∝ ρ, the SC model is thermodynamically consistent [19].
However, most EOSs do not satisfy this constraint. Hence
the coexistence curves obtained from the mechanical stability
condition and the thermodynamic equilibrium show small
discrepancies.

From the tables we can see that the difference between
densities obtained from cases of the cylindrical droplet and
the flat interface is less than 5% and 7% in Table II and III,
respectively. Hence the results obtained by simulations of the
cylindrical droplet and the flat interface are very consistent.

For the densities of liquid and gas, Tables II and III show
that the numerical results are consistent with the analytical
ones at higher T

Tc
. For decreasing temperatures, the difference

between numerical and analytical ρg will increase. In Table II
the maximum difference between the numerical (cases of
a cylindrical droplet) and analytical ρg is approximately

28% at T
Tc

= 0.85. In Table III the maximum difference is

approximately 34% at T
Tc

= 0.75.
This discrepancy between numerical and analytical ρg may

be caused by the terms of O( (F�t)2

ρ
) in Eqs. (16) and (17). We

also note that the coefficient before the terms of O( (F�t)2

ρ
) is

different in schemes I and V. Hence the stability behavior and
densities of liquid and gas of the two schemes are different.
This also means that the terms of O( (F�t)2

ρ
) significantly affect

the performance of schemes I and V.
For the surface tension, Table II shows that the numerical

results of scheme I are more consistent with the analytical
ones (the maximum difference at T

Tc
= 0.85 is approximately

10%). Table III demonstrates that the surface tension obtained
by scheme V at τ = 0.6�t is significantly different from
the analytical one for any T

Tc
(the maximum difference is

approximately 50% compared with the analytical one).
Now scheme II is investigated in detail. The density ratios

obtained by scheme II are found to be approximately consistent
with the analytical results. However, it is unfortunate that
the numerical surface tension is negative, which is entirely
unphysical. The stability of this scheme is also found to be
the worst among the five schemes. For example, the lowest
temperature for τ = �t is about T = 0.925Tc. That may due
to the lack of terms of O( (F�t)2

ρ
) in scheme II compared to

schemes I and V. Hence, although scheme II works well for
single-phase flow, it does not seem so successful for multiphase
flow. In the follows, we will no longer discuss scheme II.

E. τ effect

In this section the dependence of the surface tension and
the density ratio on the relaxation time τ is discussed in
detail. Comparisons are carried out for the original SC model
(scheme I) and the SC model in combination with schemes
III and V. The comparison focuses on the resulting surface
tension issue, which is a very important property in the
multiphase-flow simulations.

TABLE III. Density ratios and surface tension obtained from the SC model with scheme V for τ/�t = 0.6.

Droplet Flat interface Analytical
T

Tc
ρl/ρg σ (×10−3) ρl/ρg ρl/ρg σ (×10−3)

0.95 0.2111/0.06692 0.8622 0.2099/0.06583 0.2097/0.06553 0.5690
0.90 0.2487/0.04474 2.550 0.2475/0.04380 0.2471/0.04299 1.638
0.85 0.2799/0.03002 4.713 0.2786/0.02912 0.2781/0.02781 3.061
0.80 0.3074/0.01909 7.267 0.3065/0.01854 0.3060/0.01674 4.834
0.75 0.3343/0.01163 10.251 0.3326/0.01085 0.3321/0.008632 6.932
0.70 N/A N/A N/A 0.3572/0.003120 9.386
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TABLE IV. Density ratios and surface tension obtained from the
SC model with scheme III for T

Tc
= 0.825. (The analytical densities

and surface tension are ρl/ρg = 0.2923/0.021 85 and σ = 3.912 ×
10−3 m.u./t.s.2 for any τ .)

Droplet Flat interface
τ/�t ρl/ρg σ (×10−3) |u|max ρl/ρg

0.60 0.2909/0.01530 3.543 0.01095 N/A
0.65 0.2909/0.01531 3.541 0.006060 N/A
0.70 0.2908/0.01520 3.579 0.003861 0.2898/0.01429
0.80 0.2908/0.01525 3.581 0.001681 0.2898/0.01429
0.90 0.2907/0.01517 3.486 0.002013 0.2898/0.01429
1.00 0.2908/0.01538 3.591 0.002183 0.2898/0.01429
2.00 0.2911/0.01606 3.638 0.004479 0.2898/0.01429

Table IV illustrates the equilibrium densities of liquid ρl and
gas ρg and the resulting surface tension obtained from scheme
III for T

Tc
= 0.825. For the cases of a cylindrical droplet in

Table IV, when τ changes from 0.6�t to 1.0�t , the variation in
ρg and surface tension σ variation are less than 1.4% and 3.0%,
respectively. Hence, in terms of the density ratio and surface
tension, the SC model in combination with scheme III is not
sensitive to the variation of τ . The cases of a flat interface also
demonstrate that the densities do not change with τ , although
simulations of a flat interface seems slightly less stable than
those of a cylindrical droplet.

To further investigate forcing scheme III, we simulate cases
for different temperatures and τ . Figure 3 illustrates the surface
tension, densities of liquid and gas, and density ratio as a

TABLE V. Density ratios and surface tension obtained from
the original SC model (scheme I) for T

Tc
= 0.825. (The analytical

densities and surface tension are ρl/ρg = 0.2923/0.021 85 and σ =
3.912 × 10−3 m.u./t.s.2 for any τ .)

Droplet Flat interface
τ/�t ρl/ρg σ (×10−3) |u|max ρl/ρg

0.60 N/A N/A N/A 0.2900/0.01468
0.65 0.2912/0.01618 3.693 0.005474 0.2901/0.01516
0.70 0.2915/0.01687 3.993 0.002918 0.2904/0.01584
0.80 0.2923/0.01880 4.338 0.001671 0.2910/0.01773
0.90 0.2933/0.02140 4.998 0.001965 0.2919/0.02029
1.00 0.2939/0.02418 5.807 0.002230 0.2928/0.02342
2.00 0.3003/0.05922 15.31 0.01049 0.2977/0.05391

function of T
Tc

. Figures 3(a), 3(b), and 3(c) demonstrate that
ρliquid, ρgas, and σ , respectively, do not change with τ for
a given temperature. The numerical ρgas agrees better with
the analytical solution obtained from the mechanical stability
condition than that from thermodynamic coexistence. Because
the numerical ρgas is slightly smaller than the analytical ρgas,
the density ratio of liquid and gas is significantly larger
than the analytical one [Fig. 3(d)]. The small discrepancy
between the analytical and numerical ρgas may be caused by
the compressibility in the SC model or the effect of spurious
currents and require further investigation. In Fig. 3(c) the
constant surface tensions obtained for τ = 0.6�t,0.8�t , and
1.0�t all agree well with the theoretical σ , which is obtained
by the mechanical stability condition.

FIG. 3. (Color online) Results obtained by the SC model with the CS EOS and forcing scheme III for different values of τ : (a) reduced
density of liquid, (b) reduced density of gas, (c) surface tension, and (d) liquid-to-gas density ratio as a function of T/Tc.
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FIG. 4. (Color online) Results obtained by the original SC model (scheme I) for different values of τ : (a) reduced density of liquid, (b)
reduced density of gas, (c) surface tension, and (d) liquid-to-gas density ratio as a function of T/Tc for the CS EOS.

For the original SC model (scheme I), Table V shows that
changing τ from 0.65�t to 2.0�t leads to an increase of ρg

and surface tensions of 265% and 314%, respectively. The τ

effect is very strong in scheme I.
For scheme I, Fig. 4 illustrates ρliquid, ρgas, σ , and the density

ratio as a function of T
Tc

. In Fig. 4(c) the surface tensions
obtained from τ = 0.7�t , 0.55�t , and 0.52�t are consistent
with the analytical values, while those values obtained from
cases of τ = 1.0�t , 1.5�t , and 2�t are much larger than
the analytical one. Hence the surface tension calculated from
the original SC model depends on the value of τ , which is
unphysical.

In Fig. 4(b) the ρgas obtained from 0.52�t < τ < �t seems
more consistent with the analytical solution than τ = 1.5�t

and 2.0�t . When τ = 1.5�t and 2.0�t , the numerical ρgas is
significantly different from the analytical ρgas and the density

TABLE VI. Density ratios and surface tension obtained from
the SC model with scheme V for T

Tc
= 0.825. (The analytical

densities and surface tension are ρl/ρg = 0.2923/0.021 85 and
σ = 3.912 × 10−3 m.u./t.s.2 for any τ .)

Droplet Flat interface
τ/�t ρl/ρg σ (×10−3) |u|max ρl/ρg

0.60 0.2794/0.02967 4.662 0.002334 0.2928/0.02342
0.65 0.2794/0.02968 4.663 0.001253 0.2928/0.02342
0.70 0.2794/0.02968 4.665 0.000947 0.2928/0.02342
0.80 0.2794/0.02971 4.670 0.001190 0.2928/0.02342
0.90 0.2794/0.02974 4.677 0.001381 0.2928/0.02342
1.00 0.2794/0.02977 4.686 0.002112 0.2928/0.02342
2.00 0.2795/0.02996 4.774 0.002449 0.2928/0.02342

ratio of liquid to gas severely deviates from the analytical
ones [Fig. 4(d)]. From Fig. 4(d) it is found that when τ ≈ �t

(crosses), the simulation remains very stable even at T
Tc

= 0.5.
The maximum density ratio that this scheme can achieve is
about 5000 when τ = �t .

Finally, we discuss scheme V. Table VI demonstrates that
for the cases of a cylindrical droplet, a different τ has only a
negligible effect on the densities and surface tension at T =
0.825Tc. For the cases of a flat interface, the densities of liquid
and gas are not affected by τ at all. Hence, at T = 0.825Tc,
the result is almost independent of τ .

Figure 5 illustrates the reduced density of the liquid and
gas, the surface tension, and the density ratio as a function of
T/Tc. At a specific temperature, the ρgas that is obtained from
different τ seem almost identical. However, from Fig. 5(d) we
can see that at lower temperatures, for example, T

Tc
< 0.65, the

density ratio is still affected by τ significantly. From Fig. 5(c)
we can see that the surface tensions obtained from different
τ are highly consistent. However, they all deviate from the
analytical one.

As a minor conclusion, scheme III is independent of τ .
The numerical results (the density of the gas and the surface
tension) of scheme I strongly depend on τ . For scheme V
the surface tension is almost unaffected by τ , but the values
deviate from the analytical ones. The density ratio obtained
from scheme V is slightly affected by τ .

The conclusion about the τ effect is applicable not only to
the CS EOS but also to the other EOS. As an example, cases of
a cylindrical droplet using the vdW EOS were also simulated.
The surface tensions obtained from the original SC model
(scheme I) and the SC model in combination with scheme III
are shown in Fig. 6. Again, we can see that the numerical
surface tensions of schemes III and I with τ = 0.6�t agree
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FIG. 5. (Color online) Results obtained by the SC model in combination with scheme V for different values of τ : (a) reduced density of
liquid, (b) reduced density of gas, (c) surface tension, and (d) density ratio as a function of T/Tc for the CS EOS.

well with the analytical solutions. However, when τ = �t and
1.5�t , there are large discrepancies between the results of
scheme I and the analytical solutions.

F. Stability

In this section we discuss numerical stability for multiphase
flow simulations. The numerical stability depends on the
forcing schemes. For example, when using the original SC
model (scheme I) with τ = �t , the simulation remains stable
even at T

Tc
= 0.50 [corresponding to an equilibrium density

ratio of 5000; refer to Fig. 4(d)]. The maximum density ratio of
the SC model with scheme III is limited to 0.3175/0.003 748 =

FIG. 6. (Color online) Surface tension σ as a function of T/Tc

for the vdW EOS.

84.78 at T
Tc

= 0.775 [refer to Fig. 3(d)]. For scheme V the
maximum density ratio is limited to 0.4195/0.000 467 7 =
896.94 at T

Tc
= 0.575. This means that the numerical stability

of the original SC model is substantially larger than that
of forcing schemes III and V when τ = �t . Thus, in flow
simulations where the maximum density ratio is of primary
concern, the original SC model may be a good choice.

For different τ , the minimum T
Tc

that schemes I, III, and V
can simulate are shown in Fig. 7. The upper right region of
each line corresponds to the stable region of each scheme.
Generally speaking, the numerical stability of scheme III
is not as good as that of schemes I and V. The numerical
stability depends on schemes partially because the schemes
recover different macroequations. Although schemes I and
V have better numerical stability for two-phase flow, they
do not recover NS equations exactly. The extra terms in the
momentum equation (compared to NS equations) may help
stabilize schemes I and V.

It is found when the numerical instability appears, the
interface usually only occupies 2 or 3 l.u. Since the SC
multiphase model is a diffuse-interface method, the interface
thickness is an important factor in simulations. Usually the
thicker the interface is, the more stable the simulation would
be. However, a very thick interface is not a good choice in
multiphase flow simulations.

In the SC multiphase model, the interface is automatically
formed and we are not able to adjust the interface thickness
explicitly. The interface thickness depends on not only
the temperature and τ , but also the formula of the EOS.
The parameters a, R, and b in the CS EOS may affect the
interface thickness and numerical stability. The present choice
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FIG. 7. (Color online) Stability of forcing schemes I, III, and
V as a function of τ . The upper right region of each line is the
corresponding stable region of each scheme. The CS EOS is used
with a = 1, R = 1, and b = 4.

of a = 1, R = 1, and b = 4 is appropriate because the interface
thickness is approximate 5 l.u. for most T and τ .

To study the parameter effect, first R = 1 and b = 4 are
fixed and the parameter a is allowed to change. We find that
the interface widths are approximately 2, 3, 5, 7, and 11 l.u. for
a = 4, 2, 1, 0.5, and 0.2, respectively, for a case of T

Tc
= 0.85

and τ = 0.6�t using scheme III. It seems that a large a leads
to a thick interface.

To study the effect of b, a = 1 and R = 1 are fixed in
simulations. The densities of the liquid and gas are affected
by the parameter b, but the density ratio of liquid to gas
would not change. We simulated a case of T

Tc
= 0.85 and

τ = 0.6�t using scheme III. When b = 0.5, the simulation
is not applicable. When b = 1.0 the interface is very sharp,
the width of the interface is about 3 l.u. When b = 20, the
interface occupies approximately 10 l.u., which is very thick.
Through comparison, we know that b = 1 is a proper choice.

If we change only the gas constant R and fix the value
of a = 1 and b = 4, the density ratio, surface tension, and
thickness would not change with R. This is explained in the
following. We note that Eq. (31) can be rewritten as

p = 1.5092a

b2

{
θ

(
T

Tc

)[
1 + −2θ2 + 4θ

(1 − θ )3

]
− 10.601θ2

}
,

(41)

where θ = b
4ρ. In the above derivation, the relationship

between the critical temperature and the parameters Tc =
0.3773a

bR
for the CS EOS is used. Obviously the parameter

R will not affect the phase-separation property at a specific
T
Tc

. Overall, after the parameters in the EOS are properly
chosen, forcing schemes would affect the numerical stability
significantly when the SC model is used.

G. Interparticle-force model B

We also carry out simulations using the interparticle-force
model B [20]. These results are compared with the analytical

FIG. 8. (Color online) Surface-tension comparison between the
SC model with forcing scheme III and the analytical solution for
different A1 and A2. In the simulation, the interparticle force including
next-nearest neighbors for the CS EOS is used and τ = �t .

result obtained from Eq. (40). Behaviors similar to those in
Figs. 3 and 4 are observed, i.e., the SC model in combination
with scheme III and the original SC model (for τ < 0.7�t)
are consistent with the analytical solutions. Figure 8 shows the
surface tension obtained from the SC model in combination
with scheme III. The numerical results agree well with the
analytical ones for different combination of A1 and A2.

In Ref. [8] an approximation for the interparticle force is
proposed as

Fint(x,t) = −g

[
(1 − 2A)ψ(x,t)

∑
i

wiψ(x + ei�t,t)ei

+A
∑

i

wiψ
2(x + ei�t,t)ei

]
, (42)

which slightly differs from the one proposed by Sbragaglia
et al. [20] [i.e., Eq. (23)], but actually the idea is similar. A
Taylor expansion of Eq. (42) results in

Fα(x,t) ≈ −g

2
�tc2

s ∂αψ2 − g

2
�t3c4

s ψ(∂α∇2ψ)

− {
gA�t3c4

s (∂αψ∇2ψ + 2∂βψ∂α∂βψ)
}
. (43)

TABLE VII. Density ratio for different surface tensions (the SC
model with forcing scheme III for τ = �t and the CS EOS).

T

Tc

√
A2
A1

ρl/ρg σ (×10−3)

0.85 1.0 0.2768/0.02250 2.683
0.85 1.458 0.2785/0.02587 4.199
0.85 1.904 0.2795/0.02775 5.461
0.775 1.0 0.3175/0.003745 5.661
0.775 1.458 0.3191/0.008159 7.939
0.775 1.904 0.3201/0.01052 10.57
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FIG. 9. (Color online) Coexistence curve for the CS EOS: The
solid line is the analytical solution obtained from the Maxwell
construction (corresponding to thermodynamic consistency). The
numerical results were obtained by the original SC model with
τ = �t .

Thus the difference between Eqs. (43) and (24) lies in the terms
inside the curly braces in Eq. (43). The surface tension can be
changed by modifying the parameter A.

In Ref. [20] Sbragaglia et al. argue that the surface tension
can be changed without affecting the density ratio. However,
in our study, we find that the density ratio changes when
modifying the ratio of A2

A1
. An example for the SC model with

forcing scheme III with τ = �t and the CS EOS is illustrated
in Table VII. From the table we can see that for a relatively
large ratio T

Tc
= 0.85 the density ratio changes are small, yet

for T
Tc

= 0.775 they are more pronounced.
If the deviation of the surface tension from the analytical

solution and the density ratio dependence from τ is ignored,
one can adjust the surface tension to force the densities
to satisfy the thermodynamic coexistence condition, which
essentially corresponds to mimicking thermodynamic con-
sistency for the SC model. For the original SC model this
adjustment is relatively easy: Fig. 9 shows the coexistence
curve for the CS EOS. The numerical results are obtained
for the original SC model with τ = �t . The result for
interparticle-force model A shows a large discrepancy from
the thermodynamic coexistence condition. However, using
interparticle-force model B, we can adjust the densities to
match the thermodynamic coexistence well by modifying
the parameters of A1 and A2. In this simulation, A1 = 1.0,

A2 = 0.16, g1 = 1.28, and g2 = −0.14. The relationship that
these parameters should satisfy is illustrated in Eq. (39). The
proper parameters were chosen through trial and error.

VI. CONCLUSION

Our theoretical analysis identified the relations between
forcing schemes proposed by Shan and Chen [1] (scheme I),
Luo [7] (scheme II), He et al. [9] (scheme III), Ladd and
Verberg [10], Guo et al. [5] (scheme IV), and Kupershtokh
et al. [8] (scheme V). We demonstrated that schemes I, II, and
V are identical when terms of O(FαFβ�t2

ρ
) in schemes I and V

are omitted. Schemes III and IV are identical if terms of O(u3)
in scheme III are neglected. Our numerical test of a classical
unsteady flow problem confirmed that all schemes show the
same convergence order for the single-phase flow problem.

For the multiphase flow simulations, the situation is
different. In our study, the cases of a cylindrical droplet and
a flat interface were simulated. A comparison of numerical
results with the analytical solutions for a typical EOS, the
surface tension obtained from the SC model using forcing
scheme III (group B), is consistent and essentially independent
from the value of τ . However, scheme II (group A) is unsuc-
cessful simulating two-phase flow. For the original SC model
(scheme I in group A), the density ratio and surface tension
depend on the specific value of τ and large discrepancies
between the numerical and analytical surface tensions were
observed for τ > 0.7�t . For scheme V (group A), the density
ratio is slightly affected by τ and the surface tension is
almost τ independent, although the value deviates from the
analytical one.

Although the SC model has been proven to be thermody-
namically inconsistent, it is possible to restore thermodynamic
consistency by adjusting the strength of the surface tension in
order to match the coexistence curve obtained by the Maxwell
construction. The forcing scheme of He et al. [9] (scheme III)
for the SC model is found to be more accurate than schemes I,
II, and V in terms of surface tension. To O(u2), schemes III and
IV are identical. For the numerical stability in two-phase-flow
simulations, scheme III is less stable than schemes I and V.
These results may be useful for further study of two-phase
flow with high density ratios based on the Shan-Chen LBM.
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