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Propagation of elliptic-Gaussian beams in strongly nonlocal nonlinear media
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The propagation of the elliptic-Gaussian beams is studied in strongly nonlocal nonlinear media. The elliptic-
Gaussian beams and elliptic-Gaussian vortex beams are obtained analytically and numerically. The patterns of
the elegant Ince-Gaussian and the generalized Ince-Gaussian beams are varied periodically when the input power
is equal to the critical power. The stability is verified by perturbing the initial beam by noise. By simulating the
propagation of the elliptic-Gaussian beams in liquid crystal, we find that when the mode order is not big enough,
there exists the quasi-elliptic-Gaussian soliton states.
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I. INTRODUCTION

Recently, paraxial optical beams with elliptic geometry,
such as standard Ince-Gaussian [1–7], elegant Ince-Gaussian
[8], generalized Ince-Gaussian [9], and elliptic [10] beams,
which are solutions of the paraxial wave equation in elliptic
coordinates, have attracted much attention. The propagation of
the optical beams satisfies the nonlocal nonlinear Schrödinger
equation [11,12] in the nonlocal nonlinear media. Snyder and
Mitchell [11] reduced the nonlocal nonlinear Schrödinger
equation (NNLSE) to a linear model named the Snyder-
Mitchell model [13] in the strongly nonlocal nonlinear media
in 1997. Since then, various types of spatial solitons in highly
nonlocal media [14–30] have been studied.

Ince-Gaussian solitons and breathers [17–19] have been
studied in strongly nonlocal nonlinear media [11]. Elliptical
solitons have also been observed experimentally not only in
nonconventionally biased photorefractive crystals [31] but also
in nonlinear media with thermal-induced nonlocality [32].
Elliptical solitons in Kerr media have been reported [33,34].
However, the elegant Ince-Gaussian and generalized Ince-
Gaussian beams whose patterns are varied periodically have
not been explored in nonlinear media.

In this paper, we present a general class of beams called
elliptic-Gaussian beams in elliptic coordinates in strongly
nonlocal nonlinear media. The Ince-Gaussian solitons and
breathers, the elegant Ince-Gaussian, and generalized Ince-
Gaussian beams are the special cases of elliptic-Gaussian
beams when the distribution factor is taken for some particular
values. When the ellipticity parameter tends to infinity or
to zero, the elliptic-Gaussian beams change into the self-
trapped Cartesian [20] and circular beams [21], respectively.
The analytical elliptic-Gaussian beam and elliptic-Gaussian
vortex beam solutions of the Snyder-Mitchell model agree
well with numerical simulations of the nonlocal nonlinear
Schrödinger equation in the case of strong nonlocality. By
simulating the propagation of the elliptic-Gaussian beams in
the nematic liquid crystal, it is not difficult to find that the
quasi-elliptic-Gaussian soliton states can be obtained when
the mode order is not big enough.

*Author to whom correspondence should be addressed:
guoq@scnu.edu.cn

II. ELLIPTIC-GAUSSIAN BEAMS OF THE SIMPLIFIED
MODEL FOR THE NNLSE

The evolution of the (1 + 2)-dimensional optical beams in
the nonlocal cubic nonlinear media can be described by the
nonlocal nonlinear Schrödinger equation [22,23]:
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� + k

�n

n0
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where z is the propagation coordinate, μ = 1/(2k), k = ωn0/c

is the wave number in the media without nonlinearity, n0

denotes the linear refractive index of the media, �n =
n2

∫∫ ∞
−∞ R(r − r1)|�(r1,z)|2d2r1 is the nonlinear perturbation

of the refraction index, n2 is the nonlinear index coefficient, r
and r1 are the two-dimensional transverse coordinate vectors,
and R is the normalized symmetrical real nonlinear response
function of the media.

In the case of strong nonlocality [11], i.e., when the
nonlocal response function is much wider than the beam itself
[11,24–26], Eq. (1) simplifies into
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where r = |r| is the radial coordinate, γ is the material
parameter associated with the response function R(r), and
P0 is the input power at z = 0. Equation (2) describes the
evolution of an optical beam trapped in an effective waveguide
structure with the profile given by the nonlocal response
function [11,24,25]. Suppose the solution to Eq. (2) can be
expressed in terms of

� = Z(z)F (u,v)ϕG(r,z), (3)

where u = x/[
√

iχ (z)], v = y/[
√

iχ (z)], and (u,v) are scaled
Cartesian coordinates, χ (z) is a z-dependent scaling factor
to be determined, ϕG = √

P0exp[iθ (z)]/[
√

πw(z)]exp{−r2/

[2w2(z)] + ic(z)r2}, where w(z) is the beam width of
the Gaussian beam, c(z) represents the phase-front
curvature of the beam, and θ (z) is the phase of
the complex amplitude. They are given by [27,28],
respectively, w(z) = w0 (Pc/P0 sin2 β0z + cos2 β0z)1/2,

c(z) = kβ0w
2
0(Pc/P0 − 1) sin 2β0z/[4w2(z)], and θ (z) =

− arctan(
√

Pc/P0 tan β0z), where w0 is the initial beam width
at z = 0, Pc = n0/(k2γ n2w

4
0) is the critical power for the

soliton propagation, and β0 = √
n2γP0/n0. Substituting
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Eq. (3) into Eq. (2), we obtain the following three differential
equations:

dχ2

dz
− 4μχ2

[
i

w2(z)
+ 2c(z)

]
+ 2iμ = 0, (4)

1
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∇2
u,vF −
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where ∇2
u,v = ∂2/∂u2 + ∂2/∂v2 and ν is a complex sep-

arate constant. The solution of Eq. (4) can be expressed
as χ2 = 1

2w2(z)exp[−2iθ (z)]{exp[2iθ (z)] + C1}, where C1

is an integral constant. The solution of Eq. (5) is
Z(z) = Z(0){exp[2iθ (z)] + C1}(iν−1)/2, where Z(0) = (1 +
C1)−(iν−1)/2. Introduce the elliptic coordinate system in
the transverse plane perpendicular to z, where the elliptic
coordinate [1,35,36] is defined u = √

2ε cosh ξ cos ζ , v =√
2ε sinh ξ sin ζ , and z = z, ξ and ζ are complex in order

to satisfy the requirement that the Cartesian coordinates (x,y)
remain real in the entire space, and ε is the complex ellipticity
parameter. Assuming F (ξ,ζ ) = M(ξ )N (ζ ), Eq. (6) transforms
into the Ince equations with complex coefficients [37]

d2N

dζ 2
+ ε sin 2ζ

dN

dζ
+ [a − ε(iν − 1) cos 2ζ ]N = 0, (7)

d2M

dξ 2
− ε sinh 2ξ

dM

dξ
− [a − ε(iν − 1) cosh 2ξ ]M = 0,

(8)

where a is a separation constant. Letting ζ = iξ , Eq. (7) can
be transformed into Eq. (8) and vice verse. The solutions of
Eq. (7) are given as the generalized Ince function C(σ,m)

ν (ζ,ε)
with degree m = 0,1,2, . . ., parity σ = {e, o}. Rearranging the
products of functions of the same parity in ζ and ξ , the general
expressions of the even and odd elliptic-Gaussian beams can
be expressed as

�(σ,m)
ν (r,ξ,ζ,ε,z)

= (1 + C1)−(iν−1)/2{exp[2iθ (z)] + C1}(iν−1)/2

× c(σ,m)
ν

w0
C(σ,m)

ν (iξ,ε)C(σ,m)
ν (ζ,ε)ϕG(r,z), (9)

where c(σ,m)
ν is the normalization constant, which can be

obtained by
∫∫ ∞

−∞ |�(σ,m)
ν |2dS = P0, where dS is the area

differential element across the transverse plane. Equation (9)
is the exact solution of Eq. (2). Equation (9) shows that
the shape of the even and odd elliptic-Gaussian beams is
described by four parameters: ν and m denote a complex
continuous radial order and an integer angular mode number,
respectively, ε is the arbitrarily complex elliptic parameter
that determines the ellipticity of the elliptic-Gaussian beams,
and the parameter C1 is the distribution factor that controls
the physical size of the beam. When ν = −i(p + 1) and p =
0,1,2, . . ., Eq. (9) simplifies into elegant Ince-Gaussian beams
if C1 = 1, Ince-Gaussian beams, which have been presented
in Ref. [19], if C1 = 0, and generalized Ince-Gaussian beams
if C1 �= 0,1. For the case of ν �= −i(p + 1), Imν must be less
than zero so that the even and odd elliptic-Gaussian beams are
square integrable. The transition from the elliptic-Gaussian

FIG. 1. (Color online) Normalized intensity distribution of the
even (3,1)-mode elliptic-Gaussian beams vs x/w0 and y/w0 in the
different z planes given at the top. The parameters are chosen as p =
3, m = 1, P0/Pc = 1, ε = 2, zR = kw2

0 is the Rayleigh range,
and (a)–(e) C1 = 0.0, (f)–(j) C1 = 0.5, (k)–(o) C1 = 1.0, and (p)–(t)
C1 = 2.0.

beams to self-trapped circular beams happens as the elliptical
coordinates tend to the cylindrical coordinates, i.e., as ε → 0.
On the other hand, the transition from elliptic-Gaussian beams
to self-trapped Cartesian beams occurs when ε → ∞.

Equation (9) is a more general family of the solution
presented in Ref. [19], i.e., the solution presented in Ref. [19]
is the special case of the solution (9) for ν = −i(p + 1) (where
p = 0,1,2, . . .) and C1 = 0. By observing some particular
intensity profiles, we can expect that they be distinguished
in experiment; e.g., when P0 = Pc, the patterns of the beams
vary periodically due to the distribution factor C1 �= 0, and the
patterns of the elliptic-Gaussian solitons (C1 = 0) are stable
during propagation.

Figures 1 and 2 show the normalized intensity distribution
of the even and odd (3,1)-mode elliptic-Gaussian beams versus
x/w0 and y/w0. The even and odd elliptic-Gaussian beams
are solitons when P0/Pc = 1 and C1 = 0 and are periodic
breathers with the period πzR when C1 �= 0.

III. ELLIPTIC-GAUSSIAN VORTEX BEAMS
OF THE SIMPLIFIED MODEL FOR THE NNLSE

The elliptic-Gaussian vortex beams can be constructed by
combining the even- and odd-mode elliptic-Gaussian beams,

�±,m
ν = 1√

2

[
�(e,m)

ν ± i�(o,m)
ν

]
. (10)

The elliptic-Gaussian vortex beams are the continuous transi-
tion modes between the self-trapped Cartesian vortex beams
and the self-trapped circular vortex beams when the elliptic
parameter ε changes continuously. Figure 3 presents the nor-
malized intensity distribution of the elliptic-Gaussian vortex
beams versus x/w0 and y/w0. When P0/Pc = 1 and C1 = 0,
the elliptic-Gaussian vortex beams propagate stably and are
vortex solitons; in the case of C1 �= 0, the elliptic-Gaussian
vortex beams vary with the period πzR during propagation
and become a periodic vortex breather.
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FIG. 2. (Color online) Normalized intensity distribution of the
odd (3,1)-mode elliptic-Gaussian beams vs x/w0 and y/w0 in the
different z planes given at the top. The parameters are the same as
those in Fig. 1.

The beam diffraction initially overcomes the beam-induced
refraction, and the beam initially gets broad as P0 < Pc, while
the beam initially becomes narrow for P0 > Pc; when P0 =
Pc, the beam diffraction initially equals the beam-induced
refraction, and the patterns of the beams vary periodically due
to the distribution factor C1 �= 0. These are elliptic breathers
or elliptic vortex breathers whose widths vibrate or whose
patterns vary periodically as they travel in the straight path
along the z axis. When P0 = Pc and C1 = 0, diffraction is
exactly balanced by nonlinearity, and these are elliptic solitons
or elliptic vortex solitons that preserve their widths and patterns
during propagation.
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FIG. 3. (Color online) Normalized intensity distribution of the
(3,1)-mode elliptic-Gaussian vortex beams vs x/w0 and y/w0 in the
different z planes given at the top. The parameters are the same as
those in Fig. 1.
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FIG. 4. (Color online) Propagation of the elliptic-Gaussian vortex
beams in strongly nonlocal nonlinear media with the Gaussian-shaped
response for (a) x/w0 = 0 and (b) y/w0 = 0. The degree of the
material nonlocality is α = 0.01. The solid line and the dotted line
are the numerical solution and the analytical solution, respectively.
The parameters are the same as those in Fig. 1(f).

IV. COMPARISON OF THE EXACT ANALYTICAL
SOLUTIONS WITH THE EXACT NUMERICAL ONES

Figure 4 shows the comparison of the exact analytical
self-trapped elliptic-Gaussian vortex beam solutions for the
Snyder-Mitchell model with the exact results of the numerical
simulation of Eq. (1) in strongly nonlocal nonlinear media.
It is not difficult to find from Fig. 4 that the analytical
solutions agree well with the numerical simulations for the
case of strong nonlocality. To simulate the propagation, we
use the input elliptic-Gaussian vortex beam parameters and
suppose the material response to be the Gaussian function
[12,24,27,29,30], i.e., R(r) = 1/(2πw2

m)exp[−r2/(2w2
m)],

where wm is the characteristic length of the material response
function and α = w0/wm is the degree of the material
nonlocality, for numerical simulations.

We simulate the propagation of the elliptic-Gaussian beams
in a nematic liquid crystal when the material response is
assumed to be the zeroth order modified Bessel function of
the second kind response material [38–40], i.e., R(x,y) =
1/(2πw2

m)K0(
√

x2 + y2/wm). Figure 5 shows the propagation
dynamics of the even (3,1)-mode elliptic-Gaussian beams
[Figs. 5(a)–5(j)], the odd (3,1)-mode elliptic-Gaussian beams
[Figs. 5(k)–(t)], and the (3,1)-mode elliptic-Gaussian vortex
beams in the zeroth order modified Bessel function of the
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FIG. 5. (Color online) Propagation dynamics
of (a)–(j) the even (3,1)-mode elliptic-Gaussian
beams, (k)–(t) the odd (3,1)-mode elliptic-Gaussian
beams, and (u)–(y) the (3,1)-mode elliptic-Gaussian
vortex beams in the zeroth order modified Bessel
function of the second kind response material
(liquid crystal). The parameters are the same as
those in Fig. 1, except C1 = 0.0 in (a)–(e), (k)–(o),
and (u)–(y) and C1 = 0.5 in (f)–(j) and (p)–(t).

second kind response material [liquid crystal; Figs. 5(u)–5(y)]
with C1 = 0.0 in Figs. 5(a)–5(e), 5(k)–5(o), and 5(u)–5(y) and
C1 = 0.5 in Figs. 5(f)–5(j) and 5(p)–5(t). It is easy to find from
Fig. 5 that the even (3,1)-mode elliptic-Gaussian beams remain
almost stable and become the quasi-elliptic-Gaussian solitons;
however, the patterns of the odd (3,1)-mode elliptic-Gaussian
beams and the (3,1)-mode elliptic-Gaussian vortex beams
change during propagation.

We present the stability analysis of the elliptic-Gaussian
beams and elliptic-Gaussian vortex beams by simulating the
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FIG. 6. (Color online) Propagation of the elliptic-Gaussian beams
and the elliptic-Gaussian vortex beams [(a)–(j) the even (3,1)-mode
elliptic-Gaussian beams, (k)–(t) the odd (3,1)-mode elliptic-Gaussian
beams, and (u)–(y) the (3,1)-mode elliptic-Gaussian vortex beams]
in strongly nonlocal nonlinear media with the Gaussian-shaped
response excited by an initial perturbation ς = 0.05. The parameters
are the same as those in Fig. 5, except the propagation distance
z = 162πzR .

output normalized intensity distribution of Eq. (1) excited
by an initial perturbation. The normalized initial condition is
supposed to be A0[�(r) + ςψ(r)], where A0 is the amplitude
of the elliptic-Gaussian beams and elliptic-Gaussian vortex
beams, �(r) is the z = 0 wave function of the elliptic-Gaussian
beams and elliptic-Gaussian vortex beams, ψ(r) is the random
complex function whose maximum amplitude is less than 1,
and ς denotes the perturbation parameter. Figure 6 shows the
propagation of the elliptic-Gaussian beams [Figs. 6(a)–6(j),
the even (3,1)-mode elliptic-Gaussian beams; Figs. 6(k)–6(t),
the odd (3,1)-mode elliptic-Gaussian beams] and the elliptic-
Gaussian vortex beams [Figs. 6(u)–6(y)] in strongly nonlocal
nonlinear media with the Gaussian-shaped response excited
by an initial perturbation ς = 0.05. The parameters are the
same as those in Fig. 5 except the propagation distance
z = 162πzR . The even (3,1)-mode elliptic-Gaussian beams,
the odd (3,1)-mode elliptic-Gaussian beams, and the elliptic-
Gaussian vortex beams with C1 = 0 propagate unchanged and
are stable, and the beam center of the elliptic-Gaussian vortex
beams moves during propagation; the even (3,1)-mode elliptic-
Gaussian beams with C1 = 0.5 experience periodic variation
and are quasistable, and the odd (3,1)-mode elliptic-Gaussian
beams with C1 = 0.5 experience strong variations of their
profile and are unstable, as is presented in Fig. 6. Stable soliton
propagation in numerical experiments where the initial beams
is perturbed by noise does not constitute a rigorous proof of
stability but does provide strong support for the existence of
observable nonlinear modes in laboratory experiments.

V. CONCLUSIONS

In conclusion, we have introduced a general class of elliptic-
Gaussian beams and elliptic-Gaussian vortex beams stabilized
by the strong nonlocal nonlinearity in elliptic coordinate. The
elliptic-Gaussian beams constitute the exact and continuous
transition modes between the self-trapped Cartesian and
circular beams. The comparisons of analytical solutions of
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the Snyder-Mitchell model with numerical simulations of the
nonlocal nonlinear Schrödinger equation show that the ana-
lytical elliptic-Gaussian beam solutions and elliptic-Gaussian
vortex beam solutions agree well with the numerical results
in the case of strong nonlocality. In the nematic liquid crystal,
the quasi-elliptic-Gaussian soliton states can be obtained.
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