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Onset of Marangoni convection for evaporating liquids with spherical interfaces
and finite boundaries
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We examine the stability of liquids with spherical interfaces evaporating from funnels constructed of different
materials. A linear stability analysis predicts stable evaporation for funnels constructed of insulating materials
and introduces a stability parameter for funnels constructed of conducting materials. The stability parameter
is free of fitting variables since we use the statistical rate theory expression for the evaporation flux. The
theoretical predictions are found to be consistent with experimental observations for H2O evaporating from a
funnel constructed of poly(methyl methacrylate) and for H2O and D2O evaporating from a funnel constructed of
stainless steel.
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I. INTRODUCTION

It has been demonstrated that Marangoni convection can
play an important role in transporting thermal energy during
evaporation [1–5]. This energy transport is particularly im-
portant in applications involving heat transfer at small length
scales, such as cooling of microelectronic devices [6]. Also,
systems requiring large amounts of heat removal often exploit
evaporation since the change-of-phase process involves a
significant amount of energy [7,8]. In order to capitalize on the
effects of Marangoni convection, an understanding of the onset
is needed, but before the onset of Marangoni convection can
be understood, certain unresolved issues must be addressed.

We are concerned with three issues in this study: (i) The
role of evaporation in the onset of Marangoni convection has
not been resolved [9–11], (ii) there are geometrical effects
that have not been examined, and (iii) the presence of fitting
variables in prediction parameters complicates experimental
comparisons. Many studies investigate a semi-infinite sheet
in order to isolate the liquid-vapor interface from boundary
effects [9]. However, physical systems of interest often have
geometries that deviate from semi-infinite sheets. For example,
evaporation at the spherical interface of a liquid bounded at a
polar angle for all azimuthal angles (i.e., a funnel; see Fig. 1)
has been studied experimentally and the conditions at which
the liquid makes a transition from a quiescent to a convecting
state have been recorded [1,2,4], but none of the presently
available stability analyses can be applied to this geometry.
Also, in each of these experiments and in others [12], an
interfacial temperature discontinuity has been measured in
which the interfacial vapor temperature is greater than that
of the liquid by several degrees. Fitting variables, such as
heat transfer coefficients or the Hertz-Knudsen relation with
its evaporation and condensation coefficients, often appear in
the stability parameter, which makes it difficult to apply the
predictions in an experimental circumstance [11].

The seminal work on Marangoni instability by Pearson [9]
involved a linear stability analysis for a semi-infinite sheet. It
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has been demonstrated that the results are not directly applica-
ble to evaporating systems [4,13,14]. In a recent investigation,
evaporation was included in a linear stability analysis [11] for
a flat sheet and finite size effects were taken into account by
bounding the sheet. The geometry of the system in the funnel
experiments [1,2,4] is sufficiently different from flat sheets that
a stability analysis is required to explain the observed results.
Marangoni convection in evaporating droplets with spherical
interfaces has been investigated previously [13,15,16], but the
geometry in these studies is for entire spherical droplets with
no angular bounding.

In this study we investigate the effect of the funnel material
on the stability by performing a linear stability analysis for
liquids evaporating from funnels constructed of insulating and
conducting materials. We develop the expression for a stability
parameter, which provides a quantitative prediction for the
transition from a quiescent to a convecting interface for liquids
evaporating from funnels constructed of conducting materials.
The stability parameter contains no fitting variables since
we use the statistical rate theory expression for evaporation
flux [11,17]. We compare the theoretical predictions to the
experimental observations for H2O evaporating from a funnel
constructed of poly(methyl methacrylate) (PMMA) and for
H2O and D2O evaporating from a funnel constructed of
stainless steel [1,2]. A parametric analysis is performed to
show how the stability parameter varies when changing the
input quantities.

II. PROBLEM DEFINITION

We investigate a system with an evaporating spherical
interface at r = rI that is bounded at a polar angle of π/4 by
the funnel wall, as shown in Fig. 1. The system is axisymmetric
about the φ = 0 centerline. The surrounding fluid is the vapor
phase of the liquid and has a temperature at a boundary far
from the interface of T∞. Here the polar angle is given by φ as
θ is used to denote the temperature perturbation. For the linear
stability analysis we perturb the velocity and temperature in
the liquid phase and the temperature in the vapor phase. The
temperature of the vapor phase is included to ensure a balance
of energy and the effect of velocity in the vapor phase is
assumed to be negligible.
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FIG. 1. Schematic of the system analyzed in the linear stability
analysis.

Typically, investigation of Marangoni instability is for flat
sheets, with an interface that is not in contact with a boundary
surface, and the temperature gradients normal to the interface
generate the instability. However, with a spherical interface
bounded in the polar direction, to ensure a stable initial state we
require an isothermal liquid phase, thus suppressing tangential
temperature gradients along the interface, which would cause
Marangoni convection. This assumption is consistent with
experimental observations [4]. The initial state therefore
requires that the energy necessary for evaporation be provided
by conduction through the vapor phase.

III. INITIAL STEADY-STATE SOLUTION

Initially, we consider an evaporating liquid with no
Marangoni convection. The initial state is defined based on
the stable evaporation observed in the experiments [1,2,4].
Therefore, we have an isothermal liquid phase whereby the
energy required for evaporation is provided by conduction
through the vapor phase and the vapor phase temperature
gradient normal to the interface is uniform along the interface.
We assume that the initial evaporation rate is low enough so
that the effect of flow through the liquid phase is negligible
and the initial velocities are zero. Thus we have

Uini = 0, (1)

Pini = P0, (2)

T L
ini = T0, (3)

T V
ini = T V

ini(r), (4)

where U is the velocity in the liquid phase, P is the pressure,
T is the temperature of either the vapor or liquid phase
(superscripts V and L distinguish these), the subscript “ini”
denotes the initial state, and a subscript or superscript 0 denotes
the initial, unperturbed value of the variable.

With the low flow rate assumption and dependence only
in the radial direction, the initial temperature distribution in
the vapor phase is governed by the conservation of energy
equation

1

r2

∂

∂r

(
r2 ∂T V

ini

∂r

)
= 0. (5)

At r = rI we have evaporation at a free surface, which yields
the energy balance

κV β = jevhfg, (6)

where κV is the thermal conductivity of the vapor phase, jev is
the evaporation flux at the interface, and hfg is the enthalpy of
vaporization. The uniform vapor phase temperature gradient
normal to the interface is denoted by β and the boundary
conditions are

∂T V
ini

∂r

∣∣∣∣
r=rI

= β, (7)

T V
ini(r → ∞) = T∞. (8)

The solution of Eq. (5) with Eq. (7) and Eq. (8) is

T V
ini(r) = T∞ + β

(
− r2

I

r

)
. (9)

Now that we have described the initial steady-state solution
we can proceed to the linear stability analysis.

IV. LINEAR STABILITY ANALYSIS

In this section we perform a linear stability analysis and
derive the equations required to analyze the stability of liquids
evaporating from funnels. We perform the analysis for systems
with an insulated funnel wall and a conducting funnel wall. The
difference between these two analyses is the thermal boundary
condition at φ = π/4, so we list both of the conditions in the
following derivation and provide the analysis for each case
independently in the sections that follow.

A. Governing equations

Based on the initial state, we introduce the perturbations

U(r,φ,t) = u(r,φ,t), (10)

P (r,φ,t) = P0 + p(r,φ,t), (11)

T L(r,φ,t) = T0 + θL(r,φ,t), (12)

T V (r,φ,t) = T∞ + β

(
− r2

I

r

)
+ θV (r,φ,t) (13)

and we reiterate that the velocity perturbation and pressure
perturbation are for the liquid phase only, so we include no
superscript on them. If we use an expression for the evaporation
flux jev from statistical rate theory [17,18], which has no fitting
parameters, we can take the derivative with respect to the liquid
or vapor temperature. This enables us to write the evaporation
flux and enthalpy of vaporization, which are dependent on the
liquid and vapor temperatures, as

jev = j 0
ev + ∂jev

∂T L
θL + ∂jev

∂T V
θV , (14)

hfg = (
hV

0 − hL
0

) − cL
pθL + cV

p θV , (15)

where cp is the specific heat capacity. The statistical rate theory
expression for jev is listed in the Appendix and a detailed
derivation and description can be found in Refs. [17,18].
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We introduce the nondimensionalizations

r = r∗rI , (16)

t = t∗r2
I

ν
, (17)

Ur = U ∗
r α

rI

, (18)

Uφ = U ∗
φα

rI

, (19)

P = P ∗ρνα

r2
I

, (20)

T L = T L∗βrI , (21)

T V = T V ∗βrI , (22)

where ν is the kinematic viscosity of the liquid, α is the
thermal diffusivity, and ρ is the density of the liquid. We
assume that the liquid and vapor phases are incompressible and
buoyancy effects are negligible (accomplished by exploiting
the neutral buoyancy point of water or conditions of near free
fall). When the perturbations and scalings are substituted into
the conservation equations we have the linearized equations
(the asterisk is dropped from the variables and the analysis is
nondimensional from here onward)

∇ · u = 0, (23)
∂u
∂t

= −∇p + ∇2u, (24)

Pr
∂θj

∂t
− ∇2θj = 0, (25)

where Pr is the Prandtl number (ν/α) and the j superscript
is either L for the liquid phase or V for the vapor phase. We
can eliminate the pressure term by taking the curl of Eq. (24)
twice, yielding

∂

∂t
∇2u − ∇4u = 0. (26)

Now that we have a linearized and nondimensional set of
governing equations (23), (25), and (26), we can proceed to
the linear stability analysis.

B. Marginal stability

The marginally stable state of the system can be described
if we assign the following form to the perturbations:

ur = urs(r,φ) exp(σ t), (27)

uφ = uφs(r,φ) exp(σ t), (28)

θL = θL
s (r,φ) exp(σ t), (29)

θV = θV
s (r,φ) exp(σ t), (30)

where the s subscript is used to denote the variables cor-
responding to a state of marginal stability. The governing
equations (23), (25), and (26) become, respectively,

∇ · us = 0, (31)

σ∇2us − ∇4us = 0, (32)

Prσθj
s − ∇2θj

s = 0. (33)

We assume the exchange of stabilities is valid, so that σ is
real, the marginally stable states are characterized by σ = 0,
and Eqs. (32) and (33) become, respectively,

∇4us = 0, (34)

∇2θj
s = 0. (35)

At φ = π/4, for the insulated funnel wall the conditions are

uφs = 0, (36)

−1

r

∂θL
s

∂φ
= 0. (37)

We note that along the funnel wall we allow for slip in the
perturbed velocity. For the conducting funnel wall we require
an energy balance in the liquid phase between the funnel
side wall and evaporation at the liquid-vapor interface, so that
instead of Eq. (37) we have(∫ 1

0
−1

r

∂θL
s

∂φ
dr

)
φ=π/4

=
(∫ π/4

0

∂θL
s

∂r
r dφ

)
r=1

. (38)

At φ = 0 we have an axisymmetric boundary

∂urs

∂φ
= 0, (39)

uφs = 0, (40)

∂θL
s

∂φ
= 0. (41)

For r → ∞ the vapor phase temperature perturbation satisfies

θV
s = 0. (42)

At r = 1 we have evaporation at a free surface, which is a
discontinuous liquid-vapor interface. The boundary conditions
can therefore be generated using jump conditions for the
balance laws as follows:

urs = rI

αρ
j 0

ev + r2
I β

ρα

(
∂jev

∂T L
θL
s + ∂jev

∂T V
θV
s

)
, (43)

∂2urs

∂r2
− ∂2urs

∂φ2
+ 2

∂urs

∂r
− cot φ

∂urs

∂φ
− 2urs

= −γT r2
I β

ρνα

(
∂2θL

s

∂φ2
+ cot φ

∂θL
s

∂φ

)
, (44)

κV

κL

∂θV
s

∂r
+ rI

κL

(
− ∂jev

∂T V

(
hV

0 − hL
0

) − j 0
evc

V
p

)
θV
s

= ∂θL
s

∂r
+ rI

κL

(
∂jev

∂T L

(
hV

0 − hL
0

) − j 0
evc

L
p

)
θL
s , (45)

where γT is the change of surface tension with respect to
temperature and κ is the thermal conductivity of the liquid
phase L or vapor phase V . Equation (44) has been simplified
to eliminate the dependence on uφs by first differentiating
by φ, then substituting in the continuity equation (31), and
finally substituting the undifferentiated initial form to yield
the form shown above. With this simplification we require
only a solution for urs in the stability analysis.
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For convenience we define the dimensionless groupings
from these equations as

ξC = rI

αρ
j 0

ev, (46)

ξCL = r2
I β

ρα

∂jev

∂T L
, (47)

ξCV = r2
I β

ρα

∂jev

∂T V
, (48)

ξM =
(

−γT r2
I β

ρνα

)
, (49)

K = κV

κL
, (50)

ξT V = rI

κL

(
− ∂jev

∂T V

(
hV

0 − hL
0

) − j 0
evc

V
p

)
, (51)

ξT L = rI

κL

(
∂jev

∂T L

(
hV

0 − hL
0

) − j 0
evc

L
p

)
(52)

and note that each of these parameters contains only properties
or measurable variables, thus making them physical parame-
ters. Now we can rewrite the conditions at r = 1:

urs = ξC + ξCLθL
s + ξCV θV

s , (53)

∂2urs

∂r2
− ∂2urs

∂φ2
+ 2

∂urs

∂r
− cot φ

∂urs

∂φ
− 2urs

= ξM

(
∂2θL

s

∂φ2
+ cot φ

∂θL
s

∂φ

)
, (54)

K
∂θV

s

∂r
+ ξT V θV

s = ∂θL
s

∂r
+ ξT LθL

s . (55)

The term ξM in Eq. (54) is traditionally called the Marangoni
number. In this analysis we define ξM by Eq. (49), so it
represents the Marangoni number for a spherical system with
an initially isothermal liquid phase and a temperature gradient
in the vapor phase. The stability criterion will be developed
by substituting the solutions for the velocity and temperature
perturbations into Eq. (54) and solving for ξM .

The change of phase at the liquid-vapor interface allows us
to write a nonzero value for the radial velocity in Eq. (53).
The term ξC in Eq. (53) is the dimensionless velocity
resulting from an evaporation flux. The terms ξCL and ξCV

relate a temperature change (in the liquid and vapor phases,
respectively) to the radial velocity at the interface of an
evaporating fluid.

The liquid and vapor phase temperatures are coupled
because we include the contributions from both phases in
the energy balance of Eq. (55). The physical interpretation
of the terms ξT V and ξT L is evident from an analogy to
the Biot number, since their placement in Eq. (55) indicates
they have replaced the Biot number and have the same role.
They have eliminated the need for a Biot number since they
directly describe the heat transfer conditions at the interface
in relation to the evaporation flux. Therefore, the term ξT V

represents the ratio of the resistance to conduction through
the vapor phase and the resistance to the evaporation flux
at the interface. Likewise, the term ξT L represents the ratio

of the resistance to conduction through the liquid phase and
the resistance to the evaporation flux at the interface. This
indicates that higher values for ξT V and ξT L correspond to
larger temperature gradients building up in the vapor and
liquid phases, respectively. Therefore, it is expected that these
terms have a crucial role in the stability of the system, as
demonstrated by the generation of the stability parameter in
Eq. (77), which is listed below.

V. INSULATED FUNNEL WALL

In this section we perform an analysis for liquids evaporat-
ing from funnels constructed of insulating materials, using the
equations derived above.

A. Liquid phase temperature

We begin with the solution to Laplace’s equation (35) for
the liquid phase temperature perturbation. The general solution
is given as

θL
s (r,φ) =

∞∑
n=0

(Anr
n + Bnr

−n−1)Pn(cos φ), (56)

where Pn (cos φ) are the Legendre polynomials.
In order for the solution to be bounded at the origin, Bn = 0

for all n. We substitute Eq. (56) into Eq. (37) and find

−1

r

∂θL
s

∂φ

∣∣∣∣
φ=π/4

= A1√
2

+ 3A2

2
r + 9A3

4
√

2
r2 + · · · = 0. (57)

Since this expression must equal zero for all values of r , An =
0 for n > 0.

The boundary condition from Eq. (41) is satisfied

∂θL
s

∂φ

∣∣∣∣
φ=0

= 0. (58)

The expression for θL
s is thus a constant

θL
s (r,φ) = A0. (59)

For the case with an insulated funnel wall, the liquid phase
temperature perturbation is constant everywhere. Since the
temperature is constant along the free surface, there will be no
Marangoni convection and the system is predicted to be stable.

VI. CONDUCTING FUNNEL WALL

In this section we develop an expression to predict the onset
of Marangoni convection for liquids evaporating from funnels
constructed of conducting materials.

A. Liquid phase temperature

Similar to the analysis above, the general solution to
Laplace’s equation is Eq. (56) and in order for the solution
to be bounded at the origin, Bn = 0 for all n. Later in the
analysis (Sec. VI D) we will demonstrate that the modes for
n �= 1 contribute no valid solutions, so we proceed with the
analysis using only the solution for the n = 1 mode.

If we consider only the n = 1 mode in Eq. (56) and
substitute into Eq. (38), we find that both integrals equal
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A1/
√

2, so Eq. (38) is satisfied. The boundary condition from
Eq. (41) is also satisfied

∂θL
s

∂φ

∣∣∣∣
φ=0

= 0. (60)

The expression for θL
s is

θL
s (r,φ) = A1r cos φ. (61)

The conducting case therefore yields an expression Eq. (61)
for the liquid phase temperature perturbation that depends on
φ, in contrast to the expression for the insulating case Eq. (59).

B. Vapor phase temperature

We now solve for the temperature in the vapor phase. The
general solution is

θV
s (r,φ) =

∞∑
n=0

(Cnr
n + Dnr

−n−1)Pn(cos φ). (62)

The vapor phase does not include the origin, so we keep the Dn

coefficients. Instead we find from the boundary condition at
r → ∞ [Eq. (42)], when we substitute in Eq. (62), that Cn = 0
for all n. We now substitute into Eq. (55) and find

D1 (ξT V − 2K) cos φ = A1 (1 + ξT L) cos φ. (63)

Therefore, D1 = A1(1 + ξT L)/(ξT V − 2K). The modes for
n �= 1 in Eq. (62) cannot produce terms that satisfy the
right-hand side of Eq. (63); therefore, Dn = 0 for n �= 1.

The expression for θV
s is

θV
s (r,φ) = A1 cos φ

r2

(1 + ξT L)

(ξT V − 2K)
. (64)

We note that as a result of the coupling in the energy
balance Eq. (55), the expressions for both θL

s [Eq. (61)] and θV
s

[Eq. (64)] contain the coefficient A1. The coefficient A1 is the
only unknown in Eq. (64) since K , ξT V , and ξT L are physical
parameters, defined in Eqs. (50), (51), and (52), respectively,
containing properties or measurable parameters.

C. Liquid phase radial velocity

The general solution to the spherical biharmonic equa-
tion (34) is given as [19]

urs(r,φ) =
∞∑

n=0

(
Enr

n+2 + Fnr
n + Gnr

1−n

+Hnr
−1−n

)
Pn(cos φ). (65)

In order for the solution to be bounded at the origin, Gn = 0
for n > 1 and Hn = 0 for all n. The boundary condition from
Eq. (39) is satisfied:

∂urs

∂φ

∣∣∣∣
φ=0

= 0. (66)

We substitute Eq. (65) into Eq. (53) and find

(E0 + F0 + G0) + (E1 + F1 + G1) cos φ

= ξC + A1

(
ξCL + ξCV (1 + ξT L)

ξT V − 2K

)
cos φ. (67)

Since the modes for n > 1 in Eq. (65) have a dependence
on cos nφ, they cannot satisfy the right-hand side of Eq. (67)
and must be eliminated. There are no additional boundary
conditions to limit which of the coefficients in Eq. (67) are
used in the expression for urs :

urs(r,φ) = E0r
2 + F0 + G0r + (E1r

3 + F1r + G1) cos φ,

(68)

so we solve the stability problem considering all of the
coefficients and analyze the resulting solutions with respect
to their physical validity.

D. Examination of the coefficients

In order to derive the stability criterion we rearrange
Eq. (54) and add the s subscript to distinguish the result of
the stability analysis from the physical definition of ξM given
above in Eq. (49):

ξMs =
∂2urs

∂r2 − ∂2urs

∂φ2 + 2 ∂urs

∂r
− cot φ ∂urs

∂φ
− 2urs

∂2θL
s

∂φ2 + cot φ ∂θL
s

∂φ

. (69)

Substituting in the solutions for θL
s [Eq. (61)], θV

s [Eq. (64)],
and urs [Eq. (68)] yields

ξMs = 1

A1

(
− 2E0

cos φ
+ F0

cos φ
− 6E1 − F1

)
. (70)

We can see from Eq. (70) that the E0 and F0 coefficients result
in terms that generate a φ dependence for ξMs . From Eq. (49)
we can see that ξM contains no terms with a dependence on
φ. In order to satisfy Eq. (54), ξMs must be set equal to ξM , so
ξMs must also have no dependence on φ. Therefore, E0 = 0,
F0 = 0, and, in order to satisfy Eq. (67), G0 = ξC1.

We investigate the remaining coefficients in Eq. (70)
individually. If we use G1 to solve Eq. (67), the resulting
ξMs expression would be zero and there would be no onset
prediction. Therefore, we set G1 = 0. There are two remaining
cases: We can either solve Eq. (67) for E1 and set F1 equal
to zero (case E1) or solve for F1 and set E1 equal to zero
(case F1). Utilizing combinations of these terms would result
in a description of the stability parameter with ambiguous
constants, which would have to be eliminated, so we consider
only these two cases. For case E1 we find

ξ
E1
Ms = −6

(
ξCL + ξCV (1 + ξT L)

ξT V − 2K

)
(71)

and for case F1 we find

ξ
F1
Ms = −

(
ξCL + ξCV (1 + ξT L)

ξT V − 2K

)
. (72)

The form given in Eq. (72) is a multiple of Eq. (71), so we can
analyze only Eq. (71) since the 1/6 multiplier applied to ξM

corresponds to the least stable case.
We elaborate here on the exclusion of all modes except the

n = 1 mode for the liquid phase temperature solution. Similar
to the argument for eliminating the E0 and F0 coefficients
above, we found that utilizing higher modes in the solution for
θL
s only yields additional terms in ξMs that are dependent on

φ. Since we can have no φ dependence in ξMs we can consider
only the form of θL

s for the n = 1 mode, given in Eq. (61).
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E. Stability parameter for a conducting funnel wall

To examine the stability we equate the result from the
perturbation analysis Eq. (71) and the physical definition of
ξM from Eq. (49):

−6

(
ξCL + ξCV (1 + ξT L)

ξT V − 2K

)
= ξM. (73)

We substitute in Eqs. (47), (48), and (49) and rearrange terms

− r2
I β

ρα

[
∂jev

∂T L

∣∣∣∣
I

+ ∂jev

∂T V

∣∣∣∣
I

(
1 + ξT L

ξT V − 2K

)]
= −1

6

γT r2
I β

ρνα
.

(74)

The terms ξT L and ξT V were not substituted for since no
simplification results from the substitution. We cancel the
terms common to both sides of the equation and obtain

−
[

∂jev

∂T L

∣∣∣∣
I

+ ∂jev

∂T V

∣∣∣∣
I

(
1 + ξT L

ξT V − 2K

)]
= −1

6

γT

ν
. (75)

We now have an expression that relates the evaporation
properties of the fluid to the ratio between the surface tension
forces and viscous forces. In order to generate a stability
parameter that is dimensionless we rearrange Eq. (75) as

ν

γT

[
∂jev

∂T L

∣∣∣∣
I

+ ∂jev

∂T V

∣∣∣∣
I

(
1 + ξT L

ξT V − 2K

)]
= 1

6
. (76)

We define the stability parameter χs as the left-hand side of
Eq. (76):

χs = ν

γT

[
∂jev

∂T L

∣∣∣∣
I

+ ∂jev

∂T V

∣∣∣∣
I

(
1 + ξT L

ξT V − 2K

)]
. (77)

We note that χs is comprised entirely of physical variables that
are either properties or parameters that can be measured, so we
can compare this expression directly with experimental obser-
vations. In contrast to the conventional stability investigations
for nonvolatile fluids and semi-infinite systems, the stability
parameter does not depend on temperature gradients since
β was canceled in Eq. (74). Therefore, the expression for the
stability parameter is instead a function of the conditions at the
interface. We also note the importance of including the vapor
phase thermal contributions in the interfacial energy balance
Eq. (55) since the vapor phase contributions are present in the
stability parameter, particularly the term K , which is the ratio
of thermal conductivity of the vapor and liquid phases.

VII. EXPERIMENTAL RESULTS

In this section we compare the theoretical predictions to
the experimental observations [1,2,4]. We note that the liquid
phase in these experiments was isothermal prior to the onset
of Marangoni convection. Since there were no temperature
gradients in the liquid phase, there could not have been any
buoyancy-driven convection; hence, the observed transition to
convection was the result of surface tension effects.

A. Experiments with a PMMA funnel

For liquids evaporating from funnels constructed of an
insulating material, the theoretical analysis in Sec. V predicts
that there will be no Marangoni convection and the system is
stable. In the experiments of Ref. [4], H2O was evaporating

from a funnel constructed of PMMA. Since the thermal
conductivity of PMMA is less than one-third that of water, the
funnel is considered to be insulating. In these experiments the
system was observed to be stable and there were no conditions
in the investigation whereby Marangoni convection could be
initiated. Therefore, the theoretical result correctly describes
the observations in the experiments [4].

B. Experiments with a stainless steel funnel

We will now compare the predictions for a transition to
Marangoni convection calculated with the stability parameter
derived in Sec. VI to the experimental results with H2O and
D2O evaporating from funnels constructed of stainless steel
[1,2]. The values measured during the D2O experiments [2]
are listed in Table I. In experiments EVD1 through EVD4,
quiescent (stable) evaporation was observed as the evaporation
rate was progressively increased from one experiment to the
next. Experiment EVD5 was the first in which a convecting
state was observed. Thus we expect a transition to Marangoni
convection to occur between EVD4 and EVD5.

Similarly, the values measured during the H2O experiments
[1] are listed in Table II. In experiments EV5 through EV7,
quiescent (stable) evaporation was observed as the evaporation
rate was increased. EV8 was the first experiment where a
convecting state was observed, so we expect a transition to
occur between EV7 and EV8 for the H2O experiments.

The interfacial radius rI listed in Tables I and II is the radius
shown in Fig. 1, which was calculated based on the geometry
such that the funnel wall corresponded to the origin of the
spherical coordinate system and was located at an angle of
π/4. This is an approximation, which differs from the interface
radius reported in Ref. [2] because that radius was calculated
for a different purpose by considering the curvature of the
interface and not for the location of the funnel wall. The
difference between these two values results in a negligible
change for the calculations performed in this analysis.

The interfacial vapor phase temperature T V
I listed in

Tables I and II is labeled as the extrapolated value. The T V
I

values reported in the experiments of Refs. [1,2] correspond
to a temperature measurement that is approximately 40 μm
away from the interface (in the normal direction). This is a
result of the bead diameter of the thermocouple (approximately

TABLE I. Conditions for the D2O experiments [2]. The extrapo-
lated value is denoted by “extrap.”

Experiment

EVD1 EVD4 EVD5

P V (Pa) 651.9 ± 13.3 642.6 ± 13.3 625.3 ± 13.3
rI (mm) 4.4 ± 0.01 4.4 ± 0.01 4.4 ± 0.01
jev (g/m2 s) 0.059 ± 0.001 0.089 ± 0.001 0.221 ± 0.002
throat T L (◦C) 3.60 ± 0.02 3.58 ± 0.02 3.61 ± 0.02
extrap. T V

I (◦C) 4.41 ± 0.64 4.33 ± 0.64 4.04 ± 0.64
onset χs 0.167 0.167 0.167
onset T V

I (◦C) 3.641 3.621 3.652
interface observed quiescent quiescent convection
prediction quiescent quiescent possible

convection
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TABLE II. Conditions for the H2O experiments [1].

Experiment

EV5 EV7 EV8

P V (Pa) 787.9 ± 13.3 783.9 ± 13.3 777.3 ± 13.3
rI (mm) 4.4 ± 0.01 4.4 ± 0.01 4.4 ± 0.01
jev (g/m2 s) 0.057 ± 0.001 0.070 ± 0.001 0.100 ± 0.002
throat T L (◦C) 3.56 ± 0.03 3.53 ± 0.03 3.53 ± 0.03
extrap. T V

I (◦C) 4.42 ± 0.64 4.31 ± 0.64 4.23 ± 0.64
onset χs 0.167 0.167 0.167
onset T V

I (◦C) 3.625 3.595 3.595
interface observed quiescent quiescent convection
prediction quiescent quiescent possible

convection

50 μm), the gap required to ensure the bead was not in contact
with the liquid phase, and the accuracy of the cathetometer
used for positioning (±10 μm). The stability is sensitive to
the value of T V

I , so we require the value at the interface and
an understanding of its uncertainty range. The temperature
measurements were made as close to the interface as possible
(thermocouple bead located 40 μm away) and at regular
intervals progressively further from the interface (in a direction
normal to the interface). We use these data points to generate
a fit and extrapolate to the interface. The fit corresponds to the
solution for the vapor phase temperature in the initial stable
state reported above as Eq. (9). We find values for T∞ and β and
list these in Table III for each experiment. An example of the
measured data points and the fit are plotted in Fig. 2 for experi-
ment EV8 to elucidate the method, results, and estimated error.

The estimated error range listed in Tables I and II for the
extrapolated T V

I values is a result of the temperature mea-
surement inaccuracy, the uncertainty in the interface location,
and the fitting and extrapolation errors. The cathetometer
uncertainty of ±10 μm leads to an uncertainty of ±20 μm
in the location of the interface since both the steady-state
position of the interface, where evaporation is taking place, and
the thermocouple bead location rely on positioning performed
with the cathetometer. Although the temperature measurement
inaccuracy is ±0.02 ◦C, the combination of bead and interface
location uncertainty, and the fitting and extrapolation errors
raises the estimated error to ± 0.64 ◦C.

The stability parameter χs is a function of the interfacial
liquid and vapor temperatures, the vapor phase pressure
of the system, and the radius of the spherical interface.
The expression for the evaporation flux jev derived from

TABLE III. Coefficients for the T V fit using Eq. (9).

Coefficient

Experiment T∞ (◦C) β (◦C/m)

EVD1 28.75 ± 1.97 5531 ± 456
EVD4 26.73 ± 2.04 5091 ± 474
EVD5 26.07 ± 0.93 5006 ± 216
EV5 33.46 ± 1.38 6601 ± 319
EV7 30.55 ± 0.72 5963 ± 167
EV8 30.95 ± 1.01 6071 ± 233

4.40 4.44 4.48 4.52 4.56
4.2

4.4

4.6

4.8

5.0

5.2

FIG. 2. (Color online) Plot of the experimental data (points) and
the fit (solid line) for the vapor phase temperatures in the EV8
experiment. The interface is located at r = rI = 4.40 mm.

statistical rate theory is sensitive to values of the vapor phase
pressure [17]. The equipment provided a measurement range
of ±13.3 Pa, which is not accurate enough to predict jev.
However, the evaporation rate was measured with a syringe
pump for these experiments. So instead of calculating the
value of jev from the experimental measurements, we can insert
the value directly and investigate the stability parameter as a
function of the evaporation flux also:

χs = χs

(
j 0

ev,T
V
I ,T L

I ,P V ,rI

)
. (78)

Once the evaporation flux is inserted directly into the calcula-
tion of χs , the effect of the vapor phase pressure on the values
of χs becomes negligible. The derivative of the evaporation
flux with respect to the liquid or vapor temperature, required
for Eq. (77), can be calculated using an expression for
the evaporation flux jev from statistical rate theory [17,18]
[Eq. (A1)], which has no fitting parameters, as noted above.
The derivatives are not sensitive to the vapor phase pressure
values and can be calculated from the expression.

C. Stability prediction for the D2O experiments

We determine if the stability parameter χs predicts the tran-
sition to Marangoni convection observed in the experiments of
Ref. [2]. The fluid used in this study was D2O and we use the
properties given in Ref. [2]. The right-hand side of Eq. (76)
corresponds to the onset value of 1/6 (0.167).

If we calculate the value of χs directly from the ex-
perimental values listed in Table I, without considering the
uncertainty ranges, we find that the value of χs is less
than the onset value (0.167) and the system is predicted to
be stable for all of the experiments. However, we need to
determine if an instability is predicted to occur within the
uncertainty ranges of the experimental data. Since T V

I has the
largest uncertainty range, we examine it first while holding
the other experimental parameters in Eq. (78) constant and
calculate the value that would be required for the onset of an
instability.
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The results of the investigation are summarized in Table I.
We find that the instability is predicted to occur at a T V

I value
of approximately 3.641◦C for EVD1, 3.621◦C for EVD4, and
3.652 ◦C for EVD5. The onset T V

I value for EVD5, in which
Marangoni convection was observed, lies within the possible
range; however, the values for EVD1 and EVD4, which were
observed to be quiescent, do not lie within the possible range.
The uncertainty ranges for jev and T L

I were also investigated
and there were no values within the ranges that predicted
an instability for EVD1 and EVD4. Therefore, the theory
is consistent with experimental observations since it predicts
that a transition to Marangoni convection is possible between
EVD4 and EVD5.

D. Stability prediction for the H2O experiments

We determine if the stability parameter predicts the transi-
tion to Marangoni convection observed in the experiments of
Ref. [1]. The fluid used in this study was H2O and we use the
properties listed in Ref. [1].

Similar to the D2O case, if we calculate the value of χs

directly from the experimental values listed in Table II, without
considering the uncertainty ranges, we find that the value of χs

is less than the onset value (0.167) and the system is predicted
to be stable for all of the experiments. As we did above, we
determine if an instability is predicted to occur within the
uncertainty ranges of the experimental data, beginning with
an investigation of T V

I while holding the other experimental
parameters in Eq. (78) constant and calculating the value that
would be required for the onset of an instability.

We find that the predicted T V
I values are outside the

uncertainty ranges for fixed values of jev and T L
I . If we

allow T L
I to vary within the uncertainty range, we find that

for the highest values of T L
I (0.03 ◦C above the values listed

in Table II) the predicted T V
I values are within the uncertainty

range for EV8. The results of the investigation are summarized
in Table II. We find the instability is predicted to occur at a T V

I

value of approximately 3.625 ◦C for EV5, 3.595 ◦C for EV7,
and 3.595 ◦C for EV8. We note that the predicted T V

I values
are the same for EV7 and EV8 because the onset parameter
depends strongly on T L

I values in this circumstance and the
values are the same for these two experiments. The dependence
of the stability parameter on the input variables is shown in
more detail in the parametric analysis in the following section.
The onset T V

I value for EV8, in which Marangoni convection
was observed, lies within the possible range; however, the
values for EV5 and EV7, which were observed to be quiescent,
do not lie within the possible range. Therefore, the theory is
consistent with the experimental observations since it predicts
that a transition to Marangoni convection is possible between
EV7 and EV8.

VIII. PARAMETRIC ANALYSIS OF THE STABILITY
PARAMETER

As discussed above and summarized in Eq. (78), the present
stability parameter for liquids evaporating from funnels con-
structed of conducting materials χs is primarily a function of
the interfacial vapor phase temperature, the interfacial liquid
phase temperature, the evaporation flux, and the radius of the
spherical interface. The experimental comparison indicates a

strong link between these parameters and the stability. The
direct effect of the parameters on the stability is investigated
by performing a parametric analysis, in which each parameter
is analyzed individually while the others are held constant.

The methodology for the analysis will be to use the data
from the EVD5 experiment as a starting point and vary each
parameter individually. The analysis was performed for a
number of the experiments and the results were found to
be identical, so the EVD5 experiment was selected and is
representative of all of the experiments.

We emphasize that this parametric analysis is not a
physically based analysis since it is not believed that the
parameters can be independently varied. There is reason to
believe from experimental observations [17] that there is a link
between the temperature discontinuity at the interface and the
evaporation flux. However, there is presently no expression
describing this relationship and the result may depend on a
number of factors that have not been rigorously investigated
such as the thermal boundary conditions of the system, the
temperature in the bulk phases, and the presence of Marangoni
convection. So these parameters are varied independently,
exclusively for the purpose of determining their influence on
the onset of Marangoni convection.

A. Effect of interfacial vapor phase temperature

The result of varying T V
I while holding the other variables

fixed is plotted in Fig. 3. It can be seen that as T V
I is

decreased from the measured value of 4.04◦C, the system
becomes unstable. An interesting phenomenon is that since
T L

I is fixed in this case, as T V
I is decreased, it approaches the

value of T L
I (3.61◦C); thus, the temperature discontinuity at

the interface (�TI = T V
I − T L

I ) is decreasing. Therefore, the
analysis indicates that as T V

I decreases the system becomes
less stable or, alternatively, as the temperature discontinuity
decreases the system becomes less stable.

3.50 3.75 4.00 4.25
0

0.05

0.1

0.15

0.2

FIG. 3. (Color online) Stability parameter χs plotted versus T V
I

for T L
I fixed at 3.61◦C, jev at 0.221 g/m2 s, and rI at 4.4 mm.
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FIG. 4. (Color online) Stability parameter χs plotted versus T L
I

for T V
I fixed at 4.04 ◦C, jev at 0.221 g/m2 s, and rI at 4.4 mm.

B. Effect of interfacial liquid phase temperature

The result of varying T L
I is plotted in Fig. 4. It can be seen

that as T L
I is increased from the measured value of 3.61◦C,

the system becomes unstable. Similar to the T V
I analysis, it is

interesting to observe the effect of decreasing the temperature
discontinuity. Since T V

I is fixed in this case, as T L
I is increased,

it approaches the value of T V
I (4.04 ◦C); thus, the temperature

discontinuity at the interface is decreasing. Therefore, the
analysis indicates that as T L

I increases the system becomes
less stable or, alternatively, and consistent with the T V

I case,
as the temperature discontinuity decreases the system becomes
less stable.

C. Effect of evaporation flux

The result of varying jev is plotted in Fig. 5. It can be seen
that as jev is increased from the measured value of 0.221 g/m2s,

0 20 40 60
0

0.05

0.1

0.15

0.2

FIG. 5. (Color online) Stability parameter χs plotted versus jev

for T V
I fixed at 4.04 ◦C, T L

I at 3.61 ◦C, and rI at 4.4 mm.
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FIG. 6. (Color online) Stability parameter χs plotted versus rI for
T V

I fixed at 4.04 ◦C, T L
I at 3.61 ◦C, and jev at 0.221 g/m2 s.

the system becomes unstable. First, this result is compatible
with what would be expected physically since an instability
that results from evaporation should result in a system that
becomes less stable as the evaporation rate is increased.
Second, from Fig. 5 it can be seen that the evaporation rate
expected to yield an instability for fixed interfacial temperature
values is more than two orders of magnitude higher than what
was observed in the experiments.

D. Effect of the radius of a spherical interface

The result of varying rI is plotted in Fig. 6. It can be
seen that as rI is decreased from the measured value of
4.4 mm, the system becomes unstable. This indicates that
liquids evaporating from smaller funnels are less stable.

IX. CONCLUSION

A linear stability analysis has been performed for liquids
evaporating from funnels constructed of either insulating
or conducting materials. The theoretical results have been
compared to experimental observations with D2O and H2O
evaporating from funnels constructed of PMMA and stainless
steel.

The stability analysis for liquids evaporating from funnels
constructed of insulating materials predicted that there would
not be a transition to Marangoni convection and the system
would remain stable for all evaporation rates. The stability
analysis for liquids evaporating from funnels constructed of
conducting materials yielded an expression for a stability
parameter comprised of only physical variables defined at the
liquid-vapor interface and no fitting parameters. Therefore,
we could use the parameter to generate a prediction for the
onset of Marangoni convection and compare it directly with
experimental observations. The differing results from these
two analyses demonstrates the importance of the thermal
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properties of the boundary wall on the stability of bounded
systems.

The theoretical result for the insulated case correctly
described the observations of quiescent (stable) evaporation
in the experiments with H2O evaporating from a funnel
constructed of PMMA [4]. The stability parameter χs was used
to calculate onset predictions for the experiments with H2O and
D2O evaporating from a funnel constructed of stainless steel
[1,2]. The predictions were consistent with the experimental
observations for both liquids. The experimental data did not
have the precision or range required to provide a rigorous
validation of the theoretical result.

A parametric analysis was performed for the stability
parameter presented herein. The analysis demonstrated that
smaller interfacial temperature discontinuities, higher evapo-
ration rates, and smaller radii correspond to less stable systems.
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APPENDIX: STATISTICAL RATE THEORY EXPRESSION
FOR EVAPORATION FLUX

The evaporation flux is given by Refs. [17,18]

jev = 2mKe sinh

(
�slv

kb

)
, (A1)

where

Ke = ηPs

(
T L

I

)
√

2πmkbT
L
I

, η = exp

[
vf

(
T L

I

)
kbT

L
I

[
P L

e − Ps

(
T L

I

)]]
,

�slv

kb

= ln

[(
T V

I

T L
I

)4
Ps

(
T L

I

)
P V

]
+ ln

[
qvib(T V

I )

qvib
(
T L

I

)
]

+ 4

(
1−T V

I

T L
I

)
+

(
1

T V
I

− 1

T L
I

)3n−6∑
l=1

[
θl

2
+ θl

eθl/T V
I −1

]

+ vf

(
T L

I

)
kbT

L
I

[
P V + 2γ LV (T )

rI

− Ps

(
T L

I

)]
,

θl = h̄ωl

kb

, qvib(T ) =
3n−6∏
l=1

e−θl/2T

1 − e−θl/T
,

and P L
e must satisfy

P L
e − 2γ LV (T )

rI

= ηPs

(
T L

I

)
,

where kb is the Boltzmann constant, h̄ is the reduced Planck
constant, m is the mass of a molecule undergoing evaporation,
ωl is a molecular phonon, vf is the specific volume of the liquid
at saturation, γ LV is the surface tension at the liquid-vapor
interface, Ps(T L

I ) is the saturation pressure, and P L
e is the

liquid pressure that would exist at equilibrium. The values of
the properties for H2O are listed in Ref. [1] and those for D2O
are in Ref. [2].
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