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Forced and self-excited oscillations of an optomechanical cavity
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We experimentally study forced and self-excited oscillations of an optomechanical cavity, which is formed
between a fiber Bragg grating that serves as a static mirror and a freely suspended metallic mechanical resonator
that serves as a moving mirror. In the domain of small amplitude mechanical oscillations, we find that the
optomechanical coupling is manifested as changes in the effective resonance frequency, damping rate, and cubic

nonlinearity of the mechanical resonator. Moreover, self-excited oscillations of the micromechanical mirror are
observed above a certain optical power threshold. A comparison between the experimental results and a theoretical
model that we have recently derived and analyzed yields a good agreement. The comparison also indicates that
the dominant optomechanical coupling mechanism is the heating of the metallic mirror due to optical absorption.
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I. INTRODUCTION

Studies combining mechanical elements in optical res-
onance cavities [1,2] experienced a significant surge in
popularity in recent years due to the fast progress made
in both microelectromechanical systems (MEMS) and opti-
cal microcavities. For example, optomechanical coupling of
nanomechanical mirror resonators to optical modes of high-
finesse cavities mediated by radiation pressure has a promise
of bringing the mechanical resonators into the quantum
realm [3—11]. Furthermore, the micro-optoelectromechanical
systems (MOEMS) are expected to play an increasing role in
optical communications [12] and other photonics applications
[13-15].

In addition to the radiation pressure, another important
force that contributes to the optomechanical coupling in
MOEMS is the bolometric force [16-23], also known as the
thermal force. This force can be attributed to the thermoelastic
deformations of the micromechanical mirrors. In general,
the thermal force plays an important role in relatively large
mirrors, in which the thermal relaxation rate is comparable
to the mechanical resonance frequency. Phenomena such as
mode cooling and self-excited oscillations have been shown
in systems in which this force is dominant [16,18,19,24].
Existing theoretical models that describe these phenomena
quantitatively [21,23-26] are based on energy or harmonic
balance methods, which provide good predictions of the
system steady state, but lack the ability to fully describe its
complex dynamics.

Recently, we have developed a slow envelope dynamical
model of an optomechanical system, which includes radiation
pressure, thermal force, and changes to mechanical frequency
due to absorption heating [27]. The theoretical predictions,
which are derived using a combined harmonic balance and av-
eraging method [28], include all the experimental phenomena
shown by optomechanical systems with a bolometric force,
such as linear dissipation renormalization and self-excited
oscillations. In addition, the model enables prediction of
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additional nonlinear effects, namely, the change in the sign of
the mechanical cubic nonlinear elastic and dissipative terms
as a function of the optical power incident on the cavity and
its exact detuning from resonance [17,24].

Here, we present experimental results that demonstrate
all the major dynamical phenomena, which are theoretically
implied in Ref. [27]. In order to facilitate the study of optical
cavities with micromechanical mirrors spanning a wide range
of different geometries and materials, we employ a fiber Bragg
grating (FBG) [29] as a static mirror of the optical cavity.
The wavelength-dependent transparency of the FBG allows us
to achieve different coupling conditions between the optical
mode inside the cavity and the incident light, thus effectively
controlling the cavity’s finesse.

A very reasonable fit between theory and experiment is
achieved using two distinct geometries of the micromechanical
mirror composed of two different metals: AuPd and aluminum.
The fits include changes in the linear dissipation, the threshold,
the frequency and the amplitude of self-excited oscillations,
and the thermally induced frequency shifts under different
conditions. In addition, we show optically induced changes in
the nonlinear response of the micromechanical mirrors.

II. EXPERIMENTAL SETUP

In the investigated system, an optical resonance cavity
is created between a suspended metallic micromechanical
mirror, which is free to oscillate in a direction parallel to
the optical axis, and a stationary mirror in the form of a
FBG as shown in Fig. 1. The system is located in a vacuum
chamber inside a cryostat with a typical pressure of 3 ubar
and temperature of 77 K.

A micromechanical mirror is fabricated on a silicon-nitride
membrane using electron beam lithography and thermal
evaporation of metal. Following these steps, the membrane
is removed by electron cyclotron resonance (ECR) plasma
etching, and the micromechanical mirror becomes suspended.
This fabrication process is similar to the one described in [30].

Two main suspended mirror configurations were used in
our experiments, a gold-palladium (Aug gsPdy is) rectangular
mirror and an aluminum doubly clamped wide beam. The
dimensions of the devices are given in Fig. 1.
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FIG. 1. (Color online) (a) The experimental system. In addition to
the network analyzer, a number of measuring and excitation schemes
can be used, such as homodyne vibration detection with a lock-in
amplifier and direct time sampling of the reflected optical power. A
tunable infrared laser is used, with a maximum output power of 2 mW.
A single mode optical fiber is used to transmit light to and from the
sample, allowing reflection measurements (with the aid of a circulator
to separate the incident and the reflected beams). A graded index lens
at the end of the optical fiber is used to focus the light on the mirror.
The focus distance is ~40 um. A FBG located inside the fiber can
serve as a second mirror to create a relatively high-finesse cavity at
wavelengths that fall inside the Bragg region. The micromechanical
mirror can be capacitively actuated by applying a voltage between
the mirror itself and a ground plate located 500 um below it (the
ground plate is not shown). Panels (b) and (c) exhibit the top views
of the micromechanical mirrors employed in the experiments. The
thickness of the metal layers is 300 nm for AuPd samples and 200 nm
for Al samples.

The micromechanical mirror can be actuated capacitively
in the direction of the optical axis by applying voltage between
the mirror and the ground plate of the package used to mount
the sample in the vacuum chamber. The ground plate is parallel
to the mirror and located 500 pm below it.

The FBG, which has a length of Lz = 20 mm, is formed
using a phase mask having a period of 1062 nm on a single
mode optical fiber having effective refractive index of n.gs =
1.46 near the wavelength of 1550 nm. A microlens made from
a section of a graded index fiber having length of 0.45 pitch is
spliced to the the end of the fiber [31]. A brief analysis of the
FBG’s optical properties is given in Sec. I[ITA.

The optical fiber can be moved in three orthogonal
directions by means of piezomotors with an accuracy of
approximately 1 nm. Generally, the fiber is positioned above
the center of the micromechanical mirror at a focal distance
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of the microlens, which is ~40 um. The length of the optical
cavity can be changed by moving the fiber along the optical
axis. We control the wavelength and the power of the light
incident on the cavity by using a variable wavelength infrared
laser and a variable fiber-optic attenuator, respectively. The
light reflected off the cavity back into the fiber is separated by
means of a circulator and converted to an electrical signal by
a photodetector. The experimental system is shown in Fig. 1.

The finesse of the optical cavities created in the presented
experiments is of the order of 10. We estimate the optical
relaxation time to be of order 10712 s. It follows that optical
retardation can be neglected in our system, and thus the optical
energy stored in the cavity is a function of the momentary
displacement of the micromechanical mirror.

III. THEORETICAL MODEL

An extensive theoretical analysis of the dynamics of a
micromechanical oscillator acting as a mirror in a low-finesse
optical cavity based on a slow envelope approximation can
be found in Ref. [27]. Here, we state the main results from
that work, and present a short discussion on the FBG optical
properties.

A. Optical cavity

The finesse of the optical cavity is limited by loss mech-
anisms that give rise to optical energy leaking out of the
cavity. The main escape routes are through the FBG, through
absorption by the metallic mirror, and through radiation, and
the corresponding transmission probabilities are, respectively,
denoted by Tp, T4, and Tg. The transmission probability
Tg through the FBG is evaluated using the coupled mode
theory [29,32]

1
Tp = , 1
B 1 VZsinh?(y/V2—d2) M
+ Vi-d3

B

where dp = (w — wp)Lpnesr/c is the normalized detuning
factor, w and wp are, respectively, the laser and Bragg angular
frequencies, c is light velocity in vacuum, and Vp is the FBG
coupling constant.

Let x — xg be the displacement of the mirror relative to the
point xg, at which the energy stored in the optical cavity in
steady state obtains a local maximum. For a fixed x, the cavity
reflection probability Rc, i.e., the ratio between the reflected
(outgoing) and injected (incoming) optical powers in the fiber,
is given by

(Ze=faTey® 49 (L) (1 — cos2m57)

1 +2(#)2 1— 005271"2"")

Re =

@

where L is the distance between two successive resonance
positions of the micromechanical mirror (i.e., half the wave-
length), and

L
I'=Tp+Ts+Tr)—
21
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is the full width at half maximum parameter. The effective op-
tical power I (x) impinging on the suspended micromechanical
mirror can be expressed as

I(x) =

3)

Imax (%)2
L2

3 [1— cos2m 272 ] + (%)2’

where

Imax = Cre Ipump

is the maximum optical power incident on the mirror, yump
is the power of the monochromatic laser light incident on the
cavity, and

4Tg
(Tg + T + Tg)?
is the resonant enhancement factor of the intracavity power.
Note that, for the case of critical coupling, i.e., the case where
TB = TA + TR, Cre = L/JTF
The optical power I (x) is a periodic function, which can be
approximated by a truncated Fourier series

Cre =

Kkmax

Iy~ > e, )

k=—Kmax

where kp,x should be of order of the finesse or larger for the
truncation error to be negligible. As shown in Ref. [27], ¢, =

Inax xoMle=72mkxo/L ‘wherea = 1+ h — /(1 +h)? — 1, x =

h//(I+h)?—1,and h = 72T /21>

B. Equations of motion

The micromechanical mirror can be approximately de-
scribed as a harmonic oscillator with a single degree of
freedom x operating near primary resonance, which is subject
to several forces arising from coupling to the optical resonance
cavity. In general, a standalone micromechanical resonator
can exhibit nonlinear behavior [33,34]. In our experiments,
however, the contributions of purely mechanical nonlinearities
are negligible, as will be shown in Sec. V C.

Following Ref. [27], we write the equation of motion as

i+ %x + wRx = 2 cos(@o + o)t + Fep(x) + Fin(),
5)

where a dot denotes differentiation with respect to time 7,
wo is the mechanical resonance frequency of the mirror,
Q is the mechanical quality factor, w,, is the temperature
dependent momentary resonance frequency, f,, is the external
excitation force amplitude, and oy is a small detuning of
the external excitation frequency from wy, i.e., 09 < wyp. The
forces resulting from coupling to an optical resonance cavity
are the radiation pressure Fy, and Fy,, which is a thermal force
that appears due to temperature dependent deformation of the
micromechanical mirror [35-38].

In a wide range of micromechanical resonators, internal
tension can strongly affect the resonance frequencies [39,40].
Such systems include the doubly clamped beams and rect-
angular mirrors with four suspension beams used in our
experiments. Changes in the temperature of such devices result
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in thermal expansion or contraction, which in turn cause
changes in internal tension. These changes give rise to a
strong temperature dependence of the mechanical resonance
frequencies, as will be shown in Sec. V. For small temperature
changes, the momentary mechanical frequency w,, is assumed
to be linearly dependent on the temperature:

wn = wy — B(T — Tp), (6)

where B is a proportionality coefficient, T is the effective
temperature of the mechanical oscillator, and 7y is the temper-
ature of the supporting substrate. In our samples, a significant
pretension exists due to thermal evaporation process used to
deposit the metals during the manufacturing [34,39,41]. The
pretension is further increased by cooling the samples to 77 K.
It follows, therefore, that § is positive in our experiments, i.e.,
heating of the sample reduces its resonance frequency.

The effective temperature changes can be described by the
equation

T = —«(T — To) + nl(x), (7)

where « is the effective thermal conductance, and 7 is the
effective radiation absorption coefficient. The formal solution
of Eq. (7) can be shown to be

t
T—-Ty= r)/ I(x)e* " dr,
0

where the initial transient response term e [T (t = 0) — Tp]
has been dropped as insignificant to the long time scale
dynamics of the system. This integral relation can be further
simplified using the slow envelope approximation. The reader
is referred to Ref. [27] for further details.

Finally, we introduce the radiation dependent forces. The
radiation pressure force can be expressed as

Frp(x) =vl(x), ¥
where
2
V= —),
mc

and where m is the effective mass of the micromechanical
mirror. Light absorption by the mirror has been neglected. The
thermal force Fy, is assumed to be linear in the temperature
difference T — Ty, i.e.,

Fo=0(T — Tp), &)

where 0 is a coefficient of proportionality.
The numerical values of all the physical constants intro-
duced above will be evaluated in Sec. IV.

C. Slow envelope approximation

Following Ref. [27], the dynamics of the micromechanical
mirror can be approximated by a harmonic motion with slow
varying amplitude and phase, i.e.,

x(t) = Ag+ A cos ¥, (10a)
where

(10b)
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and where A and ¢ are the oscillator’s amplitude and phase
[42], respectively, and Ay is the static mirror displacement due
to the action of the radiation dependent forces.

By introducing Egs. (10) into Eq. (5) and using a combined
harmonic balance (averaging method [28]), one can derive the
following relations that describe the slow envelope behavior
of the mirror [see Egs. (22)—(25) in Ref. [27]]:

0
Ap~ — [ZPI/Sn e <v+—”)], (11a)
+ w K
. wo wo
A= — (= 2P pn—2 ) A
! <2Q 2ﬂ"1<2+4w3> !
[ 0 m
—Pin——7 2 2<2,3Ao+—>—f—sm¢ (11b)
K=+ wy wo
and

. K
Alp=—[op+ Awy+ Pofn——— | A
1¢ ( 0 0 2'3,7/(24—4(1)3) 1

K 0 v
—Plnﬁ <2ﬂAQ+_> — P]— — f—mCOS(]s7
K=+ wy wo wo wo

(11c)

where ¢ = ¢ — oyt (the detuning oy is assumed small),
Q:wo—@P():a)o—Aa)o, (12)
K

and

Kma
max X 11
[’n A(),A - j Ckej LO Jn 271k— B

k=—Kmax

where J,(z) is the Bessel function of order n.

The term Aw, represents a small mechanical frequency
correction due to the averaged heating of the micromechanical
mirror vibrating with an amplitude A;. As will be shown in
Sec. V, this correction accounts for the dominant part of the
resonance frequency shift measured in our experiments.

D. Small amplitude oscillations

The evolution equations (11) can be conveniently simplified
if the vibration amplitude of the micromechanical mirror is
small compared to the optical resonance width parameter I'.
In this case,

IO 07}
0s = Q_g <l)+7>, (133.)
and
Ay = —yAy — A3 — In g, (13b)
4 w
; q fm
A9 = —(00 + Aw)Ars + ZA - —c s¢, (13c)
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where the subscript s denotes small amplitude oscillations,
Iy = I(x = 0), and where

Aa)()s = ﬁI(), (148.)
K
Qs = wy — Awgy, (14b)
w [O) % ’
Y 2Q+nK2+wg<ﬁ 03+2w0> 0 (14¢)
Aws = Awgy
v nK 0 ,
— Ags + — ) | I, (14d
+[2w0+/<2+w5 (ﬁ 0 +2w0>} 0, (14d)
and
3 8
P03+ 8ep %, (15a)
2c k2 + 4w}
_ ”
r_,317K2+4 51y - (15b)

Note that a prime denotes differentiation with respect to x, i.e.,
I} =dI(x =0)/dx.

The evolution equations (13) describe a Duffing-type non-
linear oscillator with nonlinear damping [34,42]. Interestingly
enough, the sign of the nonlinearities depends on the sign of
the second derivative of I, with respect to x. For example,
Eq. (15a) predicts that the system should exhibit hardening
behavior near the maximum of the optical resonance (more
precisely, in the region where I <0, i.e., |xo| < I'/2V/3),
and softening behavior otherwise. This effect is experimentally
illustrated in Sec. V for both types of micromechanical mirrors
studied.

Another interesting effect that depends on the optical
detuning x( of the micromechanical mirror is the change in
the effective linear damping coefficient y as function of I,
which is evident from Eq. (14c). From the experimental point
of view, it is convenient to introduce the effective quality factor
as

1 2y
Qeff Q.v ’

We expect an increase in 1/ Q¢ as compared to the purely
mechanical value 1/Q in the region in which I > 0 (xo > 0),
corresponding to the mode “cooling” effect [3,9,22,43], and,
conversely, decrease in the effective dissipation for the values
of xg at which /j < 0, i.e., xo < 0. In this region, the effective
dissipation may become arbitrarily small and even change
sign, resulting in a Hopf bifurcation followed by possible self-
excited limit cycle oscillations [27,44].

(16)

E. Self-excited oscillations

Self-excited oscillations may occur in a system described
by Egs. (11) if a stable limit cycle [44,45] exists in the absence
of external excitation. In other words, a nonzero solution of
the following equation, together with Eq. (11a), is required:

+P &<2,3A +i)—0 (17)
177,{2_“02 0 o0 .
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Again, we refer the reader to Ref. [27] for a full analysis of
different bifurcations and limit cycle types that may appear
in systems under study. In our experiments, a single stable
limit cycle is observed, appearing beyond the threshold of
a supercritical Hopf bifurcation. As expected, the region in
which the system develops self-excited oscillations coincides
with the region of negative effective linear dissipation, i.e.,
y < 0 [see Eq. (14¢)], in which the zero amplitude solution
A = 0 is unstable.

For a given nonzero oscillation amplitude A, the oscillation
frequency correction is given by Eq. (11c¢):

K
=1—-Awy — Pfn——m—
¢ { 0 2ﬂﬂK2+4w(2)

H[ d @ﬁA+—0)+U}}r
A 77I(2—i-a)(% 0 wo wo

IV. PARAMETER EVALUATION

The environment temperature in our experiments is
To = 77 K. Using a weighted averaging of the values for gold
[46,47], palladium [48], and aluminum [49-51], we estimate
the values of the density p, the mass-specific heat capacity
C,,, and the thermal conductivity k for both mirror materials at
77 K. These values are given in Table 1.

We now turn to evaluate the physical parameters, which
are defined in the previous section. As an example, we use a
rectangular Aug gsPdg s mirror, the dimensions of which are
given in Fig. 1.

We take the effective mass of the micromechanical res-
onator to be the mass of the mirror (the mass of the suspension
beams is neglected). Using the mirror’s dimensions and the
density value derived above, we find that m ~ 20ng. The
effective thermal relaxation rate « can be evaluated as follows:

_4300nmx5um k

K = =39 x
212 pm

1
103-.
mCp, S
The high reflectivity of the micromechanical mirror allows
us to neglect any absorption when estimating the radiation
pressure coefficient, resulting in

2 N
v=— =339——.
mc kgW

These values and their counterparts for the aluminum doubly
clamped beam mirror are summarized in Table II.

TABLE I. The density p, the mass-specific heat capacity C,,, and
the thermal conductivity k of the mirror materials (Aug gsPdo 15 and
Al) at 77 K [46-51].

Property (units) Aug g5Pdo 15 Al
o(X%) 18 x 10° 2.7 x 10°
Cm (kgiK) 100 340
() 250 0
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TABLE II. Values of the model parameters used in comparison
between the measured results and the theoretical predictions. Results
for three different samples are reported, two AuPd rectangular mirrors
(Samples I and II) and Al doubly clamped beam (Sample III). An
example of calculating the mass m, the radiation pressure coefficient
v, and the thermal relaxation rate « is given in Sec. IV. The mechanical
resonance frequency wy and the mechanical quality factor Q of
each micromechanical mirror are measured independently using very
low incident optical power, at which the optomechanical effects are
negligible. Finally, the values of the radiation absorption coefficient
n, the thermal frequency shift coefficient 8, and the thermal force
coefficient 0 are chosen to yield the best fit between the predictions
of the model described in Sec. I1I and the experimental measurements.
It is important to note that the empirical values of 1 and B fall
well inside the limits estimated from independent measurements and
results reported in previous studies (see Sec. V for more details).

Parameter (units) Sample I Sample 11 Sample 11T

Material Aug gsPdg 15 Aug gsPdy 15 Al

m (ng) 20 20 6.8

v (kglw) 339 339 988

K (%) 3.9 x 10° 3.9 x10° 1.9 x 10°

wo/2m (kHz) 160.088 148.495 61.25

0 243 x 109 0.68 x 10° 1.3 x 10°
K 6 6 6

n (%) 7.9 x 10 7.9 x 10 1.3 x 10

B (%) 10.1 x 10° 9.3 x 10° 108 x 10

0 (%) 7.4 x 107 7.4 x 107 3.5 x 10

V. RESULTS AND DISCUSSION

Here, we present a comparison between the experimental
behavior of three different micromechanical mirrors and the
theoretical predictions given in Sec. III. In order to facilitate
readability, the values of all the parameters used in the theo-
retical model described in Sec. III are summarized in Table II.
This table summarizes the main mechanical parameters of
the three mirrors, which are measured independently (wy and
0), and shows the values of other parameters (n and B),
the values of which can be estimated from general physical
considerations, but their exact values’ determination requires
comparison between experiment and theory.

In order to estimate the value of the effective radiation ab-
sorption coefficient 1, the reflectivity of the micromechanical
mirror must be known. In the literature, experimental values
between 98% and 99% are given for gold [52,53], and ~97%
for aluminum [50]. We find that an empirical value of 98.4%
fits our experimental results for AuPd mirrors and 97% for Al
mirror. It follows that, for AuPd mirrors,

_1-0984

=79 x

K
10°—.
g ]

mCp,

The estimation of the thermal frequency shift coefficient

B is not straightforward. The order of magnitude can be
estimated by measuring the mechanical resonance frequency
of the mirror at room temperature and at 77 K. For example, for
AuPd mirror (Sample I), the resonance frequency values are
106 and 160 kHz, respectively, resulting in 8 ~ 0.012w,/1 K.
However, in order to give an accurate estimation of § for
small temperature changes around 77 K (or any other ambient
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temperature), one would require preexisting knowledge of
the tension inside the sample, the exact relation between
the tension and the mechanical resonance frequency, and,
most importantly, the exact temperature distribution inside the
sample due to nonuniform heating by a focused laser beam.
These data are not readily available from our measurements.
Therefore, we treat 8 as one of the fitting parameters. The best
fit is achieved for

001wy

p IK

d
=10.1 x 10° =,
sK

which is remarkably similar to the value estimated above.

Although the majority of the parameters defined in Sec. III
can be evaluated using general physical considerations or
direct measurements, 6 is not easily determined because the
underlying physical processes responsible for the appearance
of the thermal force Fy, are not well identified. Therefore,
we derive the values of 6 from experiment. The best fits are
achieved for 6 values shown in Table II.

By estimating the ratio % ~ 103, it follows from
Egs. (11) that the radiation pressure effects in our system are
negligible compared to the effects of the thermal force Fi,.
Furthermore, the relative importance of a term proportional
to BAp as compared to a term proportional to 6/2wg in the
right-hand side of Egs. (11), (13a), and (14) can be estimated
for our devices. Taking into account the above assumption
that Awy < wy, we find from Eqgs. (13a) and (14b) that
% A 2%? < 1. This inequality can be shown to be valid
in the case of finite oscillation amplitudes as well.

A. Optical resonance cavity

In our experiments, we tune the optical wavelength to
a value at which the reflection from the cavity becomes
virtually zero at the resonance, a condition known as critical
coupling. In general, this critical coupling wavelength is at
the edge of the Bragg region, where the FBG reflectivity
changes from almost zero to almost unity. For example, the
optical wavelength used for measurements of square AuPd
micromechanical mirrors is 1548.83 nm. It follows that the
distance between the subsequent minimums in the reflection
Rc¢ [or, conversely, peaks in /(x)] is L = 774.4 nm, allowing
us to calibrate the vertical displacement of the fiber at any
temperature. A typical finesse of the cavity is between 6
and 11, i.e., 70nm < I < 140 nm. In general, each time the
cavity is optically tuned by realignment of the fiber, a slightly
different finesse can be expected due to inaccuracies in the
fiber positioning.

Instantaneous changes in the micromechanical beam dis-
placement x cause changes in the reflected power according
to Eq. (2). The signal at the output of the photodetector can be
translated into actual displacement values using the calibration
discussed above. An example of the reflected optical power
versus the optical cavity detuning xo, together with sample time
traces of mirror oscillatory movement, is shown in Fig. 2. It is
evident from this figure that the theory presented in Sec. IIT A
provides a good analytical description of the experimental
measurements of the optical cavity behavior.
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FIG. 2. (Color online) Optical reflection in the vicinity of an
optical resonance. The incident optical power is Ipymp = 3 uW. Blue
circles denote the measured reflected power. the Solid black line
denotes theoretical reflection values [see Eq. (2)]. The dashed red
line represents the theoretical values of the optical power /; incident
on the micromechanical mirror [see Eq. (3)]. In this case, I' =
134.5 nm, and the finesse is 5.8. In the inset, two time domain traces
of the photodetector output signal are presented, corresponding to a
steady oscillation of the micromechanical mirror with a large (thin
black line) and a small (bold blue line) amplitude.

B. Linear damping

We begin our experimental study with investigation of what
is arguably the most important prediction of the theoretical
model: the possibility of a significant change in the effective
dissipation in the vicinity of an optical resonance. In order to
measure the effective quality factor Q¢ defined in Eq. (16)
at different optical powers Ipump and cavity detunings xo, we
capacitively excite the micromechanical mirror at its apparent
resonance frequency for a short period of time, and then
allow the system to decay freely to the zero amplitude steady
state. During this free ring down process, the slow envelope
of the mechanical oscillations is measured by means of a
lock-in amplifier. The resulting slow envelope is fitted to an
exponential decay function proportional to e "7, providing an
estimate of the linear dissipation constant. It is important to
keep the vibration amplitude small compared to I', so the
nonlinearities introduced by the detection system and the
optomechanical coupling [see Eqs. (15)] remain negligible.
The estimated uncertainty in the measured results is 5%.

The results presented in Fig. 3 show a good match between
the experimental values of Q. and the theoretical predictions.
The measurement was done at 77 K using Sample I (see
Table II).

C. Nonlinear stiffness and damping effects

The nonlinear effects described in Egs. (15) have been
observed in all our samples. Here, we present the small
amplitude frequency response of Samples II and III (see
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FIG. 3. (Color online) Changes in the effective quality factor
Q.ir [see Eq. (16)] as a function of the optical detuning x, and
the optical power incident on the cavity Joump. Panel (a) shows the
theoretical value of Q/Q.i, whereas panel (b) shows the measured
data. In the case of a rectangular AuPd mirror presented here,
wo = 21 x 160.088kHz, Q = 2.43 x 10°, and the cavity finesse is
7.3. Panels (¢), (d), and (e) show cross sections of the top color maps at
different values of Ipymp. Blue dots represent the experimental values
of Q/Q.i, while solid black lines represent the theoretical values.
The values of all system parameters used in the fit are similar to those
given in Sec. IV. The temperature is 77 K. The estimated uncertainty
in the measured results is 5%.

Table II), taken at different cavity detuning values. It follows
from the discussion in Sec. III D that the elastic nonlinearity co-
efficient ¢ should change sign at xo = #I"/2+/3 = 40.289T.
Outside this region, the system is expected to behave as a
softening Duffing-type oscillator, while in the region around
the optical resonance, the behavior should be hardening. The
experimental results presented in Fig. 4 confirm this prediction.
In addition to the experimental results, theoretical results are
shown, which correspond to the best fitting values of the
external excitation amplitude f,,.

It should be noted that, in order to achieve the best corre-
spondence between the theoretical and experimental results for
Sample I in Fig. 4, it was necessary to choose a larger value for
the thermal frequency shift coefficient 8 than the one noted in
Table II, namely, 8 = 0.05w0/1K = 4.8 x 10*rad/s K. This
can be attributed to the limited accuracy of the assumed linear
dependence of the mechanical resonance frequency on the
temperature [see Eq. (6)]. This topic is further discussed in
Sec. V in Ref. [27].

In general, nonlinear elastic and dissipative effects in
micromechanical systems can have a non-negligible impact
on the dynamics of these systems [33,34,42,54,55]. In the
theoretical treatment in Ref. [27], the nonlinear effects that
do not stem from optomechanical coupling are described by
the cubic nonlinearity coefficients o3 and y3 [see Eq. (7) in
Ref. [27]]. However, the experimental results show that, in our
samples, the nonlinearities introduced by the optomechanical
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FIG. 4. (Color online) Changes in the small amplitude nonlinear
behavior as a function of the optical detuning xy. It follows from
Egs. (15) that the micromechanical mirror should exhibit hardening
(g > 0) behavior [42] in the region |xo| < I'/2+/3 = 0.289T", and
softening behavior outside this region. This effect is illustrated for two
different samples. (a), (b) AuPd rectangular mirror measurements.
(c), (d) Al doubly clamped beam mirror measurements. In both
cases, the micromechanical mirrors are excited capacitively and
the frequency response is measured when sweeping the excitation
frequency up (red dots) and down (blue diamonds). As expected,
the frequency responses (a) and (c), for which xy > I'/ 24/3, exhibit
softening elastic nonlinearity, while the frequency responses (b) and
(d), corresponding to xo < I'/24/3, show hardening. In addition,
the theoretical results are shown (black solid lines). The values of
all the system parameters used in the fit are similar to those given
in Sec. IV, except for B = 4.8 x 10*rad/s K for the Sample I Au
mirror (see text for more details). The optical power incident on the
cavity and the external excitation amplitudes are lyump = 14 ©W and
fm = 0.16 N/kg for AuPd rectangular mirror, and Ipym, = 2.5 uW
and f,, =7 x 1073 N/kg for Al doubly clamped beam mirror,
respectively.

coupling are much stronger than any preexisting nonlinear
effects, at least at relatively high optical powers.

D. Self-excited oscillations

All the samples used in our experiments exhibit the
phenomenon of self-sustained oscillations (i.e., stable limit
cycle) above a certain threshold of the incident optical power.
As expected, these self-oscillations always occur when xp < 0,
i.e., in the region in which Ié < 0. The onset of the self-
oscillation can be predicted by calculating the effective linear
dissipation coefficient y given in Eq. (14c). Self-oscillations
occur when y becomes negative. The amplitude and the
frequency of the stable limit cycle can be found by solving
Egs. (17) and (18), respectively.

A comparison between the experimentally measured self-
oscillation amplitudes of Sample I (see Table II) and the
corresponding solutions of Eq. (17) is shown in Fig. 5.
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FIG. 5. (Color online) The self-oscillation amplitude A;c as a
function of the optical detuning x¢ and optical power incident on
the cavity I,mp. Panel (a) shows theoretically predicted amplitude
values, whereas panel (b) shows measured data. The color represents
the value A c/I". The dashed bold green line in the experimental
color map (b) represents the theoretical threshold of self-oscillations.
In the case of a rectangular AuPd mirror presented here, wy = 27 x
160.088kHz, Q = 2.43 x 10°, and the cavity finesse is 5.9. Panels
(¢), (d), and (e) show cross sections of the top color maps at different
values of Iym,. Blue dots represent the experimental values of Ay ¢/ T,
while solid black lines represent the theoretical values. The values of
all the system parameters used in the fit are similar to those given in
Sec. IV. The temperature is 77 K. The estimated uncertainty in the
measured results is 8§%.

The estimated uncertainty in the measured results is 8%. A
reasonable correspondence between the theoretical values of
the limit cycle amplitude and the experimentally obtained
values is found. In addition, the experimental threshold of the
self-excited oscillations is found to fit well with the theoretical
prediction.

It should be emphasized that the theoretical predictions
presented in Figs. 3 and 5 are both based on the same
set of physical parameters presented in Sec. IV and on the
mechanical properties of Sample I, given in Table II, and
differ only in the value of I", which changes between different
experiments, as explained above. It follows, therefore, that
the theoretical model presented here can successfully describe
both small vibration behavior and self-oscillations with large
amplitudes. The parameters extracted from experiments in
one of these two modes of operation can be used to predict the
dynamics of the system in the other mode.

While the theoretical predictions shown in Fig. 5 are very
reasonable, a hysteresis phenomenon exists in the experimental
system, which can not be explained by the model described
above. The data presented in Fig. 5 were taken while sweeping
the optical power from low to high values for a fixed value of
xo. However, when the optical power is swept in the opposite
direction, i.e., from high to low, the self-oscillations disappear
at lower values of I,,x. The difference in the threshold optical
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power can be as large as 30%. It should be mentioned that
a theoretical analysis of this specific system with parameters
derived in Sec. IV does not predict other stable limit cycles,
although multiple stable limit cycles [2,19,24], as well as
subcritical Hopf bifurcations [27] are possible in systems
of this type. In the system considered, the hysteresis can be
possibly attributed to changes in the heating pattern and the
temperature distribution in the vibrating mirror, which can
not be captured by a model with a single degree of freedom
used in our analysis. A multimode continuum mechanics
analysis of the investigated optomechanical system may
provide additional insight into this hysteresis phenomenon.

It remains to determine whether the theoretical frequency
shift correctly predicts the corresponding experimental results
both in the case of small vibrations [see Eq. (14d)] and in
the case of self-excited oscillations [see Eq. (18)]. To this
end, we employ Sample II (see Table II) and measure the
spectral power density of the reflected light at the vicinity of
the sample’s mechanical resonance frequency 148.495 kHz.
In this experiment, the sample is not excited externally. The
incident optical power is tuned so the system is expected to
develop self-oscillations at some region of negative optical
detunings xo. For other values of xj, thermal vibrations
manifest themselves as a thermal peak, the frequency of which
is shifted by —Aw, from wy. By taking the spectrum traces
at different values of xy, we are able to measure both the
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FIG. 6. (Color online) Spectral power density of the reflected
optical power as a function of frequency and optical detuning xo.
The mechanical resonance frequency is 148.495 kHz. The incident
optical power is Ipymp = 140 uW. The color represents the spectral
power density in arbitrary logarithmic units. The region in which self-
oscillations occur is denoted by dashed red lines. The thermal motion
peak can be readily recognized outside this region. The abundance
of additional peaks in the self-excited oscillations domain may be
attributed to the nonlinearity of the detection system and to mixing
between higher mechanical modes. In the inset, the experimental
values of frequency shift (blue circles) both for thermal peak and for
self-oscillations are plotted together with the theoretical predictions
(solid black line) given by Eqgs. (14d) and (18).
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frequency of the small oscillations (i.e., the frequency of the
thermal peak) and the self-oscillation frequency.

The experimental results together with theoretically pre-
dicted frequency shift values are presented in Fig. 6. Both the
frequency of the self-excited oscillations and the frequency of
the thermal motion peak are presented and compared to the
theoretical prediction of the thermal frequency shift. A very
reasonable fit between theory and experiment is seen in this
figure. Interestingly enough, the thermal frequency correction
Awyp [see Eq. (12)] constitutes at least 98% of the frequency
shift in the entire measured region.

VI. SUMMARY

In this work, we experimentally investigate the dynamics
of a metallic micromechanical mirror, which is one of the
two mirrors that form an optical resonance cavity. The
other, static mirror is implemented as a fiber Bragg grating.
This unique design allows one to tune the optical cavity
operating conditions to the critical coupling domain simply
by controlling the wavelength of the incident light.

The finesse of our experimental optical cavities is of order
10. Therefore, all optical retardation effects can be neglected,
and only thermal retardation can play a significant role in the
dynamics of the micromechanical mirror. A theoretical model
describing such a system was developed in Ref. [27]. Here,
the main results are stated, both for small amplitude forced
oscillations and for self-sustained oscillations.

Theory predicts that coupling of the micromechanical os-
cillator to an optical cavity will result in changes in its effective
linear dissipation, nonlinear elastic and dissipation constants,
and the mechanical resonance frequency. Stable limit cycles
(i.e., self-sustained oscillations) will occur if the effective
linear dissipation becomes negative. In addition, multiple limit
cycles may be present under certain conditions. Two main
optomechanical coupling mechanisms are postulated, both

PHYSICAL REVIEW E 84, 046605 (2011)

intermediated by heating. The first is mechanical frequency
change due to heating, the other is a direct force that is a
function of the temperature difference between the mirror and
the environment (thermal force). The radiation pressure force
is shown to be negligible in our experiments.

In this paper, all the theoretical predictions mentioned above
are validated by the means of micromechanical mirrors with
two very different geometries (rectangular mirror with four
orthogonal suspensions and a wide doubly clamped beam).
The majority of the physical parameters are derived either
from general considerations or independent measurements.
A very reasonable quantitative agreement between the linear
dissipation changes, the self-oscillation amplitudes, and the
frequency shifts are achieved. In addition, the theoretically
predicted changes in nonlinear behavior are demonstrated for
both mirror configurations.

Despite the general success of the theoretical predictions
of the experimental data, it is evident that a simple single
degree of freedom model can not explain some of the observed
phenomena, most importantly the exact process that gives
rise to the thermal force. Another unexplained phenomenon
is the optical power threshold hysteresis occurring in the
self-oscillation measurements. Both effects can be possibly
attributed to localized changes in heating and temperature
distribution, and continuum mechanics approach is required
in order to model them correctly.
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