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Nonparametric segmentation of nonstationary time series
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The nonstationary evolution of observable quantities in complex systems can frequently be described as a
juxtaposition of quasistationary spells. Given that standard theoretical and data analysis approaches usually rely
on the assumption of stationarity, it is important to detect in real time series intervals holding that property.
With that aim, we introduce a segmentation algorithm based on a fully nonparametric approach. We illustrate its
applicability through the analysis of real time series presenting diverse degrees of nonstationarity, thus showing
that this segmentation procedure generalizes and allows one to uncover features unresolved by previous proposals
based on the discrepancy of low order statistical moments only.
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I. INTRODUCTION

Complex systems are seldom in equilibrium or even in
stationary states; however, their evolution can in many cases
be thought of as being composed of spells of quasistationarity
in which time-varying pseudoparameters can be considered
unchanged. Examples of such framework can be found in
finance [1], biology [2], physics [3,4], and physiology [4,5],
just to mention a few areas. By identifying stationary segments,
one can apply standard techniques, e.g., extracting stochastic
equations (Kramers-Moyal coefficients) from data [6], over-
coming the difficulties of nonstationary treatments [5,7]. As
another application, a proper segmentation is important to
assess the scenario of mixed statistics [8] based on the idea
of local equilibrium, typically applied by considering a fixed
characteristic scale (window length). In general, segmentation
provides a useful portrait of the local statistical properties for
modeling nonstationary systems.

In order to identify such quasistationary patches, algo-
rithms based on standard statistical methodology have been
introduced. Explicitly, they lean on moving along the series a
pointer to detect the position that maximizes a given quantifier
of the statistical discrepancy between the segments on both
sides of the pointer. Among others [9], worthy of mention are
the algorithms based on the Student’s t statistic (used to test
the significance of the null hypothesis of equal means) [10,11]
or on the Jensen-Shannon divergence in the case of symbolic
sequences [12].

Despite the interesting results provided by these methods
[12–19], limitations hampering the performance can be found
in every one of them. On the one hand, in the statistical
moments criteria there is the problem of boiling down the
existence of nonstationarity to the change of preestablished
local quantities. For instance, even if the time series presents
fluctuations in the variance, the t test may give us the indication
that the series is stationary. Although it could be improved
through the unequal variance t-test statistic or also through an
F test, it will still rely on assumptions over the moments and
on the validity of the central limit theorem. On the other hand,
entropy-based methods are more fitted to symbolic sequences,
while information is lost if discretizing a real valued series
by means of thresholds. Moreover, the segmentation stopping

criteria can be deemed arbitrary. Its proposed improvement by
means of the Bayesian information criterion can be disputed
as well since such a criterion often favors minimalist modeling
[20]. With the aim of surmounting those difficulties, we intro-
duce a fully nonparametric segmentation approach by using
the Kolmogorov-Smirnov (KS) statistic, DKS, which measures
the maximal distance between the cumulative distributions
of two samples, as an estimate of the discrepancy between
segments. Note that it allows one to test whether two samples
come from the same distribution with no need to specify which
is the common distribution.

II. KS-SEGMENTATION ALGORITHM

Our algorithm (named KS segmentation) works as follows.
Given a segment of a time series, {xi,i1 � i � in}, a sliding
pointer, at i = ip, is moved in order to compare the two
fragments SL ≡ {xi1 , . . . ,xip } and SR ≡ {xip+1, . . . ,xin}. The
position ip of the pointer is moved so that the sizes of the
two segments (nL = ip − i1 + 1 and nR = in − ip) are at least
unitary. Then, one selects the position imax that maximizes
the KS statistic D ≡ DKS(1/nL + 1/nR)−1/2, between the two
patches SL and SR .

Once found, the position imax of the maximal distance
D, Dmax, one checks the statistical significance (at a chosen
significance level α = 1 − P0) of a potentially relevant cut at
imax by comparison with the result that would be obtained
was the sequence random [10]. The potential cut ticks the
first stage if Dmax exceeds its critical value, Dmax

crit (n), for the
selected significance level (see Fig. 7 and further technical
details in the Appendix). Before final acceptance of the cut,
one can still require a minimal size (number of points) �0,
namely, imax − i1 + 1, in − imax � �0. The procedure is then
recursively applied starting from the full series {xi,1 � i �
N}, where N is the total number of data points, until no
segmentable patches are left. The search for Dmax within a
given segment {i1, . . . ,in} during the iterations, as well as
in the determination of the critical curves, is performed for
i1 � ip � in − 1. The outcome of this segmentation procedure
when applied to the paradigmatic nonstationary time series is
hereafter presented.
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FIG. 1. (Color online) Fragment of a heart rate time series for
a healthy individual (n5nn.txt) (light gray lines). The mean plus or
minus the standard deviation of the segments resulting from the KS
segmentation, with �0 = 50 and P0 = 0.95, are displayed.

III. APPLICATIONS

We first survey the segmentation of heart-rate (RR) se-
ries, which motivated the introduction of the segmentation
algorithm based on the discrepancy of the means (mean-based
algorithm) [10] and that have also been suggested as a common
focus to solve the controversy over the potential chaoticity of
normal heart rate [21]. Namely, we revisit the study of interbeat
time series from healthy individuals (NOR) and patients with
congestive heart failure (CHF) [22]. Time series [tagged
n1nn-n5nn and c1nn-c5nn for NOR and CHF, respectively]
are about 24 h long and had their outliers removed. The
segmentation outcome is depicted in Fig. 1.

We computed the first moments for each resulting segment.
The variance is deemed not constant throughout segments,
but it is dispersed over more than one decade, as illustrated in
Fig. 2, for all segment sizes. The local variance is larger for the
healthy subjects. Therefore, equal variance cannot be assumed
as in previous analysis of heart-rate series [10]. Furthermore,
our finding implies that if one keeps such a simpler analysis,
at least the effective degrees of freedom in the t test should
be obtained by the Welch-Sattherthwaite equation. It is worth
noting that despite the tendency for the variance to be larger in

FIG. 2. Local variance vs segment length for a representative
individual of each group (left). Probability distribution function
(PDF) of the variance for all individuals of the NOR (black lines)
and CHF (gray lines) groups (right panel).
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FIG. 3. Cumulative distribution of segment sizes for NOR (left
panel) and CHF (right panel) individuals. In each panel, the thin lines
correspond to each individual of the group (five samples of 24 h data),
the dark dotted line to the entire group, and the dark full line to fits
to Ae−(l−�0)/L1 + (1 − A)e−(l−�0)/L2 with amplitude and characteristic
lengths (A,L1,L2) = (0.78,78,372) and (0.86,64,373), respectively.

the NOR group, the quotient for consecutive segments is very
similarly distributed in both groups, with a slow power-law
decay (with exponent close to −3) (not shown).

The complementary cumulative distributions of segment
sizes for NOR and CHF individuals are displayed in Fig. 3. For
both groups, the plots can be described by a double exponential
Ae−(l−�0)/L1 + (1 − A)e−(l−�0)/L2 with characteristic lengths
L1 � 70 and L2 � 370. Hence there is no indication of a
scale-free behavior, as suggested by previous segmentation
analysis through the mean-based algorithm [10].

Our next example concerns the scenario of mixed statistics
that has been applied to the study of fluid turbulence [3,23].
Besides turbulence, its relevance is highlighted by the fact that
several models for finance have been inspired by this physical
problem [24]. Succinctly, the mixed approach corresponds
to a conjecture where one has a classical Boltzmann-Gibbs
statistics, conditioned to given temperature (T ∼ β−1 ∼ σ 2),
which signals the existence of local equilibrium, that is
associated with certain distribution P (β). Nonetheless, up
to now, the approaches to the problem have considered the
existence of a single scale of local equilibrium, which can
be seen as a first step for an outright description [24,25].
Endowed with our segmentation algorithm, we are in a position
to evaluate the distribution of local time scales, τ , of the
β factor and verify the local equilibrium assumption in this
type of system. As an example, we consider a series of wind
velocities (one month of measurements at a 30 s acquisition
interval) [26]. We reduced the strong daily periodicity by
scaling the data by the average at each time of the day. Then
velocity �v is dimensionless.

Accordingly, in a segment within which local equilib-
rium holds, the velocity distribution is defined by p(�v|β) =
β

2π
exp[−β

|�v|2
2 ], from which the distribution of the speed,

v ≡ |�v|, is p(v|β) = βv exp[−β v2

2 ]. Along these lines, we
apply our segmentation procedure pitching at detecting the
time intervals where the local equilibrium approximation is
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FIG. 4. (Color online) Time series of v = |�v| (dimensionless).
The mean plus or minus the standard deviation of the segments
resulting from the KS segmentation are displayed (for �0 = 50,
P0 = 0.95).

valid. The result of the segmentation is depicted in Fig. 4. The
complementary cumulative distribution of segments decays
more slowly than exponentially (plausibly a stretched or
double exponential, the latter with characteristic times of
32 and 93 min). The distribution of segment lengths has
mean (standard deviation) approximately equal to 129 (91)
points [corresponding to ∼64 (∼45) min.]. One observes in
Fig. 5 that the two-dimensional (2D) Maxwell distribution
fails in describing the distribution of velocities, because
the local variance is dispersed (inset of Fig. 5). Then we
considered the mixing p(v) = ∫ ∞

0 dσ 2 p(v|σ 2)p(σ 2), where
p(v|σ 2) is the Maxwell distribution defined above, substituting
β = (4 − π )/(2σ 2), given that the (conditioned) raw moments
are 〈vk〉β = (2/β)k/2�[1 + k/2]. One observes that the mixed

FIG. 5. Distribution of velocity v (circles). Data were detrended
by subtracting the excess average with respect to the one given by
the Maxwell distribution with the same local variance (black circles).
Distribution of an artificial series with the same segments as the
real one, with values of v independently drawn from 2D-Maxwell
distributions with the local variance of the real series (gray circles).
Thin lines correspond to the respective 2D-Maxwell distributions,
with the variance of the whole series, and the full line to the mixing
(numerically summed up) of the 2D Maxwell with the distribution of
the local variance obtained from the segmentation process, shown in
the inset.
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FIG. 6. (Color online) Segmentation of angular deviation at 30 s
lag. The mean plus or minus the standard deviation of the segments
resulting from the KS segmentation are displayed.

distribution is in good accord with the data distribution, once
local trends are removed. The mixed distribution also agrees
with the histogram built from artificial series obtained by
juxtaposition of sequences of Maxwellian random numbers,
with the same length and local variance as the real ones.

Afterward, we computed the local variance that is propor-
tional to the inverse β factor. Its distribution, presented in the
inset of Fig. 5, is responsible for the deviation of p(v) from
the 2D-Maxwell distribution (main frame of Fig. 5).

In addition to the speed, v, we also looked at angle variations
(at 30 s lag). While a more quantitative analysis on this matter is
to be addressed in future work, here we would like to call atten-
tion to the fact that, even if the average value is constantly close
to zero, changes in the local variance are detected by the present
method, as depicted in Fig. 6, while no segmentation occurs
with the procedure based on the discrepancy of the means.

IV. FINAL REMARKS

In this paper we have presented a segmentation method
which aims at coping with nonstationary signals from
widespread physical and nonphysical systems where the
local-equilibrium or local-stationarity hypotheses hold. Our
method, which is based on the Kolmogorov-Smirnov test,
improves previous proposals as soon as it is nonparametric
and thus independent of any preassumed order of fluctuation
between the stationary segments, resulting in a more flexible
and effectual algorithm.

Concerning algorithmic complexity, our algorithm is more
efficient than methods based on matrix diagonalization, such
as principal component analysis. In comparison with moment-
based segmentation proposals, our algorithm requires sorting
segments of length n, which increases the complexity in a
factor of order ln n, which does not represent a significant
larger computational cost, despite the enhanced ability.

The applicability of our proposal was then tested with two-
poles-apart signals, heart-rate intervals, and wind velocities,
with significant results in each case. In the first case, the
nonstationarity portrait is altered with respect to that of
previous analysis based on the discrepancy of the means, as
soon as the local variance cannot be assumed constant. In
the second, the procedure is shown to be useful to detect
meaningful windows to compute local statistical quantities.
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In general, proper segmentation is helpful in several problems
where local stationarity applies.
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APPENDIX

1. Statistical significance criterion

To obtain the critical curves for significance testing, we
determined Dmax numerically for a large number (>104)
of sequences of n independent and identically distributed
(i.i.d.) Gaussian numbers and built its cumulative distribution.
From the cumulative distribution, we obtained the critical
values of Dmax(n), Dmax

crit (n), for each given significance level
α = 1 − P0. The resulting critical curves are shown in Fig. 7.
For the significance tests applied throughout the segmentation
procedure, we used the effective form of the critical curves
given by the heuristic simple expression

Dmax
crit (n) = a(ln n − b)c, (A1)

with (a,b,c) equal to (1.41,1.74,0.15), (1.52,1.8,0.14), and
(1.72,1.86,0.13) for P0 = 0.90, 0.95, and 0.99, respectively.
These curves are more restrictive than the critical ones for the
standard two-sample KS test, that for large n tend to 1.22, 1.36,
and 1.63, for the above values of P0, respectively. The employ
of the usual KS test would lead to oversegmentation. This is
because the two samples under comparison are not any two
samples but they arise from a potential cut at maximal D, hence
the more restrictive criterium defined above must be used.
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FIG. 7. Critical values of Dmax as a function of the sequence
length n for series of Gaussian i.i.d. random numbers, at different
significance levels P0 indicated on the figure. Solid lines are fits to the
data, used as phenomenological formulas for significance checking.

We noticed that, along a random series, the position imax

for which D is maximal is not uniform but presents a U-
shaped distribution. This could set forth a bias in the cutting
performance propping up an increase in the number of short
segments. Let us mention that in the mean-based algorithm
an alike U shape is also present. This issue arises because
of the fact that we are considering effective critical curves,
only as a function of n = nL + nR , while the intrinsic ones
actually depend both on nR and nL. On the other hand, these
intrinsic curves would be hardly assessed, then to contour this
issue, we tested a redefinition of the standard KS distance
by considering D ≡ DKS(1/nR + 1/nL)−γ , with effective γ

and observed that the flattest (more uniform) distribution of
imax, for any size n, occurs for γ � 0.64. We compared the
implementation of the algorithm for both values of γ (0.5 and
0.64), finding no significant differences in the segmentation
portrait both for real and artificial series, as soon as �0 is not
too small (�0 � 10). Then we kept the standard definition of
D, i.e., with γ = 0.5.

2. Testing artificial series

To check the performance of the algorithm, we analyzed
artificial series {yi,1 � i � N}, formed by segments of m

Gaussian numbers. We set unitary jumps in the means
of consecutive segments (
ȳ = 1) and alternating standard
deviation (square root of the variance) σ1,σ2, as illustrated in
Fig. 8. We varied each standard deviation from 1/10 to 10, then
embracing a wide range of values relative to the jump size.

Diagrams of the segmentation results in the plane σ1,σ2 are
shown in Figs. 9 and 10, for �0 = 10 and 50, respectively,
at level P0 = 0.95. For each sequence, the percent relative
number of cuts with respect to the actual one is displayed. The
outcomes of the KS algorithm are shown in the right-hand-
side panels and those of the mean-based algorithm are also
presented (left-hand-side panels) for comparison. Time series
belonging to the middle gray regions are correctly (100%)
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FIG. 8. (Color online) Artificial series (light gray lines) formed
by segments of m = 200 Gaussian numbers with alternating means
+1/2, −1/2, and standard deviation σ1,σ2 (values indicated on each
panel). Segmentation was performed by means of the KS algorithm at
level P0 = 0.95. The vertical dotted lines indicate the exact (magenta,
gray) and calculated (black) borders.
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FIG. 9. Segmentation diagram in the parameter plane σ1,σ2. The
percentual relative number of cuts is represented in a gray scale
mapping. Each grid cell corresponds to a different random sequence
of size N = 4000 and segment sizes m = 100 [(a),(d)], 200 [(b),(e)],
and 400 [(c),(f)]. Segmentation was performed with the mean-based
[(a)–(c)] and KS [(d)–(f)] algorithms, with �0 = 10 and P0 = 0.95.

segmented, while those belonging to white regions are typi-
cally unsegmentable. Dark cells indicate oversegmentation.

FIG. 10. Segmentation diagram in the parameter plane σ1,σ2, as
in Fig. 9 but with �0 = 50.

FIG. 11. Segmentation diagram in the parameter plane σ1,σ2, as
in Figs. 9(b) and 9(e) (i.e., m = 200, �0 = 10) but with P0 = 0.99.

The mean-based algorithm performs proper segmentation
only if the standard deviations are, at most, of the order of
the size of the jumps and works well, within the chosen
confidence level, around the diagonal (σ1 � σ2), as expected.
Meanwhile, the KS algorithm is able to segment series
in a larger region of parameter space. Segmentation fails
when the standard deviations of consecutive segments are
not significantly different and are larger than the jump size
(σ1 � σ2 > 
ȳ). In both procedures, for larger segment sizes
n, the segmentable domain enlarges, but more false cutting
points arise. By setting a larger value of �0, small segments
are discarded and the number of false cuts is reduced, as can
be seen by comparison of Figs. 9 and 10 which just differ in
the value of �0. Also, false cutting points could be reduced by
increasing the value of P0 (compare the second row of Fig. 9
with Fig. 11, which only differ in the value of P0).

Moreover, one could still improve the algorithm by adding a
further final step, which is the following one. Before accepting
a cut, check through the standard KS test the significance of
the discrepancy between the right-hand-side portion and its
right neighboring segment (born in the previous generation)
as well as the left-hand-side portion with its left neighbor, as
has been proposed for the mean-based segmentation [10]. For
the analyzed series, this step does not introduce a significant
improvement (see Fig. 12 to be compared with the second
row of Fig. 9), however, if, depending on the analyzed
series, one observes oversegmentation, then that step could
be straightforwardly added.

Let us comment that as one approaches the frontier of
the segmentable region, although segments are recognized,
the position of the boundaries of the segments gets more
imprecise, the effect of which is reduced by increasing the
confidence level.

FIG. 12. Segmentation diagram in the parameter plane σ1,σ2, as
in Figs. 9(b) and 9(e) (i.e., m = 200, �0 = 10, and P0 = 0.95), with
the additional neighbor segment check.
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The above diagrams depict the scope of the algorithm for
a particular class of artificial series but provide a feeling of
its range of applicability and limitations. They also manifest
the importance of our method in enlarging the domain of
segmentation. There is an infinity of other tests, e.g., with
diverse variabilities of means and variances, correlations, and
other statistics discrepancies, that could be performed. Also,
tests restricted to the comparison of the outcoming statistics
could be carried out [11]. However, when applying this or
other algorithms, it may be convenient to perform an ad hoc
test, depending on the particular statistical characteristics of
the analyzed series.

3. Robustness

For the analyzed series, we checked the robustness of
the results with respect to the significance level (P0 =
0.90,0.95,0.99). The smaller P0, the larger the tendency to
allow small segments, while larger ones are almost unaffected.
However, this effect does not significantly change the statistics
of segment sizes, as illustrated for heart-rate series in Fig. 13
(right panel). The impact of �0 was also checked (left panel of
Fig. 13). Slopes do not significantly change, except for small
values of �0, as expected, since smaller fragments are allowed
with decreasing �0. Notwithstanding, the probability density of
larger segments is not significantly altered. Let us note that the
statistics on segments may be affected by the increase of small
segments if the studied quantity is correlated with the size.
However, this does not seem to happen in the analyzed cases.
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FIG. 13. Left panel: Complementary cumulative distribution of
segment sizes obtained for different values of the minimal length
�0 indicated on the figure. Data correspond to a normal individual
(n5nn.txt). Right panel: Complementary cumulative distribution
of segment sizes at different significance levels indicated on the
figure.

We also checked that the same segmentation patches are
typically recovered even when analyzing small fragments of
the whole series. In fact, significant statistical jumps even
for small segments are recognized, prompting a segmentation
point.
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