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Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses
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The generation of ultrastrong attosecond pulses through laser-plasma interactions offers the opportunity to
surpass the intensity of any known laboratory radiation source, giving rise to new experimental possibilities,
such as quantum electrodynamical tests and matter probing at extremely short scales. Here we demonstrate that
a laser irradiated plasma surface can act as an efficient converter from the femto- to the attosecond range, giving
a dramatic rise in pulse intensity. Although seemingly similar schemes have been described in the literature,
the present setup differs significantly from the previous attempts. We present a model describing the nonlinear
process of relativistic laser-plasma interaction. This model, which is applicable to a multitude of phenomena, is
shown to be in excellent agreement with particle-in-cell simulations. The model makes it possible to determine
a parameter region where the energy conversion from the femto- to the attosecond regime is maximal. Based on
the study we propose a concept of laser pulse interaction with a target having a groove-shaped surface, which
opens up the potential to exceed an intensity level of 1026 W/cm2 and observe effects due to nonlinear quantum
electrodynamics with upcoming laser sources.
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I. INTRODUCTION

Recent progress in ultrahigh-power laser technology has
resulted in pulse intensities surpassing 1022 W/cm2 [1] and
stimulated the construction of multi-petawatt laser sources [2].
Such lasers open up opportunities for studying both a number
of fundamentally new problems, such as the effects of vacuum
nonlinearities [3–5] in laser fields and photonuclear physics,
as well as some very important applications, for example,
laser based particle acceleration, fast ignition fusion schemes,
and the generation of electromagnetic radiation with tailored
properties.

Given this, the study of overdense plasmas irradiated by
relativistically intense laser pulses is a very important and chal-
lenging research trend. Numerical studies using the particle-
in-cell approach, with allowance for most important effects for
the typical range of parameters, are known to be an excellent
tool in this field, and the numerical results in general agree
well with the experimental results. Furthermore, the so-called
nonlinear fluid model [6] gives a set of equations analytically
describing such processes, but the strongly nonlinear plasma
behavior, due to the ultrarelativistic motion of the plasma
electrons, makes the development of theoretical approaches a
highly complicated task. Thus, one is normally forced to limit
oneself to qualitative analyses and use a phenomenologically
motivated ad hoc treatment.

The generation of high harmonics from intense laser-
plasma interactions is an intensely studied research field, with
manifold applications [7], including the idea of reaching the
extreme intensities needed to probe vacuum nonlinearities
using lasers [8–12]. As of today, the most prominent theoretical
model used in the analysis of such high-order harmonics
generation (HHG) is the so-called oscillating mirror model
(OMM). In the OMM, one considers the backradiation from an
overdense plasma by taking into account the retarded emission
from the oscillating source. This approach was first proposed
by Bulanov et al. [13] and developed further in Refs. [14,15].
Lately, the OMM approach has been reexamined by Gordienko

et al. [16], who proposed that at each moment of time there
exists a so-called apparent reflection point (ARP) at which
the energy flux vanishes. This assumption implies a local (in
time) energy conservation or, phrased differently, the approach
neglects the energy accumulated by the plasma, in the form
of the fields due to charge separation caused by the light
pressure. An asymptotic analysis of the ARP dynamics in the
strongly relativistic limit [17] indicates the universal properties
of the HHG spectra: The intensity of nth harmonic scales
as n−8/3, and the cutoff ∼γ 3

max, where γmax is the maximal
relativistic factor of the ARP. These results agree with the
experiment [18,19].

Nevertheless, the assumption of the OMM concerning local
temporal energy conservation is valid only for restricted values
of the plasma density and laser intensity. The dimensionless
parameter δ used in Fig. 1 is the energy dynamically accumu-
lated by plasma, which is defined as

δ = Emax
p − Efin

p

Ecycle
, (1)

where Emax
p and Efin

p are the maximum and final values of the
energy accumulated in the form of the plasma internal fields
and electrons motion in the process of plasma interaction with
one cycle of radiation with energy Ecycle; that is, parameter
δ describes part of the energy accumulated by plasma that is
later reemitted back. In the bottom left corner of the figure
we find the zone labeled “OMM,” for which δ � 1. Here
the energy accumulation can be neglected as assumed in the
OMM. In the top right corner the region of relativistically
self-induced transparency (RSIT) is shown. Thus, there is a
large, and very important parameter region that so far has not
been covered by any theoretical model and for which δ ∼ 1
such that the OMM’s assumption of local energy conservation
is no longer valid. Particle-in-cell (PIC) simulations indicate
that here collective ultrarelativistic electron motion can give
rise to nanoplasmonic structures (nanometer scale surface
layers) and their oscillations, which provide at each period the
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FIG. 1. (Color online) The dynamically accumulated by plasma
energy δ obtained from one-dimensional PIC simulations of a plasma
with density Ne at oblique irradiation (θ = 60◦, p polarization) by
a wave with constant intensity I and 1 μm wavelength during one
optical cycle. S is the ultrarelativistic similarity parameter, defined
as the quotient between dimensionless density and the dimensionless
amplitude [see Eq. (3)].

laser pulse energy conversion to the energy of internal electric
and magnetic plasma fields and consequent reemission in the
form of attosecond burst. The process results in a markedly
slower decay in the generated higher harmonic spectra [20]
as compared to the OMM results. Furthermore, based on
the phenomenological assumption of electron nanobunches
appearing in the plasma and emitting radiation, it was shown
in Ref. [21] that the spectra can be much flatter than predicted
by the OMM. Moreover, the OMM assumes as a prerequisite
that the incident and backradiated amplitudes at the ARP
are equal, in accordance with the Leontovich boundary
conditions (which is in direct correspondence to the local
energy conservation). Consequently, situations where large
field amplifications are to be expected cannot be analyzed
using this model. Thus, finding a new theoretical model
in the relevant parameter regime between the OMM and
RSIT regions is of utmost importance for a large number of
applications.

In the present work we propose a physically motivated
model, the so-called relativistic electronic spring (RES) model
describing the highly nonlinear behavior of laser-plasma
interactions. The model gives very good agreement with
simulation and makes it possible to analytically study a vast
range of regimes in laser-plasma interactions that otherwise
would be out of reach for analysis. In particular, one of the
most remarkable effects in the RES regime is the possibility
of generating attosecond pulses with an amplitude several
orders of magnitude higher than the incident laser pulse.
Here we apply the RES model to this amplification effect
in order to understand the underlying physical mechanisms
and determine the optimal parameters for an experiment to
be performed. We compare the results with particle-in-cell
simulations and find excellent agreement. The implications
of our results are discussed, in particular, the possibility
to utilize this new type of secondary source for novel
experiments.

plasma

FIG. 2. (Color online) Transformation to a moving reference
frame. Here the plasma density n, wave amplitude a, and frequency
ω have subscript 0 denoting the moving frame.

II. ULTRARELATIVISTIC ENERGY CONVERSION
ON THE SURFACE OF A PLANAR TARGET

The process of energy conversion due to the oblique
incidence of a p-polarized electromagnetic wave on a plane
plasma boundary (x = 0,y,z) may be considered using a
boosted frame moving along the plasma surface and plane
of incidence in the y direction with the velocity c sin θ , where
c is the speed of light and θ is the angle of incidence (see
Fig. 2), thus making the problem one-dimensional [22].

The incident laser pulse pushes the electrons into the
plasma due to the light pressure. Unlike the case of normal
incidence, the oblique incidence results in the emergence of
uncompensated currents and magnetic fields in the boosted
frame. Therefore, the electrons experience an additional
ponderomotive action, which is different during the two half
periods of the incident wave. When the laser electric field is
directed along the y axis, the Lorentz force due to uncom-
pensated currents enhances the light pressure effect, pushing
the electrons further from the boundary. At ultrarelativistic
intensities the shifted electrons form a thin layer, where the
charge and current densities greatly exceed the ones in the
unperturbed plasma. At this stage, the incident wave energy
is transformed to the kinetic energy of the particles and the
energy of the internal plasma fields caused by charge and
current separation.

The formation of an ultrathin (nanoscale) electron layer due
to the interaction between an ultrarelativistic laser pulse and an
overdense plasma has been known for about a decade, reported
in the works on relativistic self-induced transparency [23,24]
and particle acceleration using thin foils [25]. Unlike in the
case of a circularly polarized laser pulse, in which electrons
may be shifted by a distance of several wavelengths, a linearly
p-polarized pulse results in a light pressure force that oscillates
within a field period. Hence, the electrons are pushed from the
surface for no longer than a fraction of the optical wavelength,
then break away under the action of the charge separation
force and travel toward the incident wave in the form of a
thin current layer, providing a source of attosecond burst. The
above described processes can clearly be seen in Fig. 3(a),
where the results of 1D PIC simulation are presented.

Thus, the described process and concomitant energy con-
version may be represented as a sequence of three stages: (1)
pushing of electrons from the surface by the ponderomotive
force and formation of a thin current layer giving an energy
transfer from the laser field to the plasma fields and electrons;
(2) backward accelerated motion of the current layer toward the
incident wave with the conversion of the energy accumulated
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FIG. 3. (Color online) (a) Space-time distribution of electrons
density N (green) and amplitudes of incident ain (red) and backra-
diated ag (blue) electromagnetic fluxes obtained from 1D PIC sim-
ulation of plasma with density 4 × 1023 cm−3 at oblique irradiation
(θ = 11.25◦) by a wave with constant intensity 5 × 1022 W/cm2

and 1 μm wavelength during three optical cycles. The dashed red
curve shows position of the thin layer obtained using the RES
model. Time and coordinate are in dimensionless units [see Eq. (3)].
(b) Backradiated signal obtained by PIC simulation (blue curve)
and using the RES model (dashed red curve). (c) Electron density
distribution N (x) at the instant of maximum displacement (t = 3.19).

in the plasma and laser field energy into the layer electrons
kinetic energy; and (3) radiation of attosecond pulses by a
formated ultrarelativistic electron bunch due to conversion of
the kinetic energy and laser field energy to the XUV and x-ray
range. Based on the motion of the plasma electrons and the
energy conversion scenario we find that it is natural to refer
to this three-step process as to a model of a RES. It should be
emphasized that due to the energy accumulation in the plasma,
the backradiated field can be much larger than the incident
field. This is the fundamental difference from the OMM
(see, e.g., [26,27]), a model which assumes the incident and

backradiated fields equality at some oscillating point called
ARP.

III. THE RES MODEL

The PIC simulations indicate that under the laser radiation
pressure the electrons are shifted and group into a thin
boundary layer. To understand the underlying physics of this
phenomenon we made the following rough estimate for the
boundary layer thickness in the quasistatic approximation at
the instant of maximum displacement. The balance of the
forces acting on an arbitrary electron with coordinate x inside
the layer near the boundary is given by

n0
x

cos θ
−

∫ x

xb

N (χ )
dχ

cos θ

= vy(x)

[
2a0 + n0x tan θ −

∫ x

xb

N (χ ) vy(χ )
dχ

cos θ

]
, (2)

where the left-hand side corresponds to the electric part of the
Lorentz force, whereas the terms on the right-hand side de-
scribe the magnetic part due to the incident radiation magnetic
field and the magnetic field generated by the ion and electron
currents, respectively; a0 and n0 are the radiation electric
field amplitude and unperturbed plasma density in the moving
frame, xb is the coordinate of the frontier electron between the
plasma and vacuum [see Fig. 3(c)], N (χ ) is the electron density
distribution, and vy(χ ) is the distribution of the electrons
velocity y component (in the speed of light units), which is
the same for all electrons with coordinate χ in the quasistatic
approximation due to generalized transverse momentum con-
servation. The plasma ions assumed to be immobile in the
laboratory frame. We use dimensionless quantities which can
be expressed in terms of dimensional time t̂ , coordinate x̂,
density n̂, and electric field amplitude â according to

t = ω cos θ t̂, x = ω cos θ

c
x̂, n = 4πe2

mω2
n̂, a = e

mcω
â,

(3)

where ω is the carrier laser frequency, while m and e are the
electron mass and charge, respectively.

The first-order consideration (x = xb) of Eq. (2) gives the
layer position in the form

xs = 2a0 cos θ

n0(1 − sin θ )
, (4)

while the second-order consideration (x = xb + dx,dx � 1)
in the ultrarelativistic limit (vy ≈ 1) gives the estimate for the
electron density near the boundary in the form

ns ≈ n0
1 − sin θvy(xs)

1 − v2
y(xs)

≈ p2
y(xs)(1 − sin θ ), (5)

where py(x) is the electron momentum y component. Assum-
ing that the layer has a squared shape for the electron density
distribution and contains all the electrons shifted from the
region (0 < x < xs), we can estimate the layer thickness:

Ls ≈ 2a0 cos θ

n0(1 − sin θ )2

1

p2
y

. (6)
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The vector potential y component can be estimated through
integrating from infinity to x the z component of the magnetic
field of the current separation, neglecting the magnetic field of
the laser radiation:

Ay (xs) ≈ a0

cos θ (1 − sin θ )
Ls. (7)

Finally, using (6), (7), and the generalized transverse momen-
tum conservation (py − Ay = sin θ ) we derive the estimate for
the layer thickness Ls :

Ls ∝ S− 1
3 a− 2

3 , (8)

where S = a/n is the relativistic similarity parameter [28],
while a and n are the dimensionless electric field amplitude
and unperturbed plasma density in the laboratory frame, re-
spectively. Despite the roughness of the involved assumptions,
the negative power of the amplitude in the obtained estimate
allows us to make an important conclusion: The thickness
of the boundary layer tends to zero as the laser intensity
increases and, in the ultrarelativistic limit, is much smaller
than both the laser wavelength and the shift deepness xs =
2S−1 cos3 θ/(1 − sin θ ) [see Eq. (4)]; that is, it is negligible
in comparison with all the other spatial scales involved in the
process. This analytical consideration demonstrates that this
phenomenon is not caused by the sharp plasma boundary, but is
related to the ultrarelativistic character of the electrons motion.

A model describing the dynamics of the thin boundary layer
and the generation of attosecond pulses may be formulated
starting from three intuitively clear and physically justified
prerequisities that can be verified using PIC simulation. First,
we assume that at each moment of time the plasma electrons
are represented by two fractions: one infinitely narrow layer
of shifted electrons at a certain moving point xs , where all
the electrons from the region 0 < x < xs are accumulated,
and one population of electrons with unperturbed density at
x > xs . As all the electrons within the boundary layer have the
same velocity x component βx moving the same way along
the x direction, in the ultrarelativistic limit these electrons
have the same velocity y component β2

y ≈ 1 − β2
x as well,

which is the second assumption. Third, we suppose that the
motion of the electrons in the boundary layer together with
the flow of uncompensated ions in the 0 < x < xs region
generates the radiation which completely compensates the
incident electromagnetic radiation in the unperturbed part of
the plasma at x > xs .

It is readily shown from Maxwell’s equations that in
a one-dimensional geometry a moving charged layer with
surface charge σ emits electromagnetic flows with amplitudes
2πσβy/(1 − βx) and 2πσβy/(1 + βx) in the positive and
negative directions of the x axis, respectively. Consequently,
the expression for the incident wave compensation may be
written in the form

sin(xs − t) = S

2 cos3 θ

(
sin θ − βy

1 − βx

)
xs, (9)

where the left-hand side corresponds to the incident wave,
whereas the terms on the right-hand side describe the radiation
of the uncompensated ions and the boundary layer, respec-
tively. Analogous to Eq. (9), the electric field, as a function of
retarded time ξ = x + t , emitted by the plasma in the negative

x direction is given by

ag[ξ = xs(t) + t] = a0
S

2 cos3 θ

(
βy

1 + βx

− sin θ

)
xs(t),

(10)

where a0 = a cos θ is the incident wave amplitude in the
boosted frame.

The layer dynamics is determined by the equation

d

dt
xs = βx, (11)

with the initial condition xs(t = 0) = 0. By virtue of the
ultrarelativistic motion, the position of the layer may be found
by assuming that the full particle velocity is equal to the
speed of light; that is, β2

x + β2
y = 1. Equations (9) and (11)

are then self-consistent and the layer motion is described by
a first-order nonautonomous ordinary differential equation or
by an autonomous system

du

dτ
= (u2 − 1)(sin θ − u) ± 4 cos3 θ

S
[1 − η2(sin θ − u)2]

1
2

η(u2 + 1)

dη

dτ
= u2 − 1

u2 + 1
(12)

FIG. 4. (Color online) (a) Regions on the plane of parameters S,θ

corresponding to qualitatively different forms of solution of Eq. (12).
(b)–(f) Form of solution on the plane {η,u} (red), its limit cycle
(black), lines of phase portrait for the “+” sign (blue) and the “−” sign
(green) in Eq. (12), and the corresponding form of electromagnetic
backradiation from the plasma.
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for the variables η(τ ) = xsS/(2 cos3 θ ), u(τ ) = βy/(1 − βx),
where τ = tS/(2 cos3 θ ). The solution of Eq. (12) depends on
two dimensionless variables S and θ and may be analyzed in
the plane {η,u}, where we have two sheets corresponding to
the choice of sign in Eq. (12).

The topology of the phase plane is characterized by the
existence of a stable limit cycle (see Fig. 4). It is convenient
to classify the form of the solution by the number of η-axis
intersections of u(τ ) or, equivalently, by βy(t) sign changes in
the η > 0 (xs > 0) region. This takes place when βx → −1 and
Eq. (10) becomes singular, which corresponds to the emission
of the attosecond burst. There may occur either two such events
[Fig. 4(c)], one [Fig. 4(e)], or none [Fig. 4(d)] in each optical
period. Accordingly, two bipolar, one bipolar, or one unipolar
attosecond pulses are generated. It is clear that we have the
emission of two evenly spaced identical bursts in the case
of normal incidence [Fig. 4(b)]. With increasing angle θ , the
second burst either disappears due to amplitude decay down
to zero [(c) → (e) transition] or two bipolar pulses merge
into one unipolar pulse as a result of convergence of their
generation times [(c) → (d) bifurcation]. Our comprehensive
numerical study indicates that in the ultrarelativistic case I >

1021 W/cm2 the results obtained using the RES model are
in a very good agreement with the PIC simulations for all
values of θ and for S < 5 down to RSIT. As an example, a
perfect quantitative agreement can be clearly seen in Figs. 3(a)
and 3(b) (note that the agreement is obtained without using any
adjustment parameters for the RES model). The RES model
applicability region is labeled “RES” in Fig. 1.

Note that by a simple modification of Eqs. (9) and (10), the
RES model can be easily generalized to take into account an
arbitrary plasma density profile, as well as arbitrary laser pulse
shape and polarization.

IV. GIANT ATTOSECOND PULSE GENERATION

As can be seen in Fig. 3(b), the RES model describes the
generation of attosecond pulses with the amplitude greatly
exceeding the incident one, which we called a phenomenon of
giant attosecond pulse generation. The phenomenon appears
as a result of a coherent emission by the ultrarelativistic
nanoplasmonic structure and is related to the singularity of
the boundary layer radiation at the instant when βy changes
the sign and βx → −1 [see Eq. (10)]. In order to find the
amplitude and duration of the pulse generated near βy = 0
one has to take into account the finite value of the relativistic
factor γ = (1 − β2

x − β2
y )−1/2, which is the external parameter

for the RES model and can be taken, for example, from
PIC simulation. Asymptotic analysis of the first term in the
right-hand side of Eq. (10) near the point βy = 0 gives an
analytical expression for the burst shape and its spectrum in
the following form:

ag(ξ ) = Agf

(
ξ − ξ |βy=0

τg

)
, Ik ∝ exp

(
− k

αγ 3

)
, (13)

where α = ∂βy

∂t
|βy=0, f (ν) = 2ν

ν2+1 , Ag = a0Sγ xs |βy=0

2 cos3 θ
is the pulse

amplitude, τg = (2αγ 3)−1 is its characteristic duration, and
Ik is the intensity of the kth harmonic. The value of α

is assessed from the solution of the self-consistent system;

(a) (b)

(d) (e)

(c)

(f)

FIG. 5. (Color online) Giant pulse generation moment ξg , pulse
amplitude ag/a0, and its duration τg obtained from the RES model
with γ = 10 and χ = 56 (d), (e), (f) and from 1D PIC simulations
(a), (b), (c) of semi-infinite plasma obliquely irradiated by one optical
cycle pulse with 1 μm wavelength and amplitude a = 191.1, which
corresponds to 5×1022 W/cm2 intensity. For the PIC simulations,
the pulse duration was assessed as a distance between maximum
and minimum electric field points, and the region of unipolar pulse
generation is given in white.

hence, it depends only on dimensionless parameters S and θ

and is independent of γ . This means that pulse duration in
the ultrarelativistic limit tends to zero as γ −3. Note that in
the RES model the spectrum decays exponentially with the
characteristic scale αγ 3 and, in contrast to the OMM, has no
region with a power-law decay. Thus, the RES region in Fig. 1
corresponds to a slower energy decay of the harmonics than
the OMM region.

Depending on the thickness ls of the radiating electron layer,
the radiation can be either coherent, for ls < τg , or incoherent,
for ls > τg . In the latter case, when assessing the giant pulse
amplitude one needs to take into consideration that only
some fraction of electrons radiate coherently. The radiating
electron layer thickness ls may be estimated assuming that,
starting from the time of maximum displacement, it decreases
proportionally to the number of electrons in the layer. Using
the estimate for the layer thickness at the instant of maximum
displacement (8) we can write the following estimate for the
correction factor:

C = χ
τg

ls
= χ

1

αγ 3

xmax

xs |βy=0
S1/3a2/3, (14)

where xmax is the maximum value of xs and χ is a dimension-
less constant that is needed to account for arbitrary choice of
the estimated values entering this expression.

In Fig. 5 the RES model results, that is, the results of the
numerical solution of Eqs. (9) and (11), are compared with
PIC simulations for different values of incidence angle θ and
similarity parameter S. For all PIC simulations the intensity
I = 5 × 1022 W/cm2, while the plasma density is determined
in accordance with the value of S. The considered value of
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intensity also defines the parameter γ for the RES model;
so as can be seen from Figs. 5(c) and 5(f) the value γ = 10
provides a fairly good quantative agreement for the giant pulse
duration τg , while an excellent agreement of the moment of
giant pulse generation ξg [see Figs. 5(a) and 5(d)] is not related
to the choice of γ , because ξg reaches asymptotics and changes
insignificantly with the growth of γ in the ultrarelativistic limit
γ � 10. The giant pulse amplitude determined with the RES
model, including the correction factor (14) with χ = 56, is
also in a good agreement with the PIC simulations results [see
Figs. 5(b) and 5(e)].

The diagrams in Figs. 5(b) and 5(e) allow us to distinguish
the zone with the center

θg ≈ 62◦, Sg ≈ 1/2, (15)

and the boundaries 50◦ < θ < 70◦, 1/4 < S < 1 as the region
of the most powerful attosecond pulse generation. The optimal
parameters (15) correspond to the triple point in the S and
θ plane [Fig. 4(a)], which can be explained as follows. At
the triple point [Fig. 4(f)], the limit cycle touches the η axis,
providing the longest time of electron moving with βy ≈ 0
and thus the largest duration of attosecond pulse generated by
each electron. Therefore, this point corresponds to the optimal
conditions for coherent radiation of all electrons within the
boundary layer and consequently the maximum amplitude of
the giant attosecond pulse, as coherency plays the dominant
role.

Thus, both the RES model and the PIC simulations indicate
the existence of optimal condition (15) for the phenomenon
of giant attosecond pulse generation, which may serve as a
guiding message for the basic experimental implementation:
The phenomenon of giant attosecond pulse generation and
concomitant anomalous efficient HHG can be observed in case
of planar target oblique irradiation with incident angle θ ≈ 62◦
and dimensionless laser pulse amplitude a and plasma density
n consistent, so that n/a ≈ 1/2. The laser pulse contrast
should, of course, be high enough but it is not a crucial point,
as the steplike plasma density profile does not play the key
role. To check the possibility of observing the phenomenon for
lower intensities in Fig. 6 we plotted the amplitude increase
factor ag/a0 as a function of plasma density Ne and intensity

( (

(

(

FIG. 6. (Color online) The amplitude increase factor ag/a0

obtained from 1D PIC simulations with the same parameters as in
Fig. 1.

I for the close to optimal incidence angle θ = 60◦. It is
clearly seen that as a confirmation of the RES theory, the
optimal conditions for the phenomenon are determined by the
similarity parameter S ≈ 1/2, while the amplitude increase
factor depends on incident intensity and has a notable value
ag/a0 > 7 at intensities I > 5 × 1021 W/cm2.

V. SPACE FOCUSING FOR ATTOSECOND PULSES:
A CONCEPT OF A GROOVE-SHAPED TARGET

Based on the results obtained we propose a concept of
extremely intense light generation at the level required for
observation of the QED effects. The existence of the optimal
incidence angle changes the presently accepted view of the
spherical geometry as an optimal one for the attosecond
radiation focusing mechanism. Our idea is to focus the giant
burst formed in the regime described above by using a
slightly grooved surface of the obliquely irradiated target at the
optimal parameters (15), with the guiding line of the groove
located in the plane of incidence [see Fig. 7(a)]. The PIC
simulation of the proposed concept shows that the intensity
2×1026 W/cm2 can be reached in the zone with the size of
order 10 nm with a 10-PW laser pulse, as can be seen in
Fig. 7(b). In the laboratory frame the high field zone moves
along the guiding line with speed c/ sin θ . We note that the
size of laser pulse along the transverse direction may be
only a few wavelengths. The data shown in Fig. 5 may be
used to modify surface profile and target density to allow
using a laser pulse with a more complicated intensity profile
in the transverse direction. Several PIC simulations of the
proposed scheme with the parameter slightly varied close to
the optimal ones (15) show that the effect is quite robust; thus,
we consider the proposed concept to be very promising for

( )

)
(

(a) (b)

FIG. 7. (Color online) (a) Schematic representation of the concept
of groove-shaped target. (b) Intensity distribution at focusing instant
obtained from 2D PIC simulation: a linearly polarized wave with
intensity 5 × 1022 W/cm2 and wavelength 1 μm obliquely incident
at an optimal angle θg = 62◦ on a parabolic groove-shaped target
with density 0.85 × 1023 cm−3, which corresponds to S = 0.4. PIC
simulation in the moving frame implies that the transverse size of
the laser pulse is fairly large compared to the wavelength, which
is a rather weak restriction. Fully relativistic parallel fast Fourier
transform (FFT) based PIC code ELMIS [29] is used; an 8 × 8-μm
region is represented by 8192 × 8192 cells; plasma ions are taken
to be Au6+; each target cell contains approximately 100 virtual
particles of each type; the time step is 3 as; the laser pulse front has a
sine-squared profile with two wave periods duration.
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the experimental implementation in comparison with all the
previously proposed concepts [8,10].

VI. CONCLUSION

In this work we studied the giant pulse generation process at
oblique irradiation in an overdense plasma by a relativistically
strong laser pulse. We analyzed the physics of ultrarelativistic
nanoplasmonic structure formation and coherent emission
as the origin of the giant attosecond pulse generation phe-
nomenon. The model of RES was developed, providing a
qualitative and, for some characteristics, also a fairly good
quantitative description. The parameters of the most powerful
burst generation (15) were determined. A concept of a groove-

shaped target for high electromagnetic field generation aimed
at obtaining the QED effects by means of upcoming laser
sources was proposed and confirmed by PIC simulation.
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