
PHYSICAL REVIEW E 84, 046322 (2011)

Effects of friction on forced two-dimensional Navier-Stokes turbulence
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Large-scale dissipation mechanisms have been routinely employed in numerical simulations of two-
dimensional turbulence to absorb energy at large scales, presumably mimicking the quasisteady picture of
Kraichnan in an unbounded fluid. Here, “side effects” of such a mechanism—mechanical friction—on the
small-scale dynamics of forced two-dimensional Navier-Stokes turbulence are elaborated by both theoretical
and numerical analysis. Given a positive friction coefficient α, viscous dissipation of enstrophy has been known
to vanish in the inviscid limit ν → 0. This effectively renders the scale-neutral friction the only mechanism
responsible for enstrophy dissipation in that limit. The resulting dynamical picture is that the classical enstrophy
inertial range becomes a dissipation range in which the dissipation of enstrophy by friction mainly occurs. For
each α > 0, there exists a critical viscosity νc, which depends on physical parameters, separating the regimes of
predominant viscous and frictional dissipation of enstrophy. It is found that νc = [η′1/3

/(Ck2
f )] exp[−η′1/3

/(Cα)],
where η′ is half the enstrophy injection rate, kf is the forcing wave number, and C is a nondimensional constant
(the Kraichnan-Batchelor constant). The present results have important theoretical and practical implications.
Apparently, mechanical friction is a poor choice in numerical attempts to address fundamental issues concerning
the direct enstrophy transfer in two-dimensional Navier-Stokes turbulence. Furthermore, as relatively strong
friction naturally occurs on the surfaces and at lateral boundaries of experimental fluids as well as at the
interfaces of shallow layers in geophysical fluid models, the frictional effects discussed in this study are crucial
in understanding the dynamics of these systems.
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I. INTRODUCTION

The study of two-dimensional (2D) turbulence dates back to
early in the 1950s when pioneers in the field discovered for the
first time fundamental differences from its three-dimensional
(3D) counterpart [1,2]. In particular, it was found that the
simultaneous conservation of energy and enstrophy (half
mean-square vorticity) by the advection term in 2D turbulence
gave rise to the transfer of energy to large scales (inverse trans-
fer) and enstrophy to small scales (direct transfer), although
the far reaching implication of this preferential dual transfer
was not fully realized until much later by Kraichnan [3,4].
For unbounded turbulence driven by a spectrally localized
source, Kraichnan envisaged the existence of a dual cascade
and quasisteady dynamics in the inviscid limit. Kolmogorov’s
phenomenology was then applied to derive the energy spectra
E(k) = C ′ε2/3k−5/3 for the quasisteady energy inertial range
and E(k) = Cη2/3k−3 for the steady enstrophy inertial range.
Here C and C ′ are constant and ε and η are, respectively, the
energy and enstrophy injection rates. For unforced turbulence,
Batchelor [5] argued that the dynamics of the 2D enstrophy
and 3D energy are analogous and applied Kolmogorov’s
theory to obtain the above scaling in the enstrophy inertial
range. For this case, η is the enstrophy dissipation rate,
the parallel of Kolmogorov’s energy dissipation rate. Further
results of Ref. [5] include decay laws, which are independent
of viscosity.

Since Kraichnan’s and Batchelor’s seminal works, nu-
merical simulations of 2D turbulence have been ac-
tively carried out to verify their predictions, and the re-
sults constitute a huge literature. Early simulations with
low resolutions invariably employed hyperviscosity to re-
duce dissipation in the enstrophy inertial range. In addi-
tion, various large-scale dissipation mechanisms were used

to absorb energy at large scales, presumably mimicking the
quasisteady picture of Kraichnan in an unbounded fluid. With
modern computers, the simulation of Kraichnan’s quasisteady
turbulence is within reach [6,7]. Nonetheless, the use of
hyperviscosity with or without a large-scale dissipation term
has remained a routine practice, particularly for simulations
at moderate resolutions [8,9]. Commonly used large-scale
dissipation mechanisms are represented by negative integer
powers of the Laplacian (hereafter referred to as inverse
viscosity, also called hypoviscosity by a number of authors)
and mechanical friction (also known as Ekman drag in the
geophysical context). The former primarily operates at large
scales, and its effects on small scales are not well understood.
The latter is scale neutral, removing enstrophy (and energy)
at all scales. This has serious “side effects” on the small-scale
dynamics. Most importantly, the vorticity remains bounded
in the inviscid limit. Such behavior is in sharp contrast to
the Kraichnan picture, in which the enstrophy grows without
bound as the enstrophy inertial range becomes increasingly
wider for smaller viscosity. An undesirable consequence is
that viscous dissipation of enstrophy vanishes in the inviscid
limit [10] (see also Ref. [11]). It follows that for steady or
quasisteady dynamics at sufficiently small viscosity, frictional
dissipation of enstrophy outweighs its viscous counterpart. The
classical enstrophy inertial range then becomes a (frictional)
dissipation range, possibly without dramatic changes in its
appearance.

The above results have important theoretical and practical
implications. On the one hand, mechanical friction should not
be employed in numerical simulations aiming to address fun-
damental issues concerning the enstrophy flux and enstrophy
inertial range of 2D Navier-Stokes turbulence as this scale-
neutral dissipation mechanism apparently renders dynamical
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behavior inconsistent with the Kraichnan picture. On the other
hand, relatively strong friction naturally occurs on the surfaces
of thin films, at lateral boundaries of confined fluids, and at
the interfaces of shallow layers in geophysical fluid models.
Therefore, the frictional effects presently discussed is crucial in
understanding the dynamics of these systems, particularly their
departure from the classical picture. Note, however, that the
present findings may not be relevant to 2D Navier-Stokes fluids
having no-slip boundaries, although this type of boundaries
could impose some friction on the dynamics, particularly at
large scales. The reason is that such boundaries can also act
as vorticity sources (see Ref. [12] and references therein),
apparently playing a role opposite to that of friction.

This study elaborates on the effects of mechanical friction
on forced 2D Navier-Stokes turbulence discussed in the
preceding paragraphs. This is accomplished by both theoretical
and numerical analysis. The plan of the paper is as follows.
Section II provides some mathematical background, with an
emphasis on fundamental consequences of global regularity of
2D turbulence. Section III features a simple proof of vanishing
viscous dissipation of enstrophy in the inviscid limit. In addi-
tion, for weak friction, the classical spectrum is used to deduce
the critical viscosity separating the regimes of predominant
frictional and viscous dissipation of enstrophy. Section IV
reports results from numerical simulations corroborating the
theoretical findings of Sec. III. Concluding remarks are given
in the final section.

II. BACKGROUND

In the velocity-vorticity formulation, the forced 2D Navier-
Stokes equations are

ωt + u · ∇ω = ν�ω + f,
(1)∇ · u = 0,

where ω = n · ∇ × u is the vorticity with n being the normal to
the fluid domain, ν is the viscosity, and f represents a forcing.
We consider a doubly periodic domain with all fields concerned
having zero spatial average. For the purpose of this section, f

is assumed to be time independent and bounded. In the inviscid
and unforced dynamics, the vorticity is materially conserved.
This conservation law implies that smooth solutions of Eq. (1)
remain smooth for all t < ∞ [13,14]. This result has a
number of important implications, which do not appear to have
been fully exploited in the turbulence literature. This section
discusses a few implications that are relevant to the subsequent
sections.

Because 2D turbulence with smooth initial conditions
remains smooth for all finite times, the mean-square vorticity
gradient 〈|∇ω|2〉 remains finite for t < ∞. In fact, 〈|∇ω|2〉
does not grow more rapidly than exponentially in time, a
manifestation of the effective linearity of the small-scale
dynamics [15,16]. This means that for t < ∞, the enstrophy
dissipation rate ν〈|∇ω|2〉 vanishes as ν → 0. Furthermore,
the approach ν〈|∇ω|2〉 → 0 is linear in ν. This is true for
both forced and unforced turbulence and is due solely to the
finite-time regularity of solutions. There remains the issue
of infinite-time singularities in the inviscid limit and the
corresponding problem of enstrophy dissipation. It turns out

that for power-law scaling of the enstrophy inertial range,
ν〈|∇ω|2〉 does vanish for unforced turbulence. This fact is
briefly recalled and discussed in what follows.

For unforced turbulence, the growth of 〈|∇ω|2〉 as ν → 0 is
marginally less rapid than the decrease of viscosity. As a result,
ν〈|∇ω|2〉 vanishes uniformly in time in the inviscid limit. In
order to establish this fact, Tran and Dritschel [17] considered
the global maximum of the enstrophy dissipation rate, say ην

T ,
which is achieved at t = T (ν), and showed that limν→0 ην

T =
0. Note that T (ν) diverges in this limit. The convergence of
ην

T and divergence of T (ν) are so slow (logarithmic in ν) that
they have been numerically detected only recently [18,19].
The vanishing dissipation of enstrophy (and of other norms
of the vorticity, see below) in the inviscid limit means that
there may be no viscosity-independent decay laws and that
a number of existing theoretical and numerical results may
need to be reexamined or reinterpreted. These include the
well-known decay law 〈ω2〉 ∼ t−2 of Batchelor [5] and the
modified version 〈ω2〉 ∼ t−γ [20–23] for various values of γ

within the interval (0,1).
For forced turbulence, the situation is quite different. Given

a persistent enstrophy injection rate η (and energy injection
rate ε) normally at intermediate wave numbers, the balance
ν〈|∇ω|2〉 = η (in an average sense) is inevitable, no matter
how small ν. In the inviscid limit, the time taken to achieve
this balance diverges as can be seen from the arguments in the
preceding paragraph. In this limit, the vorticity has been found
to grow without bound, regardless of the nature of the dynamics
[11]. These key features were fully envisaged by Kraichnan
[3,4] as is evident from his detailed theory, where the enstrophy
inertial range has unbounded enstrophy for both the original
and modified spectra (by a logarithmic factor). The important
point in this theory is that the divergence of enstrophy is
toward small scales only. This is absolutely necessary not
only for the building up of the predicted k−3 inertial range
(during the transient stage of undissipated cascade) but also
for the maintenance of the quasisteady dynamics (during the
permanent stage of fully dissipated direct cascade). Without
such a divergence, no enstrophy dissipation at small scales is
possible [11] because in the inviscid limit the production of
ever-smaller scales by advection (effectively a linear process
[15,16]) is unable to withstand viscous effects. The bottom line
is that the enstrophy divergence should not be tampered with in
attempts to address issues related to the enstrophy dissipation,
which has a delicate dependence on viscosity. This principle
has not been strictly observed in a number of past and recent
numerical studies (see for example Ref. [7]).

III. VANISHING VISCOUS ENSTROPHY DISSIPATION

Consider the addition of a friction term −αω, where α > 0,
to Eq. (1):

ωt + u · ∇ω = ν�ω − αω + f,
(2)∇ · u = 0.

It is shown presently that Eq. (2) admits solutions satisfying
ν〈|∇ω|2〉 → 0 as ν → 0, that is, vanishing enstrophy dissi-
pation by viscous effects. For power-law spectra, this result
holds pointwise in time and can be shown by an elementary
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method. For a similar result by sophisticated techniques (valid
for general spectra but in a time-average sense), the reader is
referred to a recent paper by Constantin and Ramos [10].

By multiplying the vorticity equation of Eq. (2) by ω,
one obtains, after some straightforward manipulation of the
viscosity term,

D

Dt

ω2

2
= ν�

ω2

2
− ν|∇ω|2 − αω2 + ωf, (3)

where D/Dt denotes the material derivative. At local maxima
of ω2, the first term on the right-hand side of (3) is nonpositive.
Hence the growth rate of the vorticity supremum ||ω||∞ is
bounded by

d

dt
||ω||∞ � −α ||ω||∞ + F, (4)

where F represents an upper bound for |f |. It follows that

||ω(t)||∞ � ||ω0||∞ e−αt + F

α
(1 − e−αt ), (5)

where ω0 is the vorticity field at t = 0. So the vorticity is
bounded independently of viscosity. This is not known to be
the case when αω is replaced by an inverse viscosity term
(truly operating at large scales) νγ (−�)−γ ω, where νγ > 0
and γ > 0.

Alternatively, the evolution of the Lp norms 〈|ω|p〉1/p (for
p > 1) is governed by

d

dt
〈|ω|p〉1/p = −ν(p − 1)〈|ω|p〉1/p−1〈|ω|p−2|∇ω|2〉

−α〈|ω|p〉1/p + 〈|ω|p〉1/p−1〈|ω|p−2ωf 〉
� −α〈|ω|p〉1/p + 〈|ω|p〉1/p−1〈|ω|p−1|f |〉
� −α〈|ω|p〉1/p + 〈|f |p〉1/p, (6)

where the term due to viscosity has been omitted in the
second step and Hölder’s inequality with the pair of conjugate
exponents p and p/(p − 1) has been used in the final step. It
follows that

〈|ω|p〉1/p � 〈|ω0|p〉1/pe−αt + Fp

α
(1 − e−αt ). (7)

Here Fp is an upper bound for 〈|f |p〉1/p, or just 〈|f |p〉1/p

itself if f is time independent. Equation (7) implies that all
vorticity norms can be bounded independently of viscosity.
Therefore, the enstrophy 〈ω2〉/2 and the vorticity supremum
||ω||∞ (obtained from 〈|ω|p〉1/p in the limit p → ∞) are
bounded.

We now derive the main result of this section. The evolution
of the mean square vorticity gradient 〈|∇ω|2〉 (twice the
palinstrophy) is governed by [11]

1

2

d

dt
〈|∇ω|2〉

= 〈�ω u · ∇ω〉 − α〈|∇ω|2〉 − ν〈(�ω)2〉 + σ

� ||ω||∞ 〈ω2〉1/2〈(�ω)2〉1/2 − α〈|∇ω|2〉 − ν〈(�ω)2〉 + σ

� 〈(�ω)2〉
〈|∇ω|2〉

[
||ω||∞ 〈ω2〉1/2 〈|∇ω|2〉

〈(�ω)2〉1/2
+ 〈|∇ω|2〉

〈(�ω)2〉σ

−α
〈|∇ω|2〉2

〈(�ω)2〉 − ν〈|∇ω|2〉
]

, (8)

where σ = −〈f �ω〉 is bounded for a broad class of forces,
particularly those acting at intermediate scales only. For
power-law scaling of the direct transfer range, a bounded
vorticity allows for energy spectra steeper than k−3 or at best
as shallow as k−3 with a limited extent, followed by a steeper
tail. For such spectra, the ratio 〈|∇ω|2〉/〈(�ω)2〉1/2 vanishes as
〈|∇ω|2〉 → ∞ [11,17]. Therefore, each of the first three terms
within the brackets on the right-hand side of Eq. (8) vanishes
in that limit. Hence all local maxima of the viscous dissipation
term ν〈|∇ω|2〉 (achieved when d〈|∇ω|2〉/dt = 0) vanish in
the limit 〈|∇ω|2〉 → ∞. It follows that ν〈|∇ω|2〉 vanishes
uniformly in time as ν → 0. Note that this result implies that
the term due to viscosity in Eq. (6) also vanishes because
〈|ω|p−2|∇ω|2〉 � ||ω||p−2

∞ 〈|∇ω|2〉. Hence, viscous dissipation
of 〈|ω|p〉1/p vanishes. The same is true for the unforced case.

An immediate implication of the above result is that for
steady dynamics in the inviscid limit, the enstrophy injection
η is totally dissipated by the scale-neutral mechanical friction.
The enstrophy range is no longer inertial but rather becomes
dissipative. This unusual and undesirable dissipation range
presumably scales as k−3 [24] because the scale-neutral
friction is not known to have spectrally steepening effects (for
small α). For such a range the dissipation of enstrophy occurs
uniformly among its wave number octaves. Hence, one may
expect a diminishing enstrophy flux through this range rather
than the k-independent flux of Kraichnan.

Given a small α, two distinct dynamical regimes can be
expected to exist. One corresponds to small viscosity and
is characterized by the predominance of frictional enstrophy
dissipation. The other corresponds to moderate viscosity and
is characterized by the predominance of viscous enstrophy
dissipation. There exists a critical viscosity, say νc, separating
these two regimes, that is, νc〈|∇ω|2〉 = α〈ω2〉. Thus, we have

νc〈|∇ω|2〉 = α〈ω2〉 = η

2
. (9)

Past simulations of 2D turbulence using friction belonged to
the regime of predominant viscous dissipation. For example,
Boffetta and Musacchio [7] have found ν〈|∇ω|2〉 ≈ 0.9η (see
their Table 1), which they considered strong evidence for the
Kraichnan picture of direct enstrophy cascade.

For power-law spectra, the critical viscosity νc can be read-
ily determined from Eq. (9). Assume that in the limit α → 0
(inevitably νc → 0), the turbulence approaches the Kraichnan-
Batchelor spectrum E(k) = Cη′2/3

k−3, where η′ = η/2. The
spectra of 〈|∇ω|2〉 and 〈ω2〉 are then given by 2Cη′2/3

k1 and
2Cη′2/3

k−1, respectively. By using these spectra, we solve
Eq. (9) for νc and obtain

νc = η′1/3

Ck2
f

exp

(−η′1/3

Cα

)
, (10)

where kf is the forcing wave number, which has been used
as an approximation for the low wave-number end of the
enstrophy inertial range. The exponential decay of νc in
Eq. (10) means that for small α, high resolutions are necessary
to probe into the regime of predominant frictional dissipation
of enstrophy. In the next section we numerically determine νc

for a moderate range of α and the result is consistent with
Eq. (10).
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FIG. 1. Viscous (solid), frictional (dashed), and total (dash-
dotted) dissipation rates vs time for ν = 1.6 × 10−5, 4 × 10−6, and
1 × 10−6 (bold). (a) and (b) correspond to α = 0 and α = 0.008,
respectively. In (a) smaller ν corresponds to less dissipation in the
early stage. In (b) smaller ν corresponds to less viscous but more
frictional dissipation throughout.

IV. NUMERICAL RESULTS

We now present the results from numerical simulations that
support the theoretical predictions discussed in the preceding
section. Equations (2) were simulated using a conventional
pseudospectral method in a doubly periodic square of side
2π with resolutions up to 8192 × 8192 grid points. The time
stepping was a fourth-order Runge-Kutta scheme, with the
frictional and viscous dissipation terms incorporated exactly
through an integrating factor. The forcing used was similar
to that in Ref. [25], being nonzero only for 16 selected wave
vectors having magnitudes lying in the interval K = (10,11):

f̂ (k,t) = η

16 ω̂∗(k,t)
. (11)

In Eq. (11), η = 0.1 is the constant enstrophy injection rate
and the asterisk denotes the complex conjugate. The 16 forced
modes were initialized to small nonzero values, with all other
Fourier modes initialized to zero. The choice of the forcing
region K allows for a direct transfer range of over two decades
for the highest resolution simulations and an inverse transfer
range of one decade. The latter is sufficiently wide to ensure
negligible contamination of the inverse energy transfer by
the spectral boundary up to t = 35, when the turbulence is
clearly on course to become quasisteady. However, it is not
possible to get closer to the quasisteady stage by carrying out
the simulations significantly beyond t = 35, without risking a
serious contamination of the inverse energy transfer.
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FIG. 2. Enstrophy spectra at t = 30 for the same series of
simulations as in Fig. 1. Shallower spectra correspond to smaller
viscosity.
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FIG. 3. Enstrophy spectra for the highest resolution runs with
α = 0 (dotted line) and α = 0.008 (solid line).

The dependence of viscous enstrophy dissipation on vis-
cosity in damped (by friction) turbulence is illustrated by
three simulations with α = 0.008 and ν = 1.6 × 10−5, 4 ×
10−6, 1 × 10−6. These simulations correspond to resolutions
2048 × 2048, 4096 × 4096, and 8192 × 8192, respectively.
The coefficients α and ν were chosen in such a way that fric-
tional dissipation remained weaker than viscous dissipation for
all three simulations and that viscosity alone could adequately
resolve the truncation scales. Note that in accordance with
the approximately linear scaling of the number of degrees of
freedom with the Reynolds number [26], ν was decreased
by a factor of 4 when the resolution was doubled. For a
comparison with undamped (i.e., α = 0) turbulence, three
parallel simulations with α = 0 at the above viscosity values
were also carried out. Figure 1 shows the dissipation rates vs
time up to t = 35, at which time the turbulence presumably
approaches the quasisteady stage. The cases α = 0 and α =
0.008 are shown in Figs. 1(a) and 1(b), respectively. In the
latter, the frictional, viscous, and total dissipation rates vs time
are depicted by the dashed, solid, and dashed-dotted lines,
respectively. The viscous enstrophy dissipation rate clearly
decreases as the viscosity is decreased. This is accompanied
by a corresponding increase in the frictional dissipation rate.
Note that the damped case appears to approach equilibrium
more rapidly than the undamped case.

The enstrophy spectra �(k) = k2E(k) at t = 30 for the
above simulations are shown in Fig. 2, with the undamped and
damped cases in Figs. 2(a) and 2(b), respectively. In both cases
the spectra seem to be approaching the Kraichnan-Batchelor

(a) α = 0 (b) α = 0.008

FIG. 4. Vorticity fields corresponding to the spectra of Fig. 3.
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FIG. 5. A plot of 1/α vs ln νc for simulations up to resolution
4096 × 4096. The dashed line (whose equation is inserted) through
the data points corresponding to the six smallest values of α is the
line of best fit for these points.

k−1 spectrum. This strongly supports the earlier suggestion
that the scale-neutral Ekman drag does not affect the form of
the spectrum of the enstrophy inertial range in a significant
manner. In fact, the two panels are virtually indistinguishable.
For a more quantitative comparison, Fig. 3 replots the two
highest resolution spectra, one from each of the panels of
Fig. 2. The vorticity fields corresponding to these two spectra
are given in Fig. 4. It is remarkable that even when frictional
dissipation of enstrophy becomes sufficiently strong (more
than half as strong as viscous dissipation), there are hardly
any noticeable differences between undamped and damped
turbulence in both wave number space and physical space.

Finally, we have attempted to numerically determine the
dependence of νc on α and compare the result with Eq. (10).
A separate set of simulations up to resolution 4096 × 4096
was carried out for this purpose. For each of a dozen values of
α within the range [1/64,1], νc was determined by varying
ν until the equality α〈ω2〉 = ν〈|∇ω|2〉 approximately held
during a short time period, when the turbulence almost became
quasisteady. Figure 5 shows the plot of 1/α vs ln νc, which,
according to Eq. (10), is expected to render a straight line with
slope −C/η′1/3 and intercept (C/η′1/3) ln[η′1/3

/(Ck2
f )]. For

the data points corresponding to the six smallest values of α,
the line of best fit (the dashed line in Fig. 5) is given by

1

α
= −10.2 ln νc − 58.6. (12)

Solving for C using the slope and intercept of this line, we
obtain C = 3.8 and C = 3.2, respectively. The discrepancy
of these two solutions for C is understandable and can be
attributed to the fact that the range of α (and νc) under
consideration is not small enough for the spectra to closely
approximate the classical one.

V. CONCLUDING REMARKS

We have examined both theoretically and numerically the
effects of mechanical friction on the enstrophy dynamics of
forced 2D Navier-Stokes turbulence. On the theoretical side
we have shown by an elementary method that friction gives
rise to vanishing viscous enstrophy dissipation in the inviscid
limit. Similar to freely decaying (undamped) turbulence in
the inviscid limit, where viscous dissipation of enstrophy

vanishes uniformly in time [17,19], the present result is valid
uniformly in time. This uniformity in time is important and
worth emphasizing as it appears to have been misunderstood
(in the freely decaying case) by some authors (see the remark
on page 352 of Ref. [8]). The implication of the present findings
is that given a fixed friction coefficient, frictional dissipation
of enstrophy becomes predominant for sufficiently small
viscosity. This inevitably results in the classical enstrophy
inertial range becoming a dissipation range in which the
dissipation of enstrophy by friction mainly occurs. This range
can at best support a diminishing enstrophy flux rather than the
k-independent flux of Kraichnan. For the classical spectrum,
which is assumed to be valid in the limit of weak friction,
we have derived an expression for the critical viscosity, which
separates the regimes of predominant viscous and frictional
dissipation of enstrophy. This critical viscosity decreases
exponentially with the friction coefficient. On the numerical
side, we have carried out a number of numerical integrations of
the forced 2D Navier-Stokes equations with a friction term to
confirm the theoretical results. Given all else fixed, including
the friction coefficient, viscous dissipation of enstrophy has
been observed to decrease as the viscosity is decreased.
This decrease appears to be slow, probably logarithmically in
viscosity as in the case of freely decaying turbulence [17,19].
The numerical results for the critical viscosity are in qualitative
agreement with the theoretical finding. We have observed
no significant differences between undamped and damped
turbulence near the critical viscosity. In particular, the energy
spectra of the enstrophy inertial range in the two cases are
virtually indistinguishable, both are close to the classical k−3

spectrum.
Enstrophy divergence in the inviscid limit is an indis-

pensable feature of the Kraichnan theory. The reason is
that the predicted limiting inertial range simply has infinite
enstrophy. Another reason, which is less obvious, is that
the production of ever-smaller scales (effectively a linear
process [15,16]) would not be able to withstand viscous
effects in the absence of a diverging vorticity [11]. In other
words, only in the presence of a diverging vorticity could
the enstrophy be transferred to and eventually dissipated
at ever-smaller scales, thereby maintaining the picture of
quasisteady dynamics envisaged by Kraichnan. Therefore,
in choosing large-scale dissipation operators for numerical
reasons or in designing thin film or shallow fluid layer exper-
iments (for comprehensive reviews of this research topic see
Refs. [27–29] and references therein), one should be mindful
of this constraint. Mechanical friction has been seen here to
render “anti-Kraichnan” behavior in the inviscid limit. (For
further but largely unrelated effects of friction and other
large-scale dissipation mechanisms see Ref. [30,31].) Another
important effect of friction not discussed in this study is that
it “stabilizes” the virtually inviscid forcing region, which,
in Kraichnan’s picture, is kept bounded by the dual cascade
alone. The implication is that the problem of universality or
nonuniversality of the Kraichnan-Batchelor constant may not
be reliably resolved by simulations with a friction term.
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