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Drift wave turbulence in the presence of a dust density gradient
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We present turbulent properties of electrostatic drift waves in a nonuniform collisional plasma composed of
magnetized electrons and ions in the presence of immobile dust particles. For this purpose, we derive a pair of
nonlinear quasi-two-dimensional equations exhibiting the coupling between the generalized ion vorticity and the
density fluctuations associated with collisional drift waves. The effect of a dust density gradient on the initial
drift instability and fully developed turbulence is examined numerically.
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I. INTRODUCTION

Low-frequency (in comparison with the ion gyrofrequency)
electrostatic drift waves in a nonuniform collisionless mag-
netized electron-ion plasma are supported by inertialess
electrons and inertial ions [1]. In the pseudo-three-dimensional
(3D) drift wave electric field E = −∇φ, where φ is the
wave potential, the electrons have a helical trajectory due
to their vE = (c/B2

0 )E × B0 and vD = −(ckBTe/eB
2
0ne)B0 ×

∇ne drift motions in a plane perpendicular to the external
magnetic field B0 = ẑB0 as well as their rapid motion along
the external magnetic field direction where ẑ is the unit vector
along the z axis in a Cartesian coordinate system, B0 is the
strength of the magnetic field, c is the speed of light in
vacuum, kB is the Boltzmann constant, e is the magnitude
of the electron charge, Te is the electron temperature, and
ne is the electron number density. Furthermore, the motion
of the two-dimensional ions in a plane perpendicular to the
axial direction is governed by the vE and the polarization
vp = −(c/B0ωci)dt∇2

⊥φ drifts where we have denoted dt =
∂t + vE · ∇, ωci = eB0/mic is the ion gyrofrequency, and mi

is the ion mass.
Hence, the electron and ion density fluctuations are different

due to the differential electron and ion motions in a magnetized
plasma with an equilibrium density gradient. The resulting
space charge separation, in turn, causes dispersive drift
oscillations to propagate across the homogenous magnetic field
and density gradient directions. In a collisional electron-ion
magnetoplasma, dispersive drift waves are excited by the
combined action of the density inhomogeneity and electron-
ion collisions. The latter produce a phase lag between the
magnetic field-aligned electron velocity perturbation as well as
the drift wave potential and the electron density perturbation.
As a result, drift waves grow exponentially, extracting energy
from the equilibrium density gradient. It is understood that
nonthermal drift waves cause anomalous cross-field diffusion
of the plasma particles [1–3]. The plasma particle confinement
is significantly improved if there are cylindrically symmetric
zonal (sheared) flows [4–6] that are nonlinearly excited by
finite amplitude dispersive drift waves in plasmas. Thus, zonal
flows act like a transport barrier [7].

Charged dust impurities are common in space and labora-
tory plasmas [8–10]. The presence of charged dust grains in an
electron-ion plasma modifies the equilibrium quasineutrality
condition ni0 = ne0 + εZdnd0 where nj0 is the unperturbed
number density of the particle species j (j equals i for ions, e

stands for electrons, and d stands for charged dust grains), Zd

is the number of constant charges residing on dust, and ε =
1 (−1) is for negative (positive) dust. Due to the modification
of the quasineutrality condition, the difference between the
divergence of the electron and the ion fluxes involving the
VE drift is finite. This leads to a flutelike Shukla-Varma (SV)
mode [11] in a nonuniform dusty magnetoplasma. The SV
mode governs the dynamics of the ion vorticity, which evolves
in the form of a dipolar vortex.

In this paper, we present an investigation of the pseudo-3D
dissipative drift wave turbulence in a nonuniform collisional
dusty magnetoplasma composed of the electrons, ions, and
stationary charged dust grains. By using the two-fluid model
and the guiding center drift approximation (viz. |d/dt | � ωci),
we derive a pair of nonlinear generalized Hasegawa-Wakatani
(HW) equations [12] governing the evolution of the potential
and density fluctuations associated with the low-frequency (in
comparison with ωci) long wave length (in comparison with
the thermal ion gyroradius) collisional drift waves in our dusty
plasma.

Generalized HW type equations in the presence of dust
have been derived before and have been analyzed linearly in
Refs. [13] and [14]. A linear analysis of dissipative drift modes
in the presence of a dust density gradient has been presented
in Ref. [15] and has been discussed further in Ref. [16] with
respect to nonmodal growth, including dust charging effects.

The work presented in Refs. [13–16] (and others for similar
topics) has shown that a dynamically variable dust charge
can have a profound effect on linear drift wave stability. In
a comprehensive dusty plasma turbulence model, therefore,
the charging process should be taken into account. Here, we
have refrained from including the charging process in order
not to multiply the number of free parameters beyond what is
absolutely necessary. While we recognize that this, indeed,
would be a worthwhile effort, it is another kind of study
itself. An important point why we have so far refrained from
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performing this study ourselves is the many uncertainties
related to the dust grain charging model for a nonuniform
collisional magnetoplasma that have been used so far. In
particular, the dust grain charging is a dynamical process
and requires a complete kinetic theory for fluctuating (in the
electrostatic field of pseudo-3D drift waves) electron and ion
currents that reach the surface of dust grains in our plasma.

In the following, we study turbulence properties of the
modified (by the presence of charged dust particles) drift waves
in a nonuniform collisional magnetoplasma with static charged
dust impurities. Thus, we are assuming that the timescales for
the excitation of drift waves and their evolution are much
shorter than the dust plasma and dust gyroperiods and much
longer than the electron-ion relaxation period.

Furthermore, the assumption of constant dust charge would
remain valid since the dust grain charging frequency is
typically much larger than the modified drift wave frequency.
Thus, our nonlinear simulation study of the dissipative drift
wave turbulence is based on a slightly different set of dusty
HW-SV equations compared to Refs. [13–16], excluding dust
charge fluctuation effects. Our simulation results reveal that
the equilibrium dust density gradient controls the formation of
turbulent structures and the associated cross-field transport of
the plasma particles in a nonuniform dusty magnetoplasma.

The paper is organized in the following fashion. In
Sec. II, we derive the governing nonlinear equations for the
low-frequency (in comparison with the ion gyrofrequency)
dissipative drift wave turbulence in a nonuniform dusty
magnetoplasma composed of magnetized electrons and ions,
as well as unmagnetized stationary charged dust grains. We use
the two-fluid equations in the guiding center approximation to
derive a pair of nonlinear equations that exhibits coupling
between the plasma density perturbation and the drift wave
potential. Section III presents a local linear dispersion relation
and its analysis. Governing equations for nonlinearly inter-
acting finite amplitude drift waves are analyzed numerically
in Sec. IV. Vortex development is discussed in Sec. V, the
turbulent state is reviewed in Sec. VI, and a summary and
discussions are contained in Sec. VII.

II. NONLINEAR DRIFT WAVE EQUATIONS

Let us consider the electrostatic drift waves with the electric
field E = −∇⊥φ − ẑ∂zφ in a plasma with a uniform magnetic
field ẑB0 and the equilibrium density gradient ∂xnj0. In a low-β
(β = 8πne0kBTe/B

2
0 � 1) plasma, the electron and ion fluid

velocities for |d/dt | � ωci,νe are, respectively,

ue ≈ c

B0
ẑ × ∇φ − ckBTe

eB0ne

ẑ × ∇ne + ẑuez, (1)

and

ui ≈ c

B0
ẑ × ∇φ − c

B0ωci

(
d

dt
+ νi

)
∇⊥φ, (2)

with the magnetic field-aligned electron fluid velocity pertur-
bation given by

uez = e

meνe

∂

∂z

(
φ − kBTe

e

ne1

ne0

)
, (3)

where me is the electron mass, νe (�ωce = eB0/mec) is the
electron-ion collision frequency, νi is the ion-neutral collision
frequency, and ne1 = ne − ne0 (�ne0) is a small perturbation
in the electron number density. The two-dimensional (2D) ions
are assumed to be cold. The assumption of 2D ions ensures
the decoupling of the dust ion-acoustic and drift waves.

Inserting Eqs. (1)–(3) into the electron and ion continuity
equations, we obtain the evolution equations for the elec-
tron and ion number density perturbations ne1 (�ne0) and
ni1 (�ni0), respectively,

dne1

dt
− c

B0
ẑ × ∇ne0 · ∇φ + ne0e

meνe

∂2

∂z2

(
φ − kBTe

e

ne1

ne0

)
,

(4)
and

dni1

dt
− c

B0
ẑ × ∇ni0 · ∇φ − cni0e

B0ωci

(
d

dt
+ νi

)
∇2

⊥φ. (5)

Now, subtracting Eq. (5) from Eq. (4), we obtain the
generalized ion vorticity equation,

(
d

dt
+ νi

)
∇2

⊥φ + ωciKd

∂φ

∂y
+ 	2

LH

νe

∂2

∂z2

(
φ − kBTe

e

ne1

ne0

)
,

(6)
where Kd = (εZdc/B0ni0)∂xnd0, 	LH = (ωceωci/α)1/2 is
the lower-hybrid resonance frequency in our dusty plasma,
the drift scale is ρs = cs/ωci , and cs = (αkBTe/mi)1/2 is the
modified ion-sound speed [17], with α = ni0/ne0 > 1.

We note that the Kd term arises due to a nonzero value
coming from the difference between the divergence of the
electron and the ion fluxes involving the (c/B0)E × ẑ drift in
our nonuniform dusty plasma. In the absence of the magnetic
field-aligned electron motion, Eq. (6) describes the dynamics
of the SV mode [11]. In a quasineutral dusty plasma with
immobile charged dust grains, Eqs. (4) and (6) are closed
with the help of ni1 = ne1 ≡ n1, which is valid as long as
the frequency (wavelength) of the drift waves is much higher
than the plasma and dust gyrofrequencies (the electron Debye
radius).

It is appropriate to normalize the wave potential φ by
kBTe/e, the density perturbation n1 by ne0, as well as the
time and space variables by the ion gyroperiod ω−1

ci and
the effective ion sound gyroradius ρs , respectively. Then, the
governing nonlinear equations for the collisional drift waves
in our nonuniform dusty magnetoplasma are

(
d

dt
+ γ

)
	 + a

∂φ

∂y
− g(φ − n) = 0, (7)

dn

dt
+ b

∂φ

∂y
−

(
d

dt
+ γ

)
	 = 0, (8)

where 	 = ∇2
⊥φ, n = n1/ne0, γ = νi/ωci, a = Kdρs , and

b = Kiρs , where Ki = −(1/ne0)∂ni0/∂x > 0. We have
Fourier decomposed the drift wave potential and electron
density perturbations along the z axis but have kept their
variations in the x-y plane so that g = k2

zωce/νeα is the
dissipative coupling coefficient. Equations (7) and (8) are
the generalization of the HW equations [12]. The latter are
recovered in the limits a = 0 and γ = 0.
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FIG. 1. (Color online) Growth rate ωI (k,a) as a function of wave
number k and dust density gradient a. Black marks the region of
stability.

III. LINEAR DISPERSION RELATION

Linearization of Eqs. (7) and (8) with an ansatz φ,n ∼
exp[−iωt + ik · x] obtains the dispersion relation,

ω2k2 + ωA − γgk2 + iωG − igB, (9)

where A = aky, B = bky , and G = gk2 + γ k2 + g. Inserting
ω = ωR + iωI and solving the imaginary part of the dispersion
relation for ωI � ωR results in the real frequency,

ωR = gB

G
= bky

1 + (1 + γ /g)k2
. (10)

The growth rate is obtained from the real part as

ωI = −1

Kk

{
1 ∓

√
1 + K2

[(
ω2

R + γg
)
k2 + AωR

]}
, (11)

with K = 2k/G. Only the negative root is relevant for unstable
solutions (ωI > 0). Instability, thus, occurs if(

ω2
R + γg

)
k2 + AωR > 0. (12)

This always is achieved if AωR ∼ AB ∼ ab � 0. The usual
resistive drift wave instability (expressed by the first term),
thus, is enhanced for co-aligned gradients with a > 0 if b > 0.

The growth rate is reduced for counteraligned gradients.
Drift modes are damped (ωI < 0) for a large counteraligned
dust density gradient when |a| > [k/(1 + k2)]2|b|. For k = 1,
this corresponds to a < −b/4. As drift wave turbulence is most
active around k ≈ 1, it can be expected that (for b ≡ 1) the
turbulence is damped strongly for a < −0.25 and is enhanced
approximately proportional to

√
a for positive a.

In Fig. 1, the growth rate ωI (k,a) is plotted as a function of
wave number and dust density gradient.

IV. NONLINEAR NUMERICAL SOLUTIONS

For numerical simulations, we write Eqs. (7) and (8) as

∂t	 + [φ,	] = −a ∂yφ − γ 	 + g (φ − n), (13)

∂tn + [φ,n] = −(b + a) ∂yφ + g (φ − n), (14)

where the advection nonlinearity [A,B] = ẑ × ∇A · ∇B is
expressed in terms of the Poisson brackets. The equations
are solved numerically with a third order Karniadakis time
stepping scheme in combination with the Arakawa method for
the Poisson brackets [18–20]. Hyperviscous operators ν4∇4

with ν4 = −2 × 10−4 are added to the right-hand side of both

Eqs. (13) and (14) for numerical stability, acting on 	 and n,
respectively. The Poisson equation is solved spectrally.

The equations are for the turbulence computations dis-
cretized on a doubly periodic 512 × 512 grid with box dimen-
sion Lx = Ly = 64ρs . The initial drift wave development is
computed on a 128 × 256 grid with box dimensions Lx = 64ρs

and Ly = 128ρs . Nominal plasma parameters are g = 0.5 and
b = 1.

V. VORTEX DEVELOPMENT

First, we study the initial evolution of a drift wave growing
out of a density perturbation in the presence of a dust
density gradient a. The ion viscosity is set to γ = 0.1. A
Gaussian density perturbation is initialized with amplitude
n = 1, which generates a potential perturbation of the same
initially Gaussian form. This leads to the formation of an
E × B0 drift vortex where the plasma is convected around
the perturbation.

For a = 0, the usual drift wave dynamics is encountered,
which is shown in Fig. 2(a): The singular density structure
(t = 0, left frame) propagates in the electron diamagnetic drift
direction (upward, in the positive y direction) and generates
drift wave structures in its wake, which are shown for times
t = 25 (middle frame) and t = 50 (right frame). At a later
stage, via secondary instabilities, the drift wave nonlinearly
develops into a saturated turbulent state, whose properties are
discussed in the next section.

In Fig. 2(b), the evolution for a = −0.5 is shown: The
vortex is elongated in the y direction, while the structure
propagates but is damped. The mode is still damped when
the viscosity γ is set to zero and the initial amplitude is set to
n0 = 10.

Figure 2(b) shows the case of a = +0.5: The structure is
much slower when propagating in the y direction but forms
a nearly standing drift wave structure, which is elongated in
the x direction, and grows fast in amplitude until nonlinearly
secondary modes form by the Kelvin-Helmholtz breakup of
the streamers.

The linear and nonlinear developments of the drift wave
perturbations, thus, strongly depend on the sign of the dust
density gradient. Co-alignment of the plasma density gradient
with the dust density gradient enhances the mode growth, while
counteralignment is strongly damped.

VI. TURBULENT STATE

The computations are started from a random quasiturbulent
spectral bath and are run into saturation. The spectral bath is
generated by initializing the density field in Fourier space by
(within some range) random amplitudes that approximately
follow a power law spectrum. In this way, all k modes are
excited from the start, and a fully developed turbulent state is
reached rather rapidly in the simulation.

Statistical averages are taken in the interval between 200 �
t � 1000, which, for all parameters, is well in the saturated
regime.

The turbulent activity can be characterized by the
potential energy U = (1/2)

∫
dV n2, the kinetic energy

K = (1/2)
∫

dV (∇φ)2, and the generalized enstrophy W =
(1/2)

∫
dV (n − 	)2. The mean of these energetic quantities
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FIG. 2. (Color online) Development of a drift vortex with an
initial Gaussian density perturbation n(x,y) in the presence of a dust
density gradient a for (left) t = 0, (middle) t = 25, and (right) t = 50:
(a) a = 0, (b) a = −0.5, and (c) a = +0.5. Note: The amplitude scale
(density perturbations in drift scaled units) for n(x,y) in case (c) is
30 times larger than in (a) and (b).
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FIG. 3. The potential energy U (bold curve), the kinetic energy
K (thin curve), and the generalized enstrophy W (dashed curve) as a
function of the dust density gradient a.
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together with the standard deviation of the fluctuations in the
saturated state are displayed in Fig. 3 for various values of the
dust gradient parameter a.

The turbulent energies closely follow the predictions from
the linear analysis: Negative values of a (counteraligned
gradients) have a strong damping influence on the turbulent
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FIG. 5. (Color online) Density (left) n(x,y) and (right) vorticity
	(x,y) for (a) a = 0, (b) a = 1, and (c) a = −0.2. Only a quarter of
the actual computational domain is shown here.
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fluctuations. Co-aligned gradients enhance the drive of the
drift wave turbulence.

The wave number spectra |n(ρskx)|(ρskx)3 are shown in
Fig. 4. The standard HW case (a = 0, bold line) is arbitrarily
scaled to 1. For a co-aligned dust density gradient (a = 1,
thin line), modes around 0.5 � ρskx � 1 on the order of a few
drift scales ρs are pronounced more strongly in relation. For
counteraligned gradients (a = −0.2, dashed line), the smaller
scales are most strongly damped.

This change in structural scales is also visible in 2D x-y
plots of density perturbations (left column) and vorticity (right
column) in Fig. 5. The top row shows the standard case for
a = 0 of the typical drift wave turbulence. In the middle
row, a strong co-aligned dust density gradient a = 1 leads
to a stronger perturbation of structures at smaller scales,
visible by a more frayed out density field (contour line
drawn for n = 0) and more strongly pronounced small-scale
vorticity structures. The bottom row shows the case of a =
−0.2 with counteraligned gradients where quasilinear drift
wave structures appear, which extend in the x direction and
propagate in the y direction.

VII. SUMMARY AND DISCUSSIONS

Summarizing, we have investigated the properties of
nonlinearly interacting finite amplitude electrostatic drift
waves in a nonuniform collisional dusty magnetized plasma
composed of 3D magnetized electrons, 2D magnetized ions,
and immobile charged dust impurities. The dynamics of the
dissipative drift wave turbulence in our model of a dusty
magnetized plasma is governed by generalized HW equations

In the latter, one encounters nonlinear coupling between the
quasineutral electron density fluctuation and the ion vorticity
that are driven by the combined action of the dust density
gradient and a dissipative electron current arising from the
magnetic field-aligned electron motion reinforced by the
parallel electric force and the parallel variation in the electron
pressure perturbation for the constant electron temperature.

Numerical simulations of the governing nonlinear equa-
tions reveal features of the fully developed drift wave turbu-
lence. The presence of a co-aligned dust density gradient is
found to enhance the drift wave turbulence and the cross-field
plasma particle transport. On the other hand, counteraligned
gradients lead to a damping of the drift fluctuations. Thus,
the dust density inhomogeneity plays a decisive role in the
formation of drift wave vortex structures in nonuniform dusty
magnetized plasmas.

In conclusion, we stress that the present results should be
helpful in understanding the features of the fully developed
low-frequency drift wave turbulence that might emerge from
the forthcoming laboratory dusty plasma experiments in an
external magnetic field and from nonuniform magnetized
space dusty plasmas.
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