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Nonlinear wave propagation in a gravitating quantum fluid
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The nonlinear wave propagation in a Bose-Einstein gravitationally condensate gas is investigated using a
gravitating quantum fluid model. The small-amplitude dynamics is shown to be governed by a Korteweg–de
Vries equation with a nonlocal term. The quantum effect provides the necessary dispersion, and the gravitational
effect is responsible for the nonlocal term. This novel equation is solved analytically. The implications of such a
soliton-like solution are outlined.
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I. INTRODUCTION

At very low temperatures, all particles (bosons) in a dilute
Bose gas confined in a trapping potential condense to the same
quantum ground state and form a Bose-Einstein condensate
(BEC) [1,2]. The BEC has been observed experimentally in
magnetically trapped dilute vapors of alkali metals [3,4]. In
most cases, the confining traps are well approximated by
harmonic potentials. In general, the phenomena associated
with BEC are studied by the Gross-Pitaevskii equation (GPE).
The GPE has also been used to develop the quantum hydro-
dynamical model [5–10] to study the dynamics of quantum
degenerate gases.

In the astrophysical context, the concept of BEC is intro-
duced to study the possible existence of Bose stars [11,12] as
well as, in the late-time cosmological phase transition theories,
to explain the dark matter physics [13,14]. The condensate
is described by the nonrelativistic GPE with Newtonian
gravitational potential as trapping potential (natural trap) or
by the gravitating quantum fluid equations [15,16].

Moreover, O’Dell et al. [17,18] have shown that the particu-
lar configuration of intense off-resonant laser beams introduces
a gravity-like attractive nonlocal interaction between atoms
within the laser wavelength, which gives rise to a stable BEC
without an additional trap. Actually, any particle that is trapped
in a sufficiently deep and wide potential well is settled in
quantum bound states. Recently, Nesvizhevsky et al. [19] have
shown experimentally the gravitational quantum bound states
of neutrons, where the gravitational field provides the neces-
sary confining potential well. This is experimental evidence,
where gravitational and quantum forces act simultaneously.
Thus, all of these studies suggest the possibility of realizing
the gravitating BEC in the laboratory.

The nonlinear structures such as envelope solitons (dark
and bright), vortices, etc., are investigated in BEC with the
harmonic trapping potential modeled by the GPE [20–23].
Also, it has already been shown [24] that a purely attractive
gravitational-like potential prevents the collapse of localized
waves and gives rise to the formation of localized structures
(solitons). Moreover, in the case of repulsive interactions
(s-wave scattering length as > 0: bosons are repulsive) when
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the internal energy (interaction energy) is very large compared
to the kinetic energy of the atoms, BEC is properly described
by hydrodynamic equations for superfluid at zero temperature,
where the pressure that arises due to short-range interactions
between particles is related to density by a barotropic equation
of state [1]. Therefore, in this paper we will discuss the weakly
nonlinear localized structures in one spatial dimension in a
BEC with gravitational attractive nonlocal trapping potential
using the reductive perturbation theory (RPT). The medium
is modeled as a gravitating quantum neutral fluid. Using the
RPT, we have derived a modified form of the Korteweg–
de Vries (KdV) equation. The modification occurs due to
the gravitational effects. It is interesting to note that unlike
the usual gravitating neutral fluid (dispersionless), here the
quantum diffraction term provides the necessary dispersion to
balance the wave-breaking nonlinearity and form soliton-like
structures.

This paper is organized as follows: In Sec. II, the basic
equations, linear dispersion relation, and the Jeans criteria for
instability are discussed. The nonlinear evolution equation is
derived in Sec. III. The gravitational effects on the soliton
solution of this nonlinear equation are discussed in Sec. IV.
The results are summarized and discussed in Sec. V.

II. BASIC EQUATIONS AND LINEAR MODE

To model the BEC, we assume that at zero temperature, all
the bosons have condensed, and consider the mean-field (fric-
tionless) analysis using the GPE in a homogeneous condensate
[1]. This equation has the form of the following nonlinear
Schrödinger equation with condensate wave function ψ(r,t):

ih̄
∂ψ(r,t)

∂t
=

[
− h̄2

2m
∇2 + Vext(r) + g | ψ(r,t) |2

]
ψ(r,t),

(1)

where g(=4πash̄
2/m and as is the s-wave scattering length.

Here as > 0, as we have considered the repulsive self-
interactions), is the coupling constant, m is the boson mass,
and Vext(r) is the external (trapping) potential to realize
Bose-Einstein condensation [1]. We know that the BEC
occurs when de Broglie wavelength λDB � as . However, in
the presence of the gravitational trap (no additional trap is
required), a stable BEC can be formed only if a∗ � λDB � as ,
where a∗ = 4π2h̄2/mu is the Bohr radius associated with
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gravitational coupling u (characteristic values: a∗ ∼ 10 cm,
λDB ∼ 10−5 − 10−3 m, and as ∼ 3 nm) [17,18]. These in-
vestigations lead us to assume Vext = VG, the gravitational
potential. The above equation is coupled with the Poisson
equation for VG. For a homogeneous medium, there is an
ambiguity in defining the equilibrium of this Poisson equation.
To define the equilibrium in a gravitating system, the concept
of the “Jeans swindle” [25–27] is usually introduced. However,
to define this equilibrium here, we consider [28] the following
Poisson equation for the gravitational potential VG:

∇2VG = 4πG (ρ − ρ0) , (2)

where ρ = mn|ψ(r,t)|2 is the mass density, ρ0 is its equi-
librium value, and n is the total number of bosons in the
condensate.

In the standard approach [1] to BEC, we use the Madelung
transformation: ψ(r,t) = √

ρ(r,t)/m exp [iS(r,t)/h̄], where
S(r,t) has the dimension of an action. Defining the irrotational
flow velocity v = ∇S/m(∇ × v = 0) and then substituting
this transformation into Eq. (1), we obtain the gravitating
quantum fluid (superfluid) equations [15,16]: The mass density
conservation and momentum equation can be written as

∂ρ

∂t
+ ∇ · (ρv) = 0, (3)

ρ

[
∂v
∂t

+ (v · ∇)v
]
=−∇p − ρ∇VG + h̄2ρ

2m2
∇

(
1√
ρ

∇2√ρ

)
,

(4)

where p is the pressure and the term containing h̄2 is the
quantum potential (Bohm potential) [29]. In the hydrodynam-
ical (superfluid) model for BEC, the pressure p is related to
the mass density ρ by the following barotropic equation of
state [1,2]:

p = 1

2
g

(
ρ

m

)2

=
(

2πash̄
2

m3

)
ρ2. (5)

It should be noted that in a BEC, at zero temperature,
the pressure arising in the hydrodynamic equation (4) is
totally different from the pressure of a normal fluid at finite
temperature. In BEC, the pressure term arises directly from the
short-range interactions between the particles (bosons) and is
not due to the thermal motion. This is the case, in particular, in
which the hydrodynamic equation derived for the BEC can be
referred to as the hydrodynamic equations of superfluid [1].

Combining Eqs. (2) and (4), together with Eq. (5), we have

∇ ·
[
∂v
∂t

+ (v · ∇)v + c2
s

ρ0
∇ρ − h̄2

2m2
∇

(∇2√ρ√
ρ

)]

= −4πG (ρ − ρ0) , (6)

where cs(=
√

gρ0/m2 = √
gn/m) is the velocity of sound [1].

The linear dispersion relation is well known, and can
be obtained from linearized equations (3) and (6) about
equilibrium values v = 0 and ρ(r,t) = ρ0. Using the standard
Fourier mode solution for the perturbations, the following
dispersion relation can be obtained:

ω2 = c2
s k

2 − ω2
J + h̄2k4

4m2
= c2

s

(
k2 − k2

J + H 2
Qλ2k4

)
, (7)

where k = |k|, ωJ (=√
4πGρ0) is the Jeans frequency,

kJ (=ωJ /cs) is the Jeans wave number, λ(=2π/k) is the pertur-
bation wavelength, and HQ[=h̄/(2mcsλ)] is a dimensionless
quantum parameter. This is the gravitational analog of the
Bogoliubov energy spectrum of a weakly interacting quantum
fluid [30]. The above dispersion relation describes the quantum
counterpart of the classical acoustic mode in a gravitating
medium and a correction from quantum diffraction effects.
Also, this quantum diffraction makes the wave dispersive.

The solution of the above dispersion relation can be written
as

ω = ±ics

√
k2
J − k2

(
1 + H 2

Qλ2k2
)
. (8)

This clearly suggests that the presence of quantum diffraction
effects in a self-gravitating quantum fluid contributes to its
stability against perturbations in gravitational potential by
reducing the instability growth rate as obtained earlier for
quantum degenerate gravitating gases [31,32]. In the case
of the Thomas-Fermi approximation [1,33], Eq. (8) simply
becomes the ordinary Jeans instability condition [25] that
exhibits stability (instability) for perturbation with k > (<)kJ .
Thus, the system is stable only if the Jeans wave number (kJ ) <

the perturbation wave number (k). In other words, as long as
the perturbation wavelength (λ = 2π/k) is less than the Jeans
length (λJ = 2π/kJ ), the system is stable. In the next section,
we investigate the weakly nonlinear localized structures for
the perturbations kJ � k (stable case).

III. NONLINEAR EVOLUTION EQUATION

To investigate the weakly nonlinear localized structures, we
consider one spatial dimension (generalization to more spatial
dimension is trivial), namely, the x direction. Throughout this
paper we use the following normalizations: x̄ = x/λ (λ is the
wavelength of the perturbations), t̄ = cst/λ, ρ̄ = ρ/ρ0, v̄ =
v/cs . Hereafter we will use these new variables and remove
all the bars for simplicity of notation. From Eqs. (3) and (6),
we obtain

∂ρ

∂t
+ ∂

∂x
(ρv) = 0 (9)

and

∂

∂x

[
∂v

∂t
+ v

∂v

∂x
+ c2

s

∂ρ

∂x
− 2H 2

Q

∂

∂x

(
1√
ρ

∂2√ρ

∂x2

)]

= −
(

λ

λJ

)2

(ρ − 1). (10)

For weak perturbations, the reductive perturbation technique
[34] is employed and the following stretched coordinate is
introduced:

ξ = √
ε(x − t), τ = ε3/2t, (11)

where ε is a small nonzero parameter proportional to the
amplitude of the perturbation. The dynamical variables ρ and
v are expanded about their equilibrium value in a power series
of ε in the following way:

v = εv(1) + ε2v(1) · · · ; ρ = 1 + ερ(1) + ε2ρ(2) + · · · . (12)
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With the new independent coordinates (11) and the perturba-
tion expansion (12), we transform the continuity equation (8)
and the modified momentum conservation equation (10) into
a set of two equations in the form of a power series in ε. The
resulting system can be written as

∂

∂ξ
(v(1) − ρ(1)) + ε

[
∂ρ(1)

∂τ
+ ∂

∂ξ
(v(2) + ρ(1)v(1) − ρ(2))

]

= O(ε2), (13)

∂2

∂ξ 2
(ρ(1) − v(1)) + ε

∂

∂ξ

(
∂v(1)

∂τ
+ ∂

∂ξ
(ρ(2) − v(2)) + v(1) ∂v(1)

∂ξ

−H 2
Q

2

∂3ρ(1)

∂ξ 3

)
+ ε

[
ε−2

(
λ

λJ

)2]
ρ(1) = O(ε2). (14)

This perturbation expansion (14) shows that to include the
gravitational effect, and also for the perturbation consistent
with that of (11) and (12), we must have the following scaling:

λ

λJ

∼ O(ε) ⇒
(

λ

λJ

)2

∼ O(ε2). (15)

Note that we consider the stable case where kJ � k. Therefore,
the above scaling is also consistent with our assumption that
perturbation wavelength λ � Jeans length λJ .

Equations (13) and (14) are to be satisfied to all orders in
ε. The zeroth-order terms subject to the boundary conditions
ρ(1),v(1) → 0 as ξ → −∞ give the following relations:

ρ(1) = v(1). (16)

Finally, the first-order terms in ε together with relation (16)
yields the following modified (by the gravitational effect) form
of the KdV equation:

∂

∂ξ

[
∂ρ(1)

∂τ
+

(
3

2

)
ρ(1) ∂ρ

(1)

∂ξ
−

(
H 2

Q

4

)
∂3ρ(1)

∂ξ 3

]
+ γρ(1)=0,

(17)

where

γ = 1

2

(
λ

λJ

)2

. (18)

The above equation (17) can be written in the following form
after the integration with respect to ξ in the interval (−∞,ξ ]
subject to the boundary condition that all the perturbed
variables and their derivatives vanish at ξ = −∞:

∂ρ(1)

∂τ
+

(
3

2

)
ρ(1) ∂ρ

(1)

∂ξ
−

(
H 2

Q

4

)
∂3ρ(1)

∂ξ 3

+ γ

∫ ξ

−∞
ρ(1)dξ́ = 0. (19)

From the above Eq. (17) or (19), we see that only the quantum
diffraction (term ∝ HQ) is responsible for the dispersion of
the nonlinear wave. This can also be seen from the linear
dispersion relation (7). Thus, in a Bose-Einstein gravitational
condensate gas, the quantum diffraction could balance the
wave-breaking nonlinearity to form a stable nonlinear struc-
ture. In the next section, we derive the soliton solution of the

above modified form of the KdV equation and also find the
effects of gravity on it.

IV. SOLITARY WAVE SOLUTION

In the absence of gravitational effects, i.e., for γ = 0, from
Eqs. (17) or (19) we recover the KdV equation with negative
dispersion for the weakly nonlinear wave. One can obtain
the usual KdV equation with positive dispersion by replacing
ρ(1) → −ρ(1) and ξ → −ξ [35]. The sign of dispersion only
determines the direction of propagation of the wave; therefore
the KdV equation can be equally applied to a medium with
negative dispersion [35]. The difference between the KdV
equations with positive and negative dispersion is in the
direction of propagation only [35,36]. The usual KdV equation
represents a completely integrable Hamiltonian system that has
an infinite set of conservation laws [35,37]. Let us consider
the energy conservation law: Multiplying the KdV equation
[Eq. (19) with γ = 0] by ρ(1)(ξ,τ ) and then integrating
the resulting equation with respect to ξ within the interval
(−∞,∞) subject to the solitary wave boundary conditions
ρ(1)(ξ,τ ),∂ξρ

(1)(ξ,τ ) and ∂2
ξ ρ(1)(ξ,τ ) (∂ξ partial derivative with

respect to ξ ) all → 0 as |ξ | → ∞, the following energy
equation is obtained:

∂W

∂τ
= 0, W = 1

2

∫ ∞

−∞
ρ(1)2

(ξ,τ )dξ, (20)

where W is the soliton energy. This shows that in the absence
of γ (γ = 0), the soliton energy W is conserved and thus
possesses the single soliton solution,

ρ(1) (ξ,τ ) = −Nsech 2

(
ξ + Uτ

�

)
, (21)

where U is the soliton velocity, N is the dimensionless soliton
amplitude, and � is the dimensionless spatial width of the
soliton. The relations between the different soliton parameters
N , U , and � are as follows:

U = N

2
, � = HQ√

N
. (22)

This shows that as the soliton amplitude increases, the velocity
also increases, and consequently spatial width decreases so
that N�2 = H 2

Q. However, in the presence of gravity (γ �= 0),
Eq. (19) does not possess a completely integrable Hamiltonian.
In other words, the energy of the system is not conserved,
and in the presence of γ , the above energy equation (20)
becomes

∂W

∂τ
= −γ

∫ ∞

−∞
ρ(1)(ξ,τ )

[∫ ξ

−∞
ρ(1)(ξ ′,τ )dξ ′

]
dξ. (23)

Now, in presence of gravity, following the perturbation pro-
cedures of Refs. [38–40] with γ (∼O(ε2)) � 1 as a perturbed
parameter, a slow time-dependent form of the solution given
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in Eq. (21) is considered:

ρ(1) (ξ,τ ) = N (τ )sech 2

(
ξ + U (τ )τ

�(τ )

)
. (24)

Finally, substitution of (24) in (23) yields the following
expressions of soliton amplitude and width of the soliton:

N (τ ) = N (0)

(
1 − τ

τ0

)2

, �(τ ) = �(0)

(1 − τ/τ0)
. (25)

The soliton energy is given by

W (τ ) = 4

3
N (0)2�(0)

(
1 − τ

τ0

)3

, (26)

where

τ−1
0 = γ�(0); �(0) = HQ√

N (0)
, (27)

where N (0) = N (τ = 0) > 0 is the initial amplitude and �(0)
is the initial spatial width of the soliton. It should be noted that
for a soliton solution to exist one must have � > 0 and soliton
energy W (τ ) > 0; therefore, the above solutions Eqs. (25) and
(26) are physically valid only for τ � τ0. Otherwise both �

and W become negative and no soliton solution exists.
Thus, the above solution reveals that the gravitational effect

causes the soliton amplitude N (τ ), soliton energy W (τ ), and
soliton velocity U (τ ) to decay with time (τ ) according to
Eqs. (25) and (26), whereas the soliton width increases with
time according to (25). But the product of the amplitude and
the square of the width remains constant [N (τ )�(τ )2 = H 2

Q].
All of the above physical phenomena are shown graphically
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FIG. 1. (Color online) Solitary wave structures in a self-
gravitating quantum fluid at different time.

in Fig. 1. The amplitude decay for the soliton is fairly heavy;
formally speaking, the soliton amplitude completely vanishes
at a finite time,

τc = 1

γ�(0)
=

(
λJ

λ

)2 (√
N (0)

HQ

)
. (28)

In reality, Eqs. (25) and (26) are no longer valid when the
soliton amplitude approaches zero and its energy becomes
extremely low. However, the value of τc provides a good
estimation of a characteristic lifetime of a soliton in a
Bose-Einstein gravitational condensate gas. Thus, the solitonic
structures exist for 0 � τ < τc.

V. SUMMARY AND DISCUSSION

In this paper, we analyze the weakly nonlinear localized
structures in a homogeneous BEC in a gravitational trap. For
this, we consider a Bose-Einstein gravitational condensate gas
described by the gravitating quantum fluid equations. Quantum
diffraction due to tunneling effects gives rise to dispersion for
which the nonlinear wave is governed by a Korteweg–de Vries
equation with a nonlocal term that arises due to gravity for
perturbation wavelength much smaller than the Jeans length
(λ � λJ ). This nonlinear equation is solved analytically with
the help of the energy conservation principle. The analytical
solution shows that the gravitational effect causes the ampli-
tude, energy, and velocity of the soliton to decay with time. But
the product of the soliton amplitude and square of the width
remains constant. The physics underlying this decay can be
explained in the following way: In a gravitating system, there
is a competition between the pressure force pointing outward
and gravity pulling inward. As long as Jeans wave number
kJ < k (i.e., λ < λJ ), the system is stable and perturbation
behaves similarly to a sound wave with decreasing phase
velocity. This can easily be seen from the linear dispersion
relation

ω2 = k2c2
s

(
1 − k2

J

k2

)
,

with h̄ → 0. This relation is an indication of decrease
of wave energy due to this gravitational effect. This de-
crease is manifested in our weakly nonlinear calcula-
tion with an effective term proportional to γ (≡k2

J /k2).
Jeans wave number kJ (or Jeans length λJ ) is an indi-
cator of which of these factors is more important for a
given mode. In the region k < kJ (λJ < λ), perturbations
grow exponentially with time and Jeans instability occurs
[25–27].

The analytical solution shows that a rarefactive soliton
exists in this system. The lifetime τc of a soliton is also
derived. This lifetime is proportional to the square of
the ratio of the Jeans length to perturbation wavelength,
whereas it is inversely proportional to the quantum diffraction
effect.

Recently, numerical simulation has predicted the formation
of solitonic structures in cold dark matter [41]. Thus our
findings may be relevant to study the density localization
as well as energy localization in cold dark matter, which
is thought to be an Bose-Einstein gravitational condensate
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gas. In this connection, we must mention that we have
not yet encountered experimental observations of BEC in a
gravitational trap. It would be very interesting to look at this
situation in a laboratory. However, we hope that in the future
this type of a nonlinear phenomena associated with BEC could
be observed in experiment.
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