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We investigate one- and two-dimensional radial domain-wall (DW) states in the system of two nonlinear-
Schrödinger (NLS) or Gross-Pitaevskii (GP) equations, which are couple by linear mixing and by nonlinear
XPM (cross-phase-modulation). The system has straightforward applications to two-component Bose-Einstein
condensates, and to bimodal light propagation in nonlinear optics. In the former case the two components represent
different hyperfine atomic states, while in the latter setting they correspond to orthogonal polarizations of light.
Conditions guaranteeing the stability of flat continuous wave (CW) asymmetric bimodal states are established,
followed by the study of families of the corresponding DW patterns. Approximate analytical solutions for the
DWs are found near the point of the symmetry-breaking bifurcation of the CW states. An exact DW solution
is produced for ratio 3:1 of the XPM and SPM (self-phase modulation) coefficients. The DWs between flat
asymmetric states, which are mirror images of each other, are completely stable, and all other species of the
DWs, with zero crossings in one or two components, are fully unstable. Interactions between two DWs are
considered too, and an effective potential accounting for the attraction between them is derived analytically.
Direct simulations demonstrate merger and annihilation of the interacting DWs. The analysis is extended for the
system including single- and double-peak external potentials. Generic solutions for trapped DWs are obtained
in a numerical form, and their stability is investigated. An exact stable solution is found for the DW trapped by
a single-peak potential. In the 2D geometry, stable two-component vortices are found, with topological charges
s = 1,2,3. Radial oscillations of annular DW-shaped pulsons, with s = 0,1,2, are studied too. A linear relation
between the period of the oscillations and the mean radius of the DW ring is derived analytically.
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I. INTRODUCTION

A ubiquitous type of topologically protected patterns in
binary (two-component) nonlinear systems is represented by
domain walls (DWs), alias “grain boundaries.” A commonly
known origin of DWs is in the theory of media with a vectorial
local-order parameter, such as magnetics [1], ferroelectrics [2],
and liquid crystals [3] . In systems described by binary wave
functions (at the fundamental or phenomenological level), the
DW represents a transient layer between semi-infinite domains
carrying different components, or distinct combinations of the
components.

A simple but physically significant example is a rectilin-
ear border between two regions occupied by spontaneously
emerging roll structures with different orientations. This is, for
instance, a generic defect observed in patterns on the surface of
thermal-convection layers [4–6]. The theoretical description of
such patterns is based on systems of coupled Ginzburg-Landau
equations, each equation governing a slowly varying amplitude
of a plane wave whose superposition forms the DW [7].
Formally similar systems of coupled nonlinear-Schrödinger
(NLS) equations and Gross-Pitaevskii (GP) equations de-
scribe, respectively, the copropagation of electromagnetic
waves with orthogonal polarizations in nonlinear optical
fibers [8] and binary mixtures of Bose-Einstein condensates
(BECs) in cigar-shaped traps [9]. While the Ginzburg-Landau
systems are dissipative ones, on the contrary to the conserva-
tive nonlinear-Schr̈odinger Gross-Pitavskii(NLSGP) systems,
their stationary versions essentially coincide; hence DW
patterns, generated by the stationary equations, are ubiquitous,
playing a fundamental role in sundry physical media, both
dissipative and conservative ones. Of course, the dynamics of

perturbed DW structures may be different in the dissipative
and conservative systems.

The basic models which give rise to DWs formed by
two fields feature nonlinear XPM (cross-phase-modulation)
interaction between the fields. In this context one-dimensional
(1D) solutions for DWs were reported in Ref. [7] for grain
boundaries in thermal-convection patterns, in Refs. [10,11] for
temporal-domain DWs between electromagnetic waves with
orthogonal circular polarizations in bimodal optical fibers, and
(in a number of different forms) in two-component BECs [12].
Various extensions of these settings were investigated too,
including grain boundaries between domains filled by different
cellular [13] and quasiperiodic [14] patterns, and between
traveling-wave domains in the model of the oscillatory thermal
convection [15]. Optical DWs between polarized waves with
different wavelengths were also studied [16]. Moreover, the
analysis was performed for DW states in the discrete version of
the nonlinearly coupled NLS system, which describes arrays of
parallel bimodal optical waveguides [17] or BECs fragmented
in a deep optical-lattice potential (in the latter case, the
system takes the form of the Bose-Hubbard model) [18]. Also
considered were the transition to immiscibility in binary BECs
with long-range dipole-dipole interactions [19], and various
forms of DWs in the three-component spinor BEC [20].

As concerns the experiment, linear grain boundaries be-
tween patches filled by rolls with different orientations had
been well documented in many observations of the thermal
convection [5,21]. Similar linear defects were reported in
laser cavities [22] and in experimental studies of BEC [23].
Well-pronounced DW structures have also been created in
bimodal optical fibers [24] and in fiber lasers [25].
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In many physically relevant settings, the nonlinear inter-
action between coexisting waves competes with the linear
interconversion between them, which strongly affects the
DW patterns in such binary systems. In particular, the linear
coupling between the orthogonal polarizations induced by the
twist or elliptic deformation of the optical fiber gives rise to an
effective force accelerating the corresponding DW [11]. The
linear interconversion between two components of a binary
BEC representing different atomic hyperfine states, coupled
by a resonant radio-frequency wave, affects the formation of
the DW in immiscible binary condensates [26]. The objective
of the present work is to develop a comprehensive study
of DW states in systems of NLS/GP equations coupled by
both the linear and nonlinear (XPM) terms, in one- and
two-dimensional (2D) geometries. Related two-component
vortical states in 2D are studied too.

The paper is organized as follows. The model is formulated
in Sec. II. In Sec. III we consider flat continuous-wave (CW)
states, which represent backgrounds supporting DWs. Both
symmetric and asymmetric CW states are found, and the
symmetry-breaking bifurcation (SBB), which gives rise to
asymmetric CW backgrounds, is identified. The stability of
the flat states is also investigated in this section. Basic types
of DWs in the free space (without an external potential) are
considered in Sec. IV, where both analytical and numerical
solutions for the DWs are reported, and the stability of
the DW patterns is established. Section V deals with one
and two DWs interacting with an external potential, in the
form of one or two peaks. In particular, an analytical stable
solution is produced for a DW pinned to a potential peak.
Two-dimensional axisymmetric patterns are considered in
Sec. VI. Stable vortices with topological charges s = 1,2,3,
supported by the asymmetric CW background, are found, and
radial oscillations of annular pulsons in the form of circular
DWs are studied too. The paper is concluded by Sec. VII.

II. THE MODEL

Our starting point is the system of scaled one-dimensional
NLS-GP equations for two wave functions ψ1,2 coupled by the
linear and nonlinear (XPM) terms:

i(ψ1)t = −(1/2)(ψ1)xx + σ |ψ1|2ψ1 + g|ψ2|2ψ1 − κψ2,
(1)

i(ψ2)t = −(1/2)(ψ2)xx + σ |ψ2|2ψ2 + g|ψ1|2ψ2 − κψ1,

where κ is the rate of the linear interconversion between the two
atomic states, if the system is interpreted in terms of BEC [26].
The same equations, with time t replaced by the propagation
distance z, and x replaced by the reduced time, τ ≡ t − z/Vgr,
where Vgr is the group velocity of the carrier wave, may be
realized in optics as the model of the light propagation in
an ordinary or photonic-crystal fiber [8]. In the fiber-optic
model, amplitudes ψ1,2 represent two mutually orthogonal
polarizations of light, with the linear interconversion induced
by the birefringence or twist of the fiber, for the circular
or linear polarizations, respectively. Coefficients σ and g in
Eqs. (1) account for the SPM (self-phase modulation) and
XPM nonlinearities, respectively (in the ordinary optical fiber,
the XPM-to-SPM ratio is g/σ = 2 and 4/3 for the of circular
and linear polarizations, respectively).

To secure the modulational stability of CW states sup-
porting DWs, coefficient g will be kept positive, which
corresponds to the repulsive XPM nonlinearity, while SPM
coefficient σ may have any sign. In optics, opposite signs of
the XPM and SPM coefficients is an exotic situation, which is,
nevertheless, possible in photonic-crystal fibers [8]. In BEC
the sign of either coefficient may be switched by means of the
Feshbach-resonance effect [9].

The value of g may be fixed by dint of an obvious rescaling
[for instance, it is possible to set g ≡ 3, which is a natural
choice in view of the existence of an exact DW solution in the
form of Eqs. (36) and (37), see below, which requires g = 3σ ].
In addition, the rescaling allows one to fix |κ| ≡ 1; thus we
assume κ = ±1. Nevertheless, in the analytical expressions
written below, we keep g and κ as free parameters, as it is
easier to analyze the results in such a form.

Stationary solutions to Eqs. (1) with chemical potential μ

are sought for as

ψ1,2(x,t) = e−iμtφ1,2(x), (2)

with real functions φ1,2(x) satisfying equations

μφ1 + (1/2)φ′′
1 − σφ3

1 − gφ2
2φ1 + κφ2 = 0,

(3)
μφ2 + (1/2)φ′′

2 − σφ3
2 − gφ2

1φ2 + κφ1 = 0,

with the prime standing for d/dx. The energy (Hamiltonian)
corresponding to stationary states (2) is H = ∫ +∞

−∞ Hdx, with
density

H = (1/2)[(φ′
1)2 + (φ′

2)2] + (σ/2)
(
φ4

1 + φ4
2

)
+ gφ2

1φ
2
2 − 2κφ1φ2. (4)

III. FLAT (CONTINUOUS-WAVE) STATES

Symmetric flat (x-independent) solutions to Eqs. (3), with
equal amplitudes of both components, are

φ1 = φ2 ≡ A0 =
√

(μ + κ)/(σ + g). (5)

The Hamiltonian density (4) for this solution is

Hsymm = (μ2 − κ2)/(g + σ ). (6)

Antisymmetric CW solutions are equivalent to Eq. (5), with
κ replaced by −κ . In view of this relation, we define
the symmetric solutions as those for κ = +1, while the
antisymmetric ones will be replaced by symmetric states for
κ = −1.

Asymmetric flat states, which are generated by the SBB,
can also be found in the exact form:

φ2
1 = μ

2σ
±

√
μ2

4σ 2
− κ2

(g − σ )2
≡ A2

1,

(7)

φ2
2 = μ

2σ
∓

√
μ2

4σ 2
− κ2

(g − σ )2
≡ A2

2,

with the signs of φ1 and φ2 determined by relation

φ1φ2 = κ(g − σ )−1 , (8)
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which is compatible with Eqs. (7). The Hamiltonian density
(4) for these states is

Hasymm = μ2/(2σ ) − κ2/(g − σ ). (9)

Taking into account the above convention, φ1φ2 > 0, and
the condition that φ2

1,2 must be positive, it follows from Eqs. (7)
that the asymmetric CW state emerges, i.e., the SBB takes
place, at a specific value of the chemical potential,

μ = 2σκ(g − σ )−1 ≡ μcr, (10)

the corresponding value of A2
0 at the bifurcation point being

obtained by the substitution of this value into Eq. (5):

A2
cr ≡ κ(g − σ )−1. (11)

The asymmetric solution (8), (7) exists at μ2 > μ2
cr. Slightly

above the bifurcation point, i.e., at

μ = μcr + δμ, with |δμ| � |μcr|, (12)

one can expand Eqs. (7) and (8) in powers of small δμ, which
yields

φ1,2 =
√

κ

g − σ
± 1

2

√
δμ

σ
+ O(δμ). (13)

A. The modulational stability of the symmetric solution
at the bifurcation point

A crucial condition necessary for the existence of stable
DWs is the absence of the modulational instability (MI) of the
corresponding CW background. Here we explicitly consider
the MI of the symmetric CW, and, in particular, we will find
conditions providing for the stability of the symmetric state
exactly at the SBB point. Examining this case secures that the
asymmetric CW states are not subject to the MI—at least close
enough to the bifurcation point.

To analyze the MI, we look for perturbed solutions to
Eqs. (1) in the well-known general form, i.e., as

ψ1,2(x,t) = [A0 + a1,2(x,t)] exp[−iμt + iχ1,2(x,t)], (14)

where amplitude A0 is the same as in Eq. (5), while a1,2

and χ1,2 are infinitesimal perturbations of the amplitudes and
phases of the two components (this form of the solution implies
the incorporation of the small complex perturbations into the
unperturbed CW state). Then eigenmodes of the perturbations
are sought for as

{a1,2(x,t),χ1,2(x,t)} = {
a

(0)
1,2,χ

(0)
1,2

}
exp(γ t + ipx), (15)

where p is an arbitrary real wave number of the perturbation
and γ the corresponding instability gain, which may be
complex. The stability condition is that Re{γ (p)} ≡ 0 for all
real p.

The substitution of expressions (14) and (15) into Eqs. (1)
and linearization with respect to infinitesimal perturbations
yields the following system of equations, which actually splits
into two separate subsystems for (a(0)

1 + a
(0)
2 ), (χ (0)

1 + χ
(0)
2 )

and (a(0)
1 − a

(0)
2 ), (χ (0)

1 − χ
(0)
2 ):

γ
(
a

(0)
1 + a

(0)
2

) − (1/2)A0p
2
(
χ

(0)
1 + χ

(0)
2

) = 0,

[2A2(g + σ ) + (1/2)p2]
(
a

(0)
1 + a

(0)
2

)
+ γA0

(
χ

(0)
1 + χ

(0)
2

) = 0; (16)

γ
(
a

(0)
1 − a

(0)
2

) − [(1/2)p2 + 2κ]A0
(
χ

(0)
1 − χ

(0)
2

) = 0,

[2A2(g − σ ) − 2κ − (1/2)p2]
(
a

(0)
1 − a

(0)
2

)
− γA0

(
χ

(0)
1 − χ

(0)
2

) = 0. (17)

The resolvability conditions for Eqs. (16) and (17) yield,
respectively, the following expressions for γ (p):

γ 2
+ = −(1/2)p2

[
2(g + σ )A2

0 + (1/2)p2
]
, (18)

γ 2
− = [2κ + (1/2)p2]

[
2(g − σ )A2

0 − 2κ − (1/2)p2]. (19)

The stability condition ensuing from Eq. (18), i.e., γ 2
+ < 0, is

obvious:

g + σ > 0. (20)

Expression (19) simplifies at the bifurcation point (10), where
A2

0 = κ/(g − σ ), as per Eq. (11):

γ 2
− = −(1/2)p2[2κ + (1/2)p2]. (21)

Evidently, the stability condition following from Eq. (21)
is κ > 0, which, as a matter of fact, means that only the
symmetric flat solution may be stable at the SBB point,
while its antisymmetric counterpart, that (as defined above)
corresponds to κ < 0, is unstable. Further, from κ > 0 and the
positiveness of expression (11) for A2

cr, condition g − σ > 0
follows. Combined with Eq. (20), it gives rise to the following
relation between the XPM and SPM coefficients necessary for
the existence and stability of the asymmetric CW states:

|σ | < g, (22)

while σ may be positive or negative. In fact, it will be
demonstrated below that DW solutions do not exists for σ < 0.

Note that condition (22) does not hold for g = 0; hence the
DWs that can be found in the system with the solely linear
coupling are always unstable, as demonstrated in Ref. [27]. In
that work it was shown that the unstable DW gives rise to an
expanding layer filled with turbulent waves.

B. The modulational stability of the asymmetric background

In the general case of the asymmetric CW background, the
perturbed solution is taken as [cf. Eq. (14)]

ψ1,2(x,t) = A1,2[1+b1,2(x,t)] exp[−iμt+iχ1,2(x,t)], (23)

where A1,2 are given by Eqs. (7) and infinitesimal perturbations
are taken as [cf. Eqs. (15)]

{b1,2(x,t),χ1,2(x,t)} = {
b

(0)
1,2,χ

(0)
1,2

}
exp(γ t + ipx). (24)

The substitution of expressions (23) and (24) into Eqs. (1), and
the subsequent linearization, lead to a system of four linear
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equations:

γ b
(0)
1 − 1

2
p2χ

(0)
1 − κ

A2

A1

(
χ

(0)
1 − χ

(0)
2

) = 0,

γ b
(0)
2 − 1

2
p2χ

(0)
2 + κ

A1

A2

(
χ

(0)
1 − χ

(0)
2

) = 0,

γ χ
(0)
1 + 1

2
p2b

(0)
1 + 2σA2

1b
(0)
1 + 2gA2

2b
(0)
2

+ κ
A2

A1

(
b

(0)
1 − b

(0)
2

) = 0,

γ χ
(0)
2 + 1

2
p2b

(0)
2 + 2σA2

2b
(0)
2 + 2gA2

1b
(0)
1

− κ
A1

A2

(
b

(0)
1 − b

(0)
2

) = 0. (25)

In the special case of A1 = A2 ≡ A0, it is easy to check
that Eqs. (25) are tantamount to Eqs. (16) and (17) written
above.

The dispersion relation between γ and p2 is determined by
the resolvability condition of system (25):

∣∣∣∣∣∣∣∣∣∣
γ 0 −(

κ
φ2

φ1
+ 1

2p2
)

κ
φ2

φ1

0 γ κ
φ1

φ2
−(

κ
φ1

φ2
+ 1

2p2
)

2σφ2
1 + κ

φ2

φ1
+ 1

2p2 2gφ2
2 − κ

φ2

φ1
γ 0

2gφ2
1 − κ

φ1

φ2
2σφ2 + κ

φ1

φ2
+ 1

2p2 0 γ

∣∣∣∣∣∣∣∣∣∣
= 0. (26)

Equation (26) was solved numerically, yielding four roots
γ (p2). It has been verified that with A1 and A2 taken as
per Eqs. (7) and (8), and for all p2 � 0, all the roots satisfy
condition Re{γ (p2)} = 0, if κ is positive and inequality (22)
holds. Thus, as long as the symmetric CW are stable at the
SBB point, its asymmetric counterparts are stable too.

IV. DOMAIN-WALL SOLUTIONS IN THE FREE SPACE

A. Numerical results

Stationary solutions to equations (3) were constructed by
means of the Newton-Raphson method for the corresponding
nonlinear boundary-value problem. In particular, the boundary
conditions were fixed as zero values of the derivatives at both
edges of the integration domain.

DWs are built as transient layers fusing together CW states
of different types. Obviously, such patterns are possible at
μ2 > μ2

cr [see Eq. (10)] where asymmetric CW solutions exist,
as given by Eqs. (7). Figure 1 shows that in this case one can
find four different types of transient layers, if dark solitons are
counted too. These types may be classified by values of cou-
pled fields (φ1,φ2) in the uniform states connected by the DWs:

{[φ1(x = −∞),φ2(x = −∞)],[φ1(x = +∞),

φ2(x = +∞)]} = {(A1,A2),(A2,A1)};
{(A1,A2),(−A2, − A1)};

{(A1,A2),(−A1, − A2)}; {(A0,A0),(−A0, − A0)} (27)

[recall that A0 is given by Eq. (5), and A1,2 are given by
Eqs. (7)]. In fact, only the patterns of the first and second
types in Eq. (27) [Figs. 1(a) and 1(b)] are true DWs, while
Figs. 1(c) and 1(d), corresponding to the profiles of the third
and fourth types in Eq. (27), are paired dark solitons. It is also
clear that the dark-soliton pairs of the latter type, displayed in
Fig. 1(d), are unstable past the SBB point, as the symmetric
CW state (5) is unstable in this case.

It is relevant to mention that DWs connecting the symmetric
and asymmetric states—for instance, (A1,A2) and (A0,A0)—

are impossible, because a stationary DW may only exist
between two asymptotic flat states with equal Hamiltonian
densities [11]. Comparing the respective densities (6) and (9),
one can immediately conclude that they coincide solely at the
bifurcation point (10).

To investigate the stability of the DW patterns, small
perturbations were added to the stationary solutions:

φ̃1(x,t) = φ1(x) + v1(x)e−iγ t + u∗
1(x)eiγ ∗t ,

(28)
φ̃2(x,t) = φ2(x) + v2(x)e−iγ t + u∗

2(x)eiγ ∗t ,

where v1, u1 and v2, u2 constitute eigenmodes of the infinites-
imal perturbation, and γ is the corresponding eigenfrequency
that, in general, may be complex. Substituting expressions (28)
into Eqs. (3) and linearizing around the stationary solutions
leads to the following eigenvalue problem:

⎛⎜⎜⎜⎝
−L̂1 σφ2

1 gφ1φ2 − κ gφ1φ2

−σφ2
1 L̂1 −gφ1φ2 −gφ1φ2 + κ

gφ2φ1 − κ gφ2φ1 −L̂2 σφ2
2

−gφ2φ1 −gφ2φ1 + κ −σφ2
2 L̂2

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

v1

u1

v2

u2

⎞⎟⎟⎠ = γ

⎛⎜⎜⎝
v1

u1

v2

u2

⎞⎟⎟⎠ , (29)

L̂1 ≡ μ + (1/2)d2/dx2 − 2σφ2
1 − gφ2

2 , L̂2 ≡ μ + (1/2)d2/dx2 − 2σφ2
2 − gφ2

1 . (30)
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FIG. 1. Typical examples of the domain
walls (a, b) and paired dark solitons (c, d),
found for g = 3, σ = κ = 1, and μ = 2. The
four panels represent the patterns of the four
types defined in Eq. (27). Stable and unstable
solutions are depicted by the continues and
dashed lines, respectively.

This eigenvalue problem can be solved using a simple finite-
difference scheme. Accordingly, the solution is identified as a
stable one if all the eigenfrequencies are real.

The stability analysis outlined above demonstrates that the
DW family of the first type in Eq. (27), which is represented
by Fig. 1(a), is completely stable (past the SBB point,
where it exists, along with the asymmetric CW states). In
this case, all the other types of the DW and dark-soliton
solutions [i.e., all of them which cross zero at least in one
component, see Figs. 1(b)–1(d)] are completely unstable,
due to the presence of imaginary eigenfrequencies in the
spectrum of small perturbations. We stress that unlike the
trivial background instability of the pattern of the last type
in Eq. (27), those of the second and third types, which
are represented by Figs. 1(b) and 1(c), are destabilized by
perturbations localized around the transient layer, while the
CW background is stable. Direct simulations demonstrate that
these unstable DWs decay into expanding turbulent patterns
(see Fig. 2). The stability of the DW of the first type in
Eq. (27) was also verified by direct simulations (not shown
here).

B. An approximate solution for the DW
near the bifurcation point

An analytical solution for the DW can be constructed in an
approximate asymptotic form near the bifurcation point (10),

(11), i.e., for μ taken as in Eq. (12). In this case the approximate
solution can be sought as

φ1(x) = Acr + δφ1(x) + δφ2(x),
(31)

φ2(x) = Acr − δφ1(x) + δφ2(x),

where it is implied that δφ1 ∼ √
δμ and δφ2 ∼ δμ, cf. Eq. (13).

Substituting expressions (31) into Eqs. (3) and expanding the
result in powers of δμ yields a relation between δφ1 and δφ2

at order δμ:

δφ2(x) = Acr

2(μ + κ)
{δμ + (g − 3σ )[δφ1(x)]2}. (32)

Next, at order δμ3/2 the expansion yields the equation for
δφ1(x):

(δφ1)′′ + 4
g − σ

g + σ
δμ × δφ1 − 16σ

g − σ

g + σ
(δφ1)3 = 0. (33)

An exact solution of the DW type to Eq. (33) is

δφ1(x) = 1

2

√
δμ

σ
tanh

(√
2
g − σ

g + σ
δμx

)
. (34)

With regard to the CW-stability condition (22), we conclude
that solution (34) exists if the sign of δμ coincides with the sign
of σ, and only for δμ > 0, which means that the solution exists
solely for σ > 0. In fact, the numerical solution demonstrates,
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FIG. 2. (Color online) Examples for the evolution of unstable patterns of the second (a) and third (b) types from Eq. (27). The initial
conditions and the parameters are as in Figs. 1(b) and 1(c), for (a) and (b), respectively.

too, that DWs cannot be found at σ < 0, even if asymmetric
CW states (7) exist in this case, with μ < 0.

In what follows below we will also need an expression for
the full density of the DW solution. The above formulas yield

[φ1(x)]2 + [φ2(x)]2 = 2κ

g − σ
+ δμ

σ
− g − σ

g + σ

δμ

σ
sech2

×
(

2

√
g − σ

g + σ
δμx

)
. (35)

Examples of the analytically predicted profiles, as given by
Eqs. (31), (32), and (34), together with their numerically found
counterparts, are displayed in Fig. 3(a) for parameters g = 3,
σ = 1, κ = 1 [i.e., μcr = 1, see Eq. (10)], and δμ = 0.1,0.5,1,

and 2. For the same examples, the difference between the

numerical and approximate results is shown in Fig. 3(b). The
results presented in Fig. 3(a) demonstrate that the prediction
loses its accuracy with the increase of δμ. On the other hand,
comparing the core of the analytical and numerical solutions
(the transient layer), one can see that the analytical results are
not necessarily the most accurate for small δμ. Actually, this
approximation is most suitable for intermediate values of δμ.

C. The exact solution for g = 3σ

A particular exact solution to Eqs. (3) for the DW can be
found by means of the following ansatz:

φ1(x) = U0 + U1 tanh(λx), φ2(x) = U0 − U1 tanh(λx).

(36)
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FIG. 3. (a) Comparison between the analytical approximation given by Eq. (34), which is shown by dotted lines, and numerically found
profiles of the domain walls (solid lines), for g = 3, σ = 1, and κ = 1 (μcr = 1), and δμ = 0.1,0.5,1, and 2. (b) The differences between the
numerical and approximate analytical results, �φ1,2 = (φ1,2)numer − (φ1,2)approx, for the examples presented in panel (a).
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The substitution of the ansatz into Eqs. (3) demonstrates that
it yields an exact solution at g = 3σ , for chemical potential
μ = κ + λ2, with coefficients

λ2 = μ − κ, U 2
0 = (4σ )−1(2κ + λ2) ≡ (4σ )−1(μ + κ),

U 2
1 = (4σ )−1λ2 ≡ (4σ )−1(μ − κ), (37)

(under condition μ − κ > 0). In fact, this particular exact
stationary solution is similar to the one that was found,
also in the exact form, for the stationary version of coupled
Ginzburg-Landau equations (but without the linear coupling)
in Ref. [7]. Note that relation g = 3σ , which is necessary
for the existence of the exact solution, complies with the
CW-stability condition (22). In terms of this exact solution,
μ may be considered as a free parameter, i.e., we actually have
a one-parameter solution family, under constraint g = 3σ . An
example of the exact DW solution can be seen in Fig. 1(a),
where the parameters were chosen to comply with the exact
solution. Finally, the total local density of solution (36) is

φ2
1(x) + φ2

2(x) = 2
[(

U 2
0 + U 2

1

) − U 2
1 sech2(λx)

]
, (38)

cf., Eq. (35).
It may also be relevant to mention that, under condition

g = 3σ , Eqs. (3) has another formal DW-like solution, given
by Eqs. (36) and (37) with tanh replaced by coth. However, this
additional solution is singular, and therefore it has no physical
meaning.

V. DOMAIN WALLS IN THE PRESENCE
OF EXTERNAL POTENTIALS

The model based on Eqs. (3) can be naturally extended to
include an external potential, W (x):

μφ1 + (1/2)φ′′
1 − σφ3

1 − gφ2
2φ1 + κφ2 − W (x)φ1 = 0,

(39)
μφ2 + (1/2)φ′′

2 − σφ3
2 − gφ2

1φ2 + κφ1 − W (x)φ2 = 0.

In this section we report the analysis performed for the DW
patterns supported by this setting, with W (x) representing
single- or double-peak potentials, with the intention to predict
pinning of the DWs by such potentials. Stable pinning by
potential maxima (rather than minima) may be possible,
because the DW’s core features a minimum of the total density
[see Eqs. (35) and (38)]; hence the total energy of the system
may be minimized by placing the core around a local maximum
of the potential.

A. The exact solution in the presence of a single-peak potential

It is possible to find an exact solution to Eqs. (39) for the
DW if the potential is chosen as

W (x) = W0sech2(λx), (40)

where W0 and λ are considered as given parameters. The
corresponding solution can be looked for in the form
of the same ansatz (36) as used for finding the exact solution
in the free-space setting. The substitution of the ansatz into
Eqs. (39) demonstrates that it yields an exact solution in

the present case under the following condition imposed on
parameters of the system:

g = 3λ2 + 2W0

λ2 + 2W0
σ, (41)

which goes over into the above relation, g = 3σ , in the limit
of W0 = 0. Further, coefficients U0, U1, and μ of the exact
solution are given by the following expressions:

μ = λ−2(λ2 + 2W0)(λ2 + κ),

U 2
0 = (4σλ2)−1(λ2 + 2W0)(λ2 + 2κ), (42)

U 2
1 = (4σ )−1(λ2 + 2W0).

It is easy to see that in the limit of W0 = 0, Eqs. (42) carry
over into the above exact solution given by Eqs. (37). Thus this
exact solution is an extension of the previous one, although it
has no free parameters. [Note that λ, which was an adjustable
parameter of the free-space solution, is now fixed by the given
form of potential (40).]

As argued above, the present exact solution is expected
to be stable if W (x) represents a repulsive potential barrier
(peak), with W0 > 0, and the solution should be unstable
against spontaneous escape from the pinned state in the case of
the attractive potential well, with W0 < 0 [cf. Eq. (48) below].
In turn, Eq. (41) with W0 > 0 gives g < 3σ . Note also that
unlike its counterpart in the free space, this exact solution may
exist at σ < 0. In the case of the potential well (W0 < 0),
with λ2 < −2W0 < 3λ2, Eq. (41) yields σ < 0. However, this
solution should be unstable according to the above argument.

B. Analysis of the interaction between DWs and the interaction
of the DW with the external potential

The interaction of the DW with an external potential can be
investigated in an approximate form. In fact, a similar problem
which also admits an approximate analytical treatment is the
interaction between two broadly separated DWs with opposite
polarities (i.e., mirror images of each other) in the free space;
therefore we start with this case.

Assuming that the two DWs are set at distance L which
is large in comparison with the inner width of each DW,
the interaction between them can be analyzed by means
of the method elaborated in Ref. [28]. To this end, the
approximate expression for the nearly flat fields in the region
between the far separated solitons is taken as

φn(x) = An + 2Un[exp(−2λ|x − ξ1|) + exp(−2λ|x − ξ2|)],
(43)

where n = 1,2, and A1,2 are given by Eqs. (7), ξ1,2 are
coordinates of the centers of the two DWs, so that L ≡ ξ2 − ξ1,
and the exponential terms represent small decaying tails of the
DWs on top of the flat background. The decay rate λ > 0
can be found in the general case, but the expression for it
is cumbersome; amplitudes U1,2 are not known in an exact
form in the general case, as they may only be found from full
solutions for individual DWs. In the special case of the exact
solution given by Eqs. (36), at g = 3σ , coefficients λ and U1,2

in Eq. (43) are actually given by Eq. (37):

λ = √
μ − κ, U1 = U2 = (1/2)

√
(μ − κ)/σ . (44)
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Then, using Hamiltonian produced by density (4) and
the method developed in Ref. [28] (identifying the term
accounting for the interaction energy in the expression for
the full Hamiltonian), the effective potential of the interaction
between the two separated DWs is found in the following form:

Uint(L) = −8λ
(
U 2

1 + U 2
2

)
exp(−2λL). (45)

In the case of the exact DW solution given by Eqs. (36) and
(37), this expression takes an explicit form:

Uint(L) = −4(μ − κ)3/2 exp(−2
√

μ − κL). (46)

A simple but essential property of expressions (45) and (46) is
that they obviously predict attraction between the two DWs.

With the external potential W (x) included in Eqs. (39),
Hamiltonian density (4) is modified as

H = 1

2
[(φ′

1)2 + (φ′
2)2] + σ

2

(
φ4

1 + φ4
2

) + gφ2
1φ

2
2 − 2κφ1φ2

+ 2W (x)
(
φ2

1 + φ2
2 − A2

1 − A2
2

)
, (47)

where constants A2
1,2 are subtracted from φ2

1,2(x) for conve-
nience (to cancel a formally diverging constant term in the
Hamiltonian), A1,2 being the same as in Eqs. (7). This means
that the energy of the interaction of the DW with the external
potential is

Upot = 2
∫ +∞

−∞
W (x)

[
φ2

1(x) + φ2
2(x) − A2

1 − A2
2

]
dx. (48)

Assuming that W (x) represents a broad potential barrier
or well with a width much larger than the thickness of the
DW and treating the external potential as a perturbation(i.e.,
neglecting the distortion of the solution under the action of the
potential), the substitution of the exact DW solution given by
Eqs. (36) and (37) into Eq. (48) readily yields

Upot(ξ ) ≈ −8U 2
1 λ−1W (ξ ) ≡ −2

√
μ − κσ−1W (ξ ), (49)

where ξ is the coordinate of the center of the DW. A
straightforward consequence of Eq. (49) is that, as conjectured
above, the DW tends to be trapped at local maxima of the
external potential W (x), as, due to sign minus in Eq. (49), they
correspond to minima of the effective potential (49).

If two DWs are trapped at two particular maxima of W (x),
ξ1 and ξ2, separated by large distance L, the equilibrium
condition for each DW is the vanishing of the total force
produced by the interaction of the DW with its counterpart
and with the external potential:

∂

∂ξ1

{
2
√

μ − κ

σ
W (ξ1) + 4(μ − κ)3/2

× exp[−2
√

μ − κ(ξ2 − ξ1)]

}
= ∂

∂ξ2

{
2
√

μ − κ

σ
W (ξ2) + 4(μ − κ)3/2

× exp[−2
√

μ − κ(ξ2 − ξ1)]

}
= 0. (50)

For example, if the potential is periodic, W (x) =
ε cos(2πx/�), with large period �, one may consider the
pair of DWs trapped at two adjacent potential maxima. By
substituting this potential into Eqs. (50), it is easy to check
that its minimum strength, necessary for holding the DW pair
(i.e., preventing it from merger due to the mutual attraction),
is εmin = (2/π )σ�(μ − κ)3/2 exp(−√

μ − κ�).

C. Numerical results for the model with an external potential

The above analysis predicted that two DWs created in the
free space attract each other. Direct simulations confirm the
prediction (see a typical example in Fig. 4). Eventually, the two
DWs annihilate and form the stable uniform asymmetric state.
Naturally, for larger initial values of the separation between the
DWs, the attraction force is weaker, and a considerably longer
time is required for the DW pair to manifest the interaction.

In the presence of the external potential in Eqs. (39),
the numerical investigation was carried out for two differ-
ent shapes of W (x). First, the single potential barrier was
considered, taken in the same form (40) which was used to
obtain the exact solution. The corresponding stationary DW
solutions are similar to their counterparts found in the free
space. Specifically, out of the four types of DWs categorized
by the values of [φ1(x),φ2(x)] at x = ±∞ as per Eq. (27), only
the first one is stable [see a typical example in Fig. 5(a)]. In
addition to the DWs, the potential barrier supports states in the

FIG. 4. The simulated evolution of a pair of identical domain walls, initially separated by distance 2�x = 10, is displayed by means of
density contour plots, for g = 3, σ = 1, κ = 1, and μ = 2.
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FIG. 5. Typical profiles of the domain-wall (a) and “bubble” (b,c) stationary solutions found in the presence of the potential peak (40), for
g = 8/3, σ = 1, κ = 1, λ = 1, W0 = 0.1, and μ = 2.4 [these values of the parameters admit the existence of the exact DW solution (41) and
(42), which is actually displayed in (a)]. The stable and unstable solutions are depicted by continuous and dashed curves, respectively.

form of “bubbles” (defined as per Ref. [29]), i.e., patterns with
identical values of [φ1(x),φ2(x)] at x = ±∞, and localized
perturbations of φ1,2(x) around the barrier [see Figs. 5(b) and
5(c)]. Naturally, the bubbles supported by the asymmetric and
symmetric CWs are stable and unstable, respectively.

The expectation that the DW is stably trapped by the
potential peak is confirmed by direct simulations displayed
in Fig. 6(a), for the DW of the first type, in terms of Eq. (27),
i.e., {(A1A2),(A2A1)}. [It is the same DW which is displayed in
Fig. 5(a).] The DW, if shifted from the potential maximum by

FIG. 6. (a) The evolution of the domain wall shifted by �x = 5 from the maximum of potential barrier (40), for the same parameters as in
Fig. 5(a). (b) Similar to panel (a), but for the pair of DWs placed symmetrically on both sides of the potential maximum, at x = ±5.
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�x = 5, performs decaying oscillations around the peak. The
decay of the oscillations is explained by emission of radiation
waves into the background by the oscillating DW.

The attraction of DWs to the potential peak is further
illustrated by Fig. 5(b), which displays a pair of identical DWs
symmetrically placed, at t = 0, at distances �x = ±5 from
the peak. Due to the attraction of both DWs to the peak, in
this case their annihilation happens much sooner than for the
same pair in the free space (see Fig. 4 for the same value of
separation 2�x between the DWs).

The numerical analysis was also carried out for the double-
peak potential, taken in the form of

W (x) = W0(2x/L)2 exp(1 − (2x/L)2), (51)

where W0 is the height of the two peaks and L is the distance
between them. The numerical solution of Eqs. (39) with
potential (51) has revealed multiple structures, which may
be considered as transient layers between CW states filling
the three regions separated by the two potential barriers.
These structures can be categorized into two groups, built of
symmetric or asymmetric CWs. The structures of the former
type are arranged as the following sets of CW states in the
three regions [cf. Eq. (27)]:

{(A0,A0),(A0,A0),(A0,A0)};
{(A0,A0),(A0,A0),(−A0, − A0)}; (52)

{(A0,A0),(−A0, − A0),(A0,A0)}.

These three varieties may be interpreted, respectively, as
containing none, one, or two dark solitons trapped in each
component.

Using various combinations of the asymmetric CW states,
we have built the following patterns supported by the double-
peak potential [cf. Eqs. (27) and (52)]:

{(A1,A2),(A1,A2),(A1,A2)};
{(A1,A2),(A1,A2),(A2,A1)};
{(A1,A2),(A2,A1),(A1,A2)}; (53)

{(A1,A2),(A1,A2),(−A1, − A2)};
{(A1,A2),(−A1, − A2),(A1,A2)};
{(A1,A2),(A1,A2),(−A2, − A1)};
{(−A1, − A2),(A1,A2),(A2,A1)};
{(A1,A2),(−A1, − A2),(A2,A1)};
{(A1,A2),(A2,A1),(−A1, − A2)};
{(A1,A2),(−A2, − A1),(A1,A2)}. (54)

The three patterns (53) feature, respectively, none, one, or two
trapped DWs, while seven patterns (54) include dark solitons or
zero-crossing (sign-changing) DWs. As before, those patterns
which do not cross zero in any component are stable [in the
case of the first pattern in (52), this is, naturally, true prior to
the SBB], while all the solutions featuring at least one zero
crossing are unstable. Examples of the patterns of these types
are presented in Fig. 7 for W0 = 0.1 and L = 10.
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FIG. 7. Typical examples of patterns
supported by the double-barrier potential
(51), with W0 = 0.1 and L = 10, constants
g, σ , κ , and μ being the same as in
Fig. 4. Panels (a)–(c) demonstrate the stable
patterns of the following types in terms
of Eq. (53): {(A1,A2),(A2,A1),(A1,A2)},
{(A1,A2),(A1,A2),(A2,A1)}, and {(A1,A2),
(A1,A2),(A1,A2)}, respectively. The unstable
pattern of type {(A0,A0),(A0,A0),(A0,A0)}
from set (52) is presented in panel (d).
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FIG. 8. The evolution of a single DW and pairs of DWs in the presence of the double-peak external potential (51), with W0 = 0.1 and
L = 10. The other parameters are as in Figs. 4 and 7. In panel (a) the single DW is initially positioned exactly between the two peaks. The
evolution of pairs of DWs, symmetrically placed at x = ±2.5 and x = ±7.5, is displayed in panels (b) and (c), respectively.

The attractive interaction of the DWs with the potential
peaks is additionally illustrated by simulations displayed in
Fig. 8. In particular, if a single DW is initially placed at the
midpoint between the peaks, the evolution of this obviously
unstable configuration leads to damped oscillations of the DW
around either peak to which it is pulled [see Fig. 8(a)]. On
the other hand, by symmetrically placing pairs of identical
DWs either between [Fig. 8(b)] or outside [Fig. 8(c)] of
the potential peaks, we observe coherent oscillations with
the apparently unbroken symmetry. In the latter case the
symmetric oscillations feature very slow damping, which is
explained by the small value of W0 = 0.1 in this case. Similar
simulations for larger W0 demonstrate oscillations which
converge much faster to a stable symmetric configuration, with
each DW trapped by one potential peak.

VI. VORTICES AND TWO-DIMENSIONAL CIRCULAR
DOMAIN WALLS

The 2D version of model (1) is

i(ψ1)t = −(1/2)[(ψ1)xx + (ψ1)yy] + σ |ψ1|2ψ1

+ g|ψ2|2ψ1 − κψ2,

i(ψ2)t = −(1/2)[(ψ2)xx + (ψ2)yy] + σ |ψ2|2ψ2

+ g|ψ1|2ψ2 − κψ1. (55)

In terms of BEC, Eqs. (55) admit the straightforward interpre-
tation as the GP equations for the two-component condensate

in a 2D pancake-shaped configuration. In terms of optics,
these equations, with t replaced by propagation coordinate
z, govern the transmission of a stationary beam through the
bulk nonlinear medium, with functions ψ1,2 representing two
circular polarizations. In the latter case, the linear mixing
between the polarizations can be induced by the linear
birefringence, which, in turn, may be imposed by mechanical
stress applied perpendicular to the propagation axis [8], or,
alternatively, by a dc magnetic field applied in the same
direction [30] (the birefringence imposed by the transverse
magnetic field leads to the classical Cotton-Mouton and Voigt
effects [31]).

General axisymmetric solutions to Eqs. (55) are looked
for in the form of the optical vortices (alias 2D dark solitons)
[8,32], which also corresponds to the vortex modes in BEC [9]:

ψ1,2(x,y,t) = φ1,2(r,t) exp(isθ ) exp(−iμt), (56)

where r and θ are the polar coordinates in the (x,y) plane, and
the integer s is the topological charge (vorticity, alias “spin”).

The substitution of expressions (56) into Eqs. (55) leads to
the equations for radial wave functions φ1,2(r,t):

i(φ1)t + μφ1 + (1/2)[(φ1)rr + r−1(φ1)r − s2r−2φ1]

− σ (φ1)3 − g(φ2)2φ1 + κφ2 = 0,

i(φ2)t + μφ2 + (1/2)[(φ2)rr + r−1(φ2)r − s2r−2φ2]

− σ (φ2)3 − g(φ1)2φ2 + κφ1 = 0. (57)
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Obviously, stationary CW solutions in the 2D model are
identical to those obtained for the 1D model [see Eqs. (5)
and (7)]. In particular, the bifurcation described by Eqs. (10)
and (11) is relevant in the 2D case too.

The study of the existence, stability, and dynamics of 2D
axisymmetric patterns, generated by Eqs. (57), is presented
below in two steps. First, stationary vortices, supported by the
asymmetric CW background, are obtained for spins s = 0,1,2,

and 3, and their stability is determined. Then the evolution
of the pulsons, i.e., circular DWs oscillating in the radial
direction,is investigated by means of direct simulations. In
this connection, it is relevant to mention that patterns in the
form of circular DWs are well known in various magnetic
media [33].

A. Stationary vortices

To find stationary solutions of Eqs. (57), we proceed to
the time-independent version of these equations and apply
the Newton-Raphson method to the respective nonlinear
boundary-value problem. The boundary conditions demand
that φ1,2(r) → rs at r → 0, while at r → ∞, φ1,2(r) asymptot-
ically approaches the symmetric or asymmetric CW solutions,
(5) or (7). Examples of the radial profiles of such modes are
displayed in Fig. 9. For the s = 0, no stationary solutions exist,
apart from the obvious flat states (which are not shown in
Fig. 9). For each nonzero value of the spin that was examined,
s = 1,2 and 3, two families of nontrivial stationary solutions
were obtained, supported [past bifurcation point (10)] by
the symmetric and asymmetric CW states at r → ∞; hence
they demonstrate precisely the same existence and bifurcation
features as the corresponding flat states (5) and (7).

To explore the stability of the 2D stationary solutions, we
seek for perturbed solutions as [cf. Eqs. (28)]

φ̃1(r,θ,t)

= U (r) + [U+(r) exp(inθ )+U−(r) exp(−inθ )] exp(γnt),

φ̃2(r,θ,t)

= V (r) + [V+(r) exp(inθ )+V−(r) exp(−inθ )] exp(γnt),

(58)

where integer n > 0 is an arbitrary azimuthal index of the
perturbation, and γn is the corresponding instability growth
rate. After substituting expressions (58) into Eqs. (57) and
linearizing, the following system of equations is obtained:

μU+ + iγnU+ + (1/2)U ′′
+ + (2r)−1U ′

+

− (s + n)2(2r2)−1U+ − gUV (V ∗
− + V+)

− σU 2(U ∗
− + 2U+) − gV 2U+ + κV+ = 0;

μU− + iγnU− + (1/2)U ′′
− + (2r)−1U ′

−
− (s − n)2(2r2)−1U− − gUV (V ∗

+ + V−)

− σU 2(U ∗
+ + 2U−) − gV 2U− + κV− = 0;

(59)
μV+ + iγnV+ + (1/2)V ′′

+ + (2r)−1V ′
+

− (s + n)2(2r2)−1V+ − gUV (U ∗
− + U+)

− σV 2(V ∗
− + 2V+) − gU 2U+ + κU+ = 0;

μV− + iγnV− + (1/2)V ′′
− + (2r)−1V ′

−

− (s − n)2(2r2)−1V− − gUV (U ∗
+ + U−)

− σV 2(V ∗
+ + 2V−) − gU 2V− + κU− = 0,

where the prime stands for d/dr . We treat Eqs. (59) as an
algebraic eigenvalue problem for γn and solve it directly using
a finite-difference method. The largest instability-growth rate
is identified as the real part of the most unstable eigenvalue,
max{Re(γn)}. Following this approach, we have confirmed that
the only source of the destabilization is the transition between
the symmetric and asymmetric modes, which, as said above, is
actually driven by the SBB in the flat background at r → ∞. In
particular, no azimuthal instability, that would break the axial
symmetry, was found for s = 1,2,3, for all integer values of
n considered. The absence of the azimuthal instability in the
case of the self-defocusing nonlinearity is actually a natural
feature [34]. In addition, this finding implies that the flat (quasi-
one-dimensional) DW is stable against corrugations in the 2D
setting.
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FIG. 9. (a–c): Radial profiles of the symmetric and asymmetric stationary vortices, with spin s = 1, 2, and 3, respectively (no nonflat
stationary 2D solutions were found for s = 0). The parameters are g = 3,σ = 1,κ = 1, and μ = 2. Solid and dashed curves depict, respectively,
two components of the stable asymmetric solutions and unstable symmetric ones.
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FIG. 10. (Color online) The initial evolution of the pulsons (circular domain walls) for s = 0 (a), s = 1 (b), and s = 2 (c). The initial radius
of the circular DW is R0 = 20, the other parameters being g = 3, σ = 1, κ = 1, and μ = 2.

B. Direct simulations–shrinking domain walls and pulsons

Another aspect of the 2D model based on equations (55)
was examined by investigating the development of circular
DWs into pulsons, i.e., annular grain boundaries periodically
shrinking and expanding in the radial directions. It is known
that while exact solutions for such pulsons do not exist, in
some models, such as the 2D single-component sine-Gordon
equation, the pulsons may be remarkably stable, featuring
hundreds [35,36] and thousands [37] of radial pulsations with
very little loss.

We have performed simulations of pulsating radial DWs
for three values of the spin, s = 0,1, and 2. The simulations
were implemented by means of the linearized Crank-Nicolson
scheme. As initial conditions, the following DW configuration,
based on the asymmetric uniform states (7), was used:

φ1(r,t = 0) = (1/2) tanhs(r){A1[1 + tanh(r − R0)]

+A2[1 − tanh(r − R0)]},
φ2(r,t = 0) = (1/2) tanhs(r){A1[1 − tanh(r − R0)]

+A2[1 + tanh(r − R0)]}, (60)

where R0 is the initial radius of the DW. Note that this initial
ansatz complies with the necessary boundary condition at
r → 0, φ1,2(r) ∼ rs . The boundary conditions at the right
edge of the integration interval, 0 < r < ρ, were adopted as
(∂φ1,2/∂r + ∂φ1,2/∂t)|r=ρ = 0. These conditions prevent the
reflection of the emitted radiation from the boundary.

For each value of the spin considered here, s = 0,1,2, the
simulations were run for several values of the initial radius, R0.
Typical examples of the initial stage of the observed evolution
are demonstrated in Fig. 10 for R0 = 20 and for the parameters
g = 3, σ = 1, κ = 1, and μ = 2. Similar results were obtained
for other values of R0.
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FIG. 11. Temporal decay of the largest and smallest radii of the
pulson, in the cases shown in Fig. 10, for s = 0, 1, and 2.
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FIG. 12. The relation between the gradually decreasing oscilla-
tion period of the pulson τl and the effective maximum radius Rmax ,eff

for s = 0, 1, and 2. The parameters are the same as in Fig. 10.

It was observed that while the pulsons shrink and expand in
a quasiperiodic manner, their smallest and largest radii, Rmin

and Rmax, do not remain constant, slowly decreasing from
cycle to cycle, as shown in Fig. 11. In particular, the decay of
Rmax is roughly exponential in time, with some irregularities
observed at t � 400 and at the final stage of the evolution. The
decay is plausibly caused by the emission of radiation waves
by the pulsating DW.

Also decreasing is the oscillation period τl , taken as the time
interval between two consecutive points at which the pulson
expands to the largest radius, τl = t(r = Rmax ,l) − t(r =
Rmax ,l−1), where l is the number of the cycle. The relation
between the slowly decreasing period and the effective maxi-
mum radius, Rmax ,eff ≡ (Rmax,l + Rmax,l−1)/2, is presented in
Fig. 12. The plots demonstrate a nearly linear dependence
for all s. The same linear dependence was obtained for dif-
ferent values of the initial radius, including R0 = 10, 15, 30,

and 40. The linear relation between τl and Rmax can be easily
explained. Indeed, considering a large-radius circular DW,
with radius R much larger than the thickness of the DW in the
radial direction, one can define the effective mass for the radial
pulsations, M = 2πRm, and the effective surface-tension
energy, EST = 2πRα, where m and α are the effective mass
and surface-energy densities of the quasi-one-dimensional
DW. Thus Newton’s equation of motion for the DW in the
radial direction is

d

dt

(
2πmR

dR

dt

)
= − d

dR
(2παR), (61)

from which the law of motion follows, R2(t) = R2
max −

(α/m)t2, assuming that the motion starts with the zero initial
velocity and R = Rmax. According to this result, the shrinking
DW ring will bounce back from the center at the moment of
time τl/2 = √

α/mRmax, which is obviously equal to a half of
the period. This result explains the linear proportionality of τl

to Rmax.
Finally, Fig. 13 displays the final stage of the evolution,

observed when the pulson’s radius and oscillation period have

FIG. 13. (Color online) The final stage of the evolution of the pulsons with s = 0, 1, and 2, whose initial evolution is displayed in Fig. 10.
The pulsons with s = 1 and 2 transform into the asymmetric stationary (stable) modes shown in Fig. 9.
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been sufficiently reduced. In this case the oscillatory behavior
fades out and the pulsons transform into the stable asymmetric
stationary states which are presented above in Sec. VI A
(in particular, they are flat for s = 0 and feature the vortex
shape for s = 1 and 2). For the case considered above (with
R0 = 20), the transition to the eventual stationary state occurs
at t ≈ 830, for all values of the spin.

VII. CONCLUSIONS

The objective of this work was to investigate fundamen-
tal DW (domain-wall) modes in the system of nonlinear-
Schrödinger/Gross-Pitaevskii equations, coupled by the linear
and XPM (cross-phase-modulation) terms. The system of
coupled equations has natural realizations in two-component
Bose-Einstein condensates, and in nonlinear optics, where the
two wave functions represent amplitudes of copropagating
signals with orthogonal polarizations. First, conditions pro-
viding for the stability of the uniform CW (continuous wave)
symmetric and asymmetric bimodal states, which support the
DW patterns, were identified, and then the general families
of DW solutions were constructed in the 1D setting. In
particular, approximate analytical solutions were found near
the symmetry-breaking bifurcation point of the CW states, and
an exact solution was found for the XPM/SPM ratio 3:1. The
DW states connecting asymptotically flat asymmetric states
which are mirror images to each other (without the change
of the overall sign) are stable, while all other types of the
DWs, which feature zero crossings (including dark solitons),
are unstable. Interactions between two DWs with opposite
polarities were also considered. The potential of the attraction
between them was found in the analytical form, and numerical
simulations have demonstrated that the attraction leads to
annihilation of the DW pair.

DWs trapped by the single- or double-potential peaks were
investigated, too. An exact solution for the DW trapped by a
single peak was found. In the general case, it was predicted and
corroborated by direct simulations that the bound state of the
DW placed at a maximum of the external potential is stable.
The interaction of two DWs in the presence of the single- and
double-peak potentials was also studied.

The analysis was extended to axisymmetric patterns in
the 2D geometry, including vortices carrying the topolog-
ical charge s = 1,2,3 and supported by the asymmetric
flat background at infinity. Stable stationary states for the
vorticity-carrying DW rings were found. The stability of the
vortices against azimuthal perturbations was verified through
computation of the corresponding eigenvalues. Oscillations
of annular DW-shaped pulsons were studied by means of
systematic simulations (the linear relation between the period
of the radial oscillations and largest radius of the annular DW
was obtained in an analytical form). The evolution of the
pulsons ends up with their relaxation into the stationary 2D
modes (vortices, for s = 0, or simply the flat asymmetric state
in the case of s = 0).

This work may be extended by a more systematic investi-
gation of the 2D system, without assuming the axial symmetry
of the patterns. In particular, oscillations of eccentricity in
elliptically deformed pulsons may be interesting to study (cf.
Ref. [36]). In 1D it may be also interesting to study in detail the
behavior of DWs against the backdrop of periodic potentials
(optical lattices), as well as in nonstationary systems with
time-dependent parameters.
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