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Sustained strong fluctuations in a nonlinear chain at acoustic vacuum: Beyond equilibrium
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Here we consider dynamical problems as in linear response theory but for purely nonlinear systems where
acoustic propagation is prohibited by the potential, e.g., the case of an alignment of elastic grains confined
between walls. Our simulations suggest that in the absence of acoustic propagation, the system relaxes using
only solitary waves and the eventual state does not resemble an equilibrium state. Further, the studies reveal that
multiple perturbations could give rise to hot and cold spots in these systems. We first use particle dynamics based
simulations to understand how one of the two unequal colliding solitary waves in the chain can gain energy.
Specifically, we find that for head-on collisions the smaller wave gains energy, whereas when a more energetic
wave overtakes a less energetic wave, the latter gains energy. The balance between the rate at which the solitary
waves break down and the rate at which they grow eventually makes it possible for the system to reach a peculiar
equilibriumlike phase that is characteristic of these purely nonlinear systems. The study of the features and the
robustness of the fluctuations in time has been addressed next. A particular characteristic of this equilibriumlike
or quasiequilibrium phase is that very large energy fluctuations are possible—and by very large, we mean that
the energy can vary between zero and several times the average energy per grain. We argue that the magnitude of
the fluctuations depend on the nature of the nonlinearity in the potential energy function and the feature that any
energy must eventually travel as a compact solitary wave in these systems where the solitary wave energies may
vary widely. In closing we address whether these fluctuations are peculiar to one dimension or can exist in higher
dimensions. The study hence raises the following intriguing possibility. Are there physical or biological systems
where these kinds of nonlinear forces exist, and if so, can such large fluctuations actually be seen? Implications
of the study are briefly discussed.
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I. INTRODUCTION

Consider a finite, bounded, interacting, macroscopic, clas-
sical many-particle system that has been subjected to a
perturbation in the absence of thermal fluctuations, i.e., at “zero
temperature.” We let the entire energy of the system come from
the perturbation. We may not be able to use linear response
theory here [1–4]. One can still ask how any perturbation
disperses into the system due to the presence of the interparticle
potential.

Such a problem would need to be addressed using classical
dynamics as opposed to nonequilibrium statistical mechanics.
Indeed, relaxation in a simple harmonic oscillator chain
where any excitation eventually manifests as normal mode
oscillations has been extensively studied [5]. Fermi, Pasta,
and Ulam (FPU) in collaboration with Tsingou [6] probed
the dynamics of such a system in the presence of linear and
nonlinear interactions using computers in the mid 1950s. Their
work led to the realization that unlike what might be naively
expected, anharmonicity does not necessarily enhance the
propensity to reach an equilibrium state [6,7]. The FPU study
also appears to have foreshadowed the entry of solitary waves

into much of the statistical and condensed matter physics
literature [8–11].

Let us now consider a system without inertial mismatches
and with purely nonlinear interactions. Linear response theory
would suggest that any perturbation would likely be dispersed
in time into the system as it returns to an equilibrium phase
[1–4]. But, is this hypothesis applicable to purely nonlinear
systems? As we shall see, the dynamics of a lossless alignment
of elastic grains [12], which has been extensively probed in
recent times [13–15], held between perfectly reflecting walls
poses a counterexample. Whether the system is initially at zero
temperature or is in an excited state, perturbations imparted to
such a system do not disperse into an equilibrium state but
rather can lead to rich dynamics throughout the system [16].
There is a considerable amount of literature on the dynamics of
the FPU system at large times [17]. A key difference between
the FPU systems and the ones considered here lies in that
our systems do not have a harmonic term in the potential
energy function and the potential function is one sided. As
will be seen later, the interactions gradually vanish as the
grains lose contact. Hence, they exist in “acoustic vacuum”
meaning that the grains cannot oscillate while maintaining

046610-11539-3755/2011/84(4)/046610(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.046610
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contact, and therefore the system does not support ordinary
sound propagation [13].

In what follows, we describe the system considered and
its time evolution following some perturbation. Our studies
suggest that the eventual state of such a system can admit
very large kinetic energy fluctuations while satisfying the
Gaussian distribution of velocities and possible independence
from initial conditions. Given that this is a nonlinear system
and that there is no dissipation, and that energy fluctuations
depend on the nature of the potential, one may naively think
that large energy fluctuations are not a surprise. The counter
argument could be that there are nonlinear potentials that are
used to model solids, liquids, and gases in their equilibrium
states. Hence, nonlinearity alone is not the reason. Rather,
it is the system and the nature of the nonlinearity that may
both be relevant here. To be specific, virial theorem allows
one to determine how much of the energy is kinetic and how
much is potential. For the potentials considered here, more of
the total energy ends up as kinetic energy. Correspondingly,
the fluctuations in kinetic energy are larger than the same for
linear systems. A second reason why the energy fluctuations in
these systems ends up being unusually large is because energy
moves as solitary waves in these systems. These waves have a
spatial extent that is fixed by the nonlinearity of the potential.
Hence the initial energy is not equally distributed among the
particles in the system but rather unequally among the number
of solitary waves in the system. Here we address how it may
be possible to manipulate the fluctuations in these systems.
We close with a brief discussion of the possible implications
of the work.

II. THE NONLINEAR SYSTEM

The system of interest is an alignment of N identical elastic
spheres, each of mass m and radius R, placed in such a way
that they are barely in contact with each other. There is no
grain-grain interaction when there is no contact [13,15]. We
assume that the alignment is held between perfectly reflecting
walls. The interaction potential is given as

V (xi+1 − xi) = a[2R − (xi+1 − xi)]
n ≡ aδn

i,i+1 � 0, (1)

where xi is the displacement of grain i from the original
position (i.e., grains are at a distance of 2R between the
centers initially), 2R � xi+1 − xi � 0, and δi,i+1 is the overlap
between the grains. Observe that the grains do not interact
when the grain-grain contact is broken, and hence for 2R <

xi+1 − xi or δi,i+1 < 0, V (xi+1 − xi) = 0. The properties of
V (δi,i+1) are discussed in some detail in Ref. [18].

For spheres, as per Hertz law, n = 5/2 [19]. Hence, the
interaction potential is fully nonlinear in nature, i.e., there is
no n = 2 term and hence there is no chance of any oscillatory
dynamics of any of the grains. In turn, as alluded to above,
this means that there is no acoustic propagation from grain
to grain. One can show that for the majority of grain-grain
contact potentials n > 2 [18]. To illustrate the effects of n in
influencing the dynamics of the system, we will use n = 5/2
and n = 2.1, the latter being closer to the harmonic case while

being fully nonlinear. The equation of motion of each grain
(except for the two boundary grains) is given by

m
d2xi

dt2
= an

[
δn−1
i,i−1 − δn−1

i,i+1

]
, n � 2, (2)

where i runs from 1 to N . The calculations are done
via a third order Gear algorithm [20] and the outcomes
are presented using dimensionless quantities. To make our
results dimensionless, we assign 10−5 m, 2.36 × 10−5 kg,
and 1.0102 × 10−3 s as the units of distance, mass, and time,
respectively [21]. In our simulations, the grain diameter was
set to 100, the mass was set to unity, and the integration time
step dt was set to 10−6. As in many previous studies, we chose
a = 5657, a value (=4.14 × 107 N m−3/2) which is in the
range of elasticity of silicate materials. In order to compare to
previous works, we have typically used a = 1 when we probed
n = 2.1 cases. In the calculations, we saw no change in the
total energy after 109 time steps.

We now briefly summarize the findings of our earlier work
on which the present study will develop. Any initial velocity
given to an edge grain develops into a propagating solitary
wave in these systems within about ten grain diameters from
the edge [22]. The solitary wave velocity depends on the
magnitude of the initial perturbation [13,15]. These solitary
waves possess an average width W that depends on n. For
n = 5/2, measured at a precision of 10−12 in grain diameters,
we find W = 7 [22], whereas for n = 2.1 we estimate W = 11
(this value is precision limited [23]). The finite width of these
waves, and the fact that as per virial theorem [24], they carry

n
n+2 of the total energy as kinetic and the rest as potential,
implies that they are “soft” objects.

Given that the grains are held within reflecting boundary
walls, any solitary wave must turn around when it hits a
wall. It is now well established that such a turnaround is
accompanied by squeezing of the solitary wave at the wall with
the production of secondary solitary waves. These secondary
waves carry much less energy and are formed after the
original wave reflects, albeit with less energy than what it
hit the wall with. Extrapolating from here, it may seem that
solitary waves will continue to break upon any collision. This
argument is incorrect because such repeated breakdowns of a
nondispersive wave into many smaller ones would mean that
eventually the original pulse would be comprised of an infinite
number of infinitesimally small pulses. Recent simulations
reported in Ref. [25] have suggested that there are solitary
wave collisions where one wave grows while the other loses
energy as a result of a collision.

This paper is organized as follows. We first report on
how solitary waves can grow as a result of collisions in
our systems. This is followed by a quick summary of how
a single solitary wave decays into an equilibriumlike state
and then to our analysis of what happens when multiple
perturbations are effected at the same or at different times
in these systems. As we shall see, our studies strongly suggest
that purely nonlinear, conservative systems, which propagate
energy as solitary waves and in acoustic vacuum, are capable
of sustaining high levels of energy fluctuations indefinitely.
We close with a brief discussion of the implications of this
study.
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III. RESULTS

A. Solitary wave collisions

We first present the results of our dynamical simulations
to suggest that when two solitary waves collide, there are
scenarios where one gains energy while the other loses it. To
probe this we consider the collision of unequal solitary waves
when they are moving in the same and in opposite directions
[23]. The studies have been done using chains with 499 or 500
grains, depending on the nature of the collision to be probed. As
a result they are data intensive dynamics simulations and care
is needed to ensure accuracy of the integration of the equations
of motion (our energy conservation is typically accurate to at
least a billionth of the total energy). For simplicity, we have
chosen scenarios where the waves meet at the center of a grain.
Off-center collisions are more challenging to characterize. No
matter where the collision, however, the outcomes appear to
be identical to the cases discussed here.

In the overtaking collision problem, where a fast moving
and hence higher energy solitary wave overtakes a less
energetic one at a grain center, we found that the former wave
undergoes a slight energy gain by “consuming” a part of the
latter, which in turn loses some energy [Figs. 1(a) and 1(c)].
The process is complex because the total combined energy
of the two waves gets reduced due to the collision process,
thereby indicating the formation of secondary solitary waves
of low energy content. During this collision, the central grain
where the waves meet ends up moving faster than either of
the neighboring grains. This new velocity of the central grain
appears to determine the magnitude of the resultant solitary
waves. The larger postcollision wave forms immediately
following the collision process, carrying away as much energy
as possible.

In the head-on collision case the outcome is different. Here
the more energetic wave loses energy while the lower energy

FIG. 1. (a) and (b) show space versus time plots for overtaking
and head-on collisions, respectively, of two unequal solitary waves
in a chain of 500 grains. The symbols “SW> or <” and “SW>′ or <′ ”
denote before and after and larger and smaller waves, respectively.
(c) and (d) describe the gain or loss of energy suffered due to the
collision by the larger and small wave for overtaking and head-on
collisions, respectively.

wave gains energy [Figs. 1(b) and 1(d)]. There are secondary
solitary waves which form in this case as well. Total energy is
conserved in both the cases, which attests to the accuracy of
the results.

Our studies suggest that the energetics of the collision is
typically determined by the dynamics of the central grain
where the two unequal solitary waves meet. In both types
of collisions probed, the magnitudes of the kinetic energy
changes of the more energetic and the smaller solitary
waves are maximized when the kinetic energy of the smaller
wave is approximately half that of the larger wave. Any
kind of analytic work to attain a deeper understanding
of these processes requires a more accurate solution of
the equations of motion than what is currently available
[13,26].

B. δ-Function perturbation(s) at t = 0 and quasiequilibrium

When a δ-function perturbation in velocity is given to an
edge grain at t = 0, we first see the formation of a propagating
solitary wave, which then backscatters from the opposite wall
and the process of breakdown of the wave begins. After a
few round trips of the original pulse, the energy distribution
of the system reveals a roughly gray color with significant
energy fluctuations in the gray scale plots shown in Fig. 2(a)
for n = 2.1 and Fig. 2(c) for n = 2.5 [see Eqs. (1) and (2)].
The dynamics is characterized by the growth of approximately
half of the waves and the decay of the rest during collisions
between unequal waves. Longer time simulations do not
reveal any significant changes in the energy distribution of
the system. We call the gray state the quasiequilibrium state
(see [15,16] for related discussions). The grains possess a
Gaussian distribution of velocities (as expected from the
central limit theorem) and the kinetic energy fluctuations
seen in the system are “large” [15]. Since the energy prop-
agates as solitary waves, each of width W > 1, the particles
themselves never carry approximately the same amount of
kinetic energy when a time average is performed. Hence,
the equipartition theorem is not satisfied by these systems
[15,16].

As n → 2, W → ∞ [13], and the quasiequilibrium phase
begins to resemble a state with equipartitioned energy.
Comparing the panels in Fig. 2, it is evident that the
n = 2.1 system achieves a better gray scale than the n =
2.5 system. Further, since the typical magnitude of energy
fluctuations possesses a system size dependence, as N →
∞, the system should tend to resemble an equilibrium
phase.

Let us now ask the following questions: (i) Is it possible
to perturb the system in such a way that multiple temporally
stable or unstable cold and hot spots may develop in these
systems? (ii) How does the system evolve if a second round of
perturbation that is identical or similar to the one affected at
t = 0 is introduced? Since the odd numbered systems are the
ones that allow cold spot formation, we henceforth consider
only such chains below.

To explore (i), we study a system in which the two edge
grains are perturbed in such a way that identical solitary waves
end up propagating toward each other [Figs. 2(b) and 2(d)].
When N is odd, the two solitary waves must meet at the center
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FIG. 2. We show grain position versus time versus energy (in
gray scale) in (a) and (c) for 31 grain chains with n = 2.1 and 2.5,
respectively. In both cases, a velocity imparted to grain 31 at t = 0
leads to the formation of a solitary wave. The wave propagates along
the dark straight lines with properties that are appropriate for the
system. The wave breaks down during wall collisions. However, one
of the waves gains energy when later, two unequal waves collide. At
large enough times, the system acquires gray scale features to reveal
that the energy in the original impulse and in the initial solitary wave
that formed has now been distributed throughout the system. As can
be seen, the energy distribution is not at all homogeneous. Further,
it changes significantly with time. In (b) and (d) we show studies
where equal and opposite velocities are imparted at the two end
grains of each chain at t = 0. This results in two equal and opposite
propagating solitary waves colliding in the center of the chain. The
central grain does not move and defines a cold spot. Again, for (b)
n = 2.1 and for (d) n = 2.5. The system exhibits large and sustained
energy fluctuations.

of the N
2 + 1 grain. When N is even, they would meet at

an interface between grains numbered N
2 and N

2 + 1. In the
former case, the center grain would get compressed from both
ends and hence would store some potential energy. The center
grain of course will be at rest at all times, thereby carrying
zero kinetic energy and creating what we will henceforth call
a “cold spot.” In the latter case, it is not possible to store
potential energy at a grain edge and hence the system ends up
with slightly more kinetic energy (in this context, see the recent
experimental work of Santibanez et al. in [27]). In Figs. 2(b)
and 2(d) we show the kinetic energy versus grain number
versus time results for odd numbered chains when n = 2.1 and
n = 2.5, respectively. Regardless of the magnitude of n and
the system size, the odd numbered systems with two opposing
perturbations imparted at t = 0 reveal the presence of a time
invariant cold spot. The results suggest that as n → 2, the
system tends to reach the quasiequilibrium state more rapidly.
To our knowledge it is not possible to form a sustained cold
spot in a system that is in an equilibrium phase and hence in that
respect, the quasiequilibrium phase appears to be special. The
presence of harmonic forces would allow energy dispersion
and hence make the cold spot unsustainable.
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FIG. 3. The study shown here is identical to that shown in
Figs. 2(a)–2(d) except that these systems have been perturbed a
second time at t = 1200. The velocity of perturbation is five times
stronger than that in the original perturbation at t = 0. The reason
for the stronger perturbation is to ensure that the energy fluctuations
resulting from such a perturbation can be clearly seen. While the
magnitude of the energy fluctuations are larger here, the nature of the
fluctuations is very similar to that shown in Figs. 2(a)–2(d).

C. How robust is the quasiequilibrium phase?

To explore the robustness of the system’s state at late
enough times, we carried out studies in which a totally new
δ-function velocity perturbation was reinitiated at an edge of
the system at a later time. The edge used was the same as
the one in which the original perturbation was initiated. We
typically introduced this new perturbation at t = 1200 units.
As is evident from Figs. 2(a) and 2(b), the n = 2.1 system has
reached the quasiequilibrium phase by that time with a well
developed temporally fluctuating, grainy, gray scale structure.
In contrast, we find that the quasiequilibrium behavior is
yet to develop for the n = 2.5 case in Figs. 2(c) and 2(d).
Naturally, the steeper the potential, the longer the solitary
wave lasts and the more slowly the quasiequilibrium phase
would emerge. Results from our studies of the system with the
second perturbation are shown in Figs. 3(a)–3(d).

The second perturbation is typically stronger than the first
one in the studies shown here [Figs. 3(a)–3(d)] [28]. The
increase in strength makes it easier to actually “see” the
changes that happen due to this perturbation in Figs. 3(a)–3(d).
The increase in the energy speeds up the solitary waves
and this can be readily seen by the slope changes of the
lines in Figs. 3(a)–3(d). It is worth noting that the second
perturbation does not have a marked effect on the properties of
the fluctuations at large times. In Figs. 3(b) and 3(d), the cold
spot is sustained along with the development of short lived
hot (shown as darker) regions just as seen in Figs 2(a)–2(d)
at late times. In short, the introduction of a second or more
perturbation that is identical in position at later times does not
change the detailed features of the quasiequilibrium phase.
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FIG. 4. The normalized kinetic energy autocorrelation function
(see text) is shown as function of time for the 31 grain system for
cases shown in Figs. 2(b) and 2(d) and Figs. 3(b) and 3(d) (insets).

To check how much of the “memory” of the initial pertur-
bation is retained by the system, we calculated the dynamical
kinetic energy auto-correlation function (KACF) defined as
v2

1(t = 0)v2
1(t)/v2

1(t = 0)4 as a function of t when the first
and the last grains are simultaneously initiated with equal
magnitude and opposite in direction velocity perturbations at
t = 0. In this case it is not required to perform a time average
because we are probing whether the system can ever return
to its initial state or not, and hence exploring if KACF can
return to unity or if it decays, and if so, how. The results are
shown in Figs. 4(a) and 4(b) for the n = 2.1 and n = 2.5 cases,
respectively. The insets in each figure show the same systems
when they have been subjected to a second perturbation around
t = 1200 [hence these pertain to cases shown in Figs. 3(b) and
3(d)]. As is evident by looking at the behavior at large enough
times, the peaks in the KACF remain of approximately the
same height, thereby suggesting that the system reaches a
peculiar, strongly fluctuating, equilibriumlike state. The sharp
peaks are indicative of the nature of excitations that are in the
system—namely, only the discrete solitary waves.

D. Effects of synchronous and asynchronous
perturbations on quasiequilibrium

Figures 5(a)–5(d) show the nature of energy transport in the
system when a pair of solitary wave trains are initiated at the
boundaries using appropriate initial conditions in a chain with
odd numbered grains. One way to make solitary wave trains is
to make the perturbation last for a few time steps, while another
way would be to simultaneously and equally strongly perturb
a fixed number of edge grains at some initial time (see [22]
for an in-depth discussion on initial conditions). We study
two distinct wave train collisions—those between wave trains
that are identical and different but initiated simultaneously at
t = 0 (synchronous), while the other is for wave trains that are
initiated with some time delay (asynchronous).

Figures 5(a) and 5(b) show the results for a collision of two
identical solitary wave trains, each containing three solitary
waves of progressively decreasing energy content. In Fig. 5(a),
the waves are released simultaneously, whereas in Fig. 5(b)
there is a delay by ten time steps. For synchronous wave train
collisions in Fig. 5(a) we find the emergence of a larger cold
spot around t ≈ 150 although this is not completely cold. The
short time features of Figs. 5(a) and 5(b) are very similar.
However, in Fig. 5(b), the energy propagation behavior turns
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FIG. 5. Collisions between solitary wave trains with three pro-
gressively decreasing solitary waves are shown in (a)–(c). In (a) the
trains form simultaneously, in (b) the train released from grain 31
is ten steps delayed, and in (c) the train released from grain 31 is
100 steps delayed. The cold spot is not sustainable when symmetry
is broken in (b) and (c). (d) A five wave train collides with a three
wave train to form longer lived and larger cold regions. Observe that
multiple solitary wave collisions at late times can cause hot spots in
these systems (see text for more details).

out to be different than in Fig. 5(a) at late times. Notably, the
cold spot gets obliterated in Fig. 5(b). In Fig. 5(c), the signals
are released 100 time steps apart. The cold spot moves up in
space and becomes visibly asymmetric. Not surprisingly, the
long time dynamics is also different compared to Figs. 5(a)
and 5(b).

Our studies suggest that for synchronous systems where
identical wave trains collide and n → 2 where W → ∞ and
N < ∞, these cold spots would become larger. However, the
larger spots are short lived and not sustainable and only a
central cold spot remains time invariant. The solitary waves in
the train slowly break down forming secondary solitary waves
and eventually the system ends up in a quasiequilibrium phase
with a central cold spot.

In Fig. 5(d) we show the results for collision when the
two wave trains contain different numbers of solitary waves.
The cold spots now become more long lived and asymmetric
in space and time. There is some initial evidence of several
waves colliding at late times to form short lived hot spots (see
around t ≈ 1550–1600). The collision of solitary wave trains
hence raises an intriguing possibility, namely, whether these
collisions could give rise to the birth of unstable regions with
large or small cold or hot spots.

E. Effects of many synchronous perturbations
and late time second perturbations

To address this question we consider larger chains with
multiple synchronous perturbations. Specifically, we initiate
velocities (v0, − v0) at grains (1,11), (13,23), (25,35), and
(37,47) in a N = 47 system and (1,11), (13,23), (25,35),
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ÁVALOS, SUN, DONEY, AND SEN PHYSICAL REVIEW E 84, 046610 (2011)

0 500 1000 1500 2000
time (arb. units)

47

G
ra

in
 N

o. (a)(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
time (arb. units)

47

G
ra

in
 N

o. (b)(b)

FIG. 6. Here we show a 47 grain system that has been subjected
to symmetric perturbation at t = 0 at multiple points (see text) in
(a) and the same has been repeated at t = 1200 in (b). These studies
are for n = 2.1. (a) reveals that the nature of the system dynamics is
similar to and somewhat richer than what is seen for Figs. 3(b) and
3(d).

(37,47), . . . ,(109,119) in a N = 119 chain as shown in
Fig. 6(a) for n = 2.1 and in Figs. 7(a) and 7(b) for n = 2.5
and n = 2.1, respectively. In Fig. 6(b) we show a study in
which the N = 47 chain has been subjected to an identical
second perturbation which is five times stronger (just to make
the effect visible in the plot) at t = 1200.
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FIG. 7. Here we show the time evolution of a 119 grain chain for
n = 2.5 in (a) and n = 2.1 in (b). Clearly, the presence of multiple
perturbations enrich the nature of fluctuations in these systems.
Significant kinetic energy is seen near the walls over extended times.
Peculiar low and large fluctuation areas that last for a significant
number of time steps are also seen (see text).

The dynamics of these systems turn out to be rich and
complex and marked by the formation of sizable metastable
cold and hot spots in addition to the small central cold spot
that arises due to symmetry considerations. In addition, in both
the cases, the system shows significant kinetic energy near the
boundaries. We hypothesize that the formation of metastable
hot spots near the boundaries arise because solitary waves of
all energies collide there, and hence they spend more time near
the boundaries as they approach and recede from those regions.
The many symmetric hot and cold spot regions in the vicinity
of the center beyond t ≈ 700 in Fig. 6(a) are unexpected.
No significant change happens to the dynamics when in the
N = 47 case the system is perturbed a second time. The new
perturbation again relaxes to the highly fluctuating state except
that the average kinetic energy of the grains ends up increasing
appropriately. We calculated the cosine transform of the kinetic
energy as a function of time for the case shown in Fig. 6(b).
Our results reveal a featureless, Gaussian-like kinetic energy
power spectrum centered around zero frequency. The spectrum
confirms that the system does not have any characteristic
frequencies but rather a smooth distribution of the same that is
heavily weighted in the vicinity of the zero frequency mode.

The features seen in Figs. 7(a) and 7(b) are very similar. The
differences arise from the fact that solitary waves are wider in
Fig. 7(b) where n = 2.1. Hence, the energy exchange between
the grains or the energy mixing transpires more rapidly. Strong
and sustained energy fluctuations are evident in both of these
cases. The formation of circular hot spot rings in our space-
time versus energy diagrams for t between 1500 and 4000 in
Fig. 7(a) and between about 750 and 1500 in Fig. 7(b) are
completely unexpected. The large cold spots that form for t

between 2500 and 3500 and 4000 and 4500 in Fig. 7(a) and the
three similar regions between t of 3500 and 4500 in Fig. 7(b)
are intriguing. A second perturbation study of the N = 119
system shows that the features seen in Figs. 7(a) and 7(b) are
sustained. Hence, those studies are not being shown here.

IV. SUMMARY AND CONCLUSION

We have presented a study of the time evolution of grains
in an unloaded granular chain except that we have assumed
that the system is lossless. Such a system is an example
of a purely nonlinear system in the sense that there is no
harmonic term in the interparticle potential in such a system.
The choice of considering a system that is lossless is tied
to the goal of probing the dynamics of these systems at late
times—something that cannot be done for mechanical systems
which are inevitably lossy. However, as alluded to in [12], it
may be possible to realize these systems as circuits.

The initial part of the study in Sec. III A discussed how
one of the two unequal colliding solitary waves in the chain
can gain energy. Our simulations suggest that for head-
on collisions the smaller wave gains energy. However, our
simulations reveal that when a more energetic wave overtakes a
less energetic wave, the more energetic wave gains energy [25].
The balance between the rate at which the solitary waves break
down and the rate at which they grow eventually makes it
possible for the system to reach a peculiar equilibriumlike
phase that is characteristic to these purely nonlinear systems
[29].
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The study of the features and the robustness of the
fluctuations in time has been addressed in Secs. III B–
III E. A particular characteristic of this equilibriumlike or
quasiequilibrium phase is that very large energy fluctuations
are possible—and by very large we mean that the energy
can vary between zero and several times the average energy
per grain. The basic reason for these large fluctuations is
that all energy must propagate as solitary waves and the
amount of energy carried by a wave can vary. One can ask
whether these fluctuations are peculiar to one dimension or
whether they can exist in higher dimensions. The study hence
raises the following intriguing possibility. Are there physical
or biological systems where these kinds of nonlinear forces
exist, and if so, can such large fluctuations actually be seen?
A related question is how would nature exploit such large
energy fluctuations if they are found in some systems? Can
such fluctuations naturally arise in biological systems and be
responsible for the ability of biological systems to adapt to
surrounding changes [30]? These are some of the questions
that are currently under investigation.

In closing, it is natural to wonder what happens when in
addition to the Hertz term, a quadratic term is introduced in
Eq. (1). Such a scenario is realized in loaded granular chains.
It turns out that the presence of the quadratic term in the
potential function may suppress the strong fluctuations that are
characteristic of the equilibrium phase, but this is not always
the case. Subtle competitions may arise between the harmonic
and the nonlinear forces with unexpected consequences.
This topic is currently under investigation and will be the
subject of a future paper [31]. The study of purely nonlinear
systems hence may involve qualitatively different dynamics
than those of strongly nonlinear systems with a quadratic
potential.
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