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Preconditions and limitations of the postulate of scalar-dissipation–conductivity independence in a
variable conductivity medium
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Classical turbulent mixing paradigm—ingrained in scaling laws and closure models—is revisited in a variable-
conductivity inhomogeneous medium. We perform direct numerical simulations to study the evolution of a
passive scalar (temperature) field in a fluid with large conductivity gradients and investigate the behavior of
scalar dissipation, conditional scalar dissipation, and velocity-to-scalar time scale ratio. Subject to the conditions
of the investigation, it is found that these mixing characteristics become reasonably insensitive to conductivity
after about one-third eddy turnover time. While the results support the classical paradigm, important preconditions
and limitations are clearly identified.

DOI: 10.1103/PhysRevE.84.046318 PACS number(s): 47.51.+a, 47.27.ek, 47.27.tb

I. INTRODUCTION

Scalar mixing in inhomogeneous media is of importance
in many fields of current interest including energy, environ-
ment, and manufacturing. Specific examples include chemical
processing and synthesis, pollutant dispersion in oceans and
atmosphere, and combustion in power plants and engines.
In many of these cases, scalar mixing is the rate controlling
process that critically determines the outcome. Scalar mixing
statistics of general importance are variance, dissipation,
conditional dissipation, and velocity-to-scalar time scale ratio.
Variance (〈φ2〉) is a measure of the degree of unmixedness
of the scalar. Scalar dissipation (εs) is the rate at which the
variance is dissipated and hence is the most direct measure of
the rate of mixing. Also important is the relation between time
scales of the scalar field (τφ) and velocity field (τu). Conditional
scalar dissipation is important as it determines the rate of
evolution of the probability density function of the scalar field.

A. Classical mixing paradigm

Turbulent scalar mixing has been well studied in literature
over the past few decades [1–7]. With the advent of large-scale
computations, further inquiries, not possible with experimental
investigations, have been made [8–12]. The studies indicate
an intricate process in which turbulent fluctuations advect
the scalar field over a wide range of flow scales leading to
increased mixing rates. While many details of the mixing
process vary based on specific flow features or prevailing
nondimensional parameters, several common characteristics
can be easily identified. The inferences lead to the following
classical turbulent mixing paradigm.

(1) In an unmixed scalar field, scalar fluctuations are
initiated at large scales of motion by the stirring action of
the turbulent velocity field.

(2) The fluctuations then cascade down to smaller scales
of motion where they are dissipated (completely mixed) by
molecular action.

(3) The scalar cascade rate is determined by the variance and
scalar time scale: cascade rate ∼ 〈φ2〉/τφ . As passive scalar
fluctuations are neither created nor destroyed in the interme-

*girimaji@aeromail.tamu.edu

diate scales, the scalar dissipation rate must equal the scalar
cascade rate under equilibrium conditions: εs ≡ 〈κ ∂φ

∂xi

∂φ

∂xi
〉 ∼

〈φ2〉
τφ

, where κ is conductivity and τφ is the characteristic scalar
time scale as mentioned before. Throughout the paper, the
symbol 〈·〉 is used to represent spatial averaging. The cascade
and scalar dissipation rate are strongly influenced by the initial
length scales of velocity and scalar fields [5,8,13].

(4) Invoking the scalar analog of Taylor’s viscosity-
dissipation postulate [14,15], it is inferred that scalar dissipa-
tion is independent of conductivity or diffusivity as appropriate
[12]. The value of conductivity (scalar diffusivity) determines
only the extent of inertial scales or equivalently the steepness
of the scalar gradient. The magnitude of the scalar gradient
adjusts itself to the local conductivity, leading to scalar
dissipation becoming equal to the scalar variance cascade rate.

(5) Since the scalar field is advected by the velocity field,
the scalar time scale is proportional to that of the velocity
field under equilibrium cascade conditions: τφ ∼ τu ≡ k

ε
,

where k is turbulent kinetic energy and ε is its dissipation
rate. The proportionality constant in this scaling is also
strongly dependent on the initial velocity-to-scalar length scale
ratio [13].

(6) Finally, the conditional scalar dissipation is only a
function of the scalar value and total scalar dissipation:
〈κ ∂φ

∂xi

∂φ

∂xi
|φ = θ〉 = f (εφ,θ ). Thus the conditional scalar dis-

sipation is also insensitive to conductivity (diffusivity) [16].
This classical paradigm has been examined in a constant

conductivity (diffusivity) medium by varying the large-scale
fluctuations and length scale ( 〈φ2〉

τφ
) and many studies conclude

that the scalar dissipation (εs ≡ 〈κ ∂φ

∂xi

∂φ

∂xi
〉) adjusts accordingly.

However, the postulate has not been investigated when the
cascade rate is held spatially constant and conductivity
(diffusivity) varies in time and space.

B. Mixing in inhomogeneous medium and research objective

Many applications involve scalar field mixing in het-
erogeneous mixtures characterized by steep spatiotemporal
variations in transport properties. This evokes the following
question: “can the classical paradigm be extended to inho-
mogeneous medium?” The validity in homogeneous medium
hinges on the delicate balance between the large-scale spectral
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cascade rate and dissipation, which occurs at small scales. In
inhomogeneous media, such a balance may not be possible for
several reasons. First, the rapid spatial and temporal changes
in scalar conductivity may not allow sufficient time for scalar
gradients to adapt to local transport properties. Secondly,
spatial inhomogeneity in conductivity may give rise to new
transport terms in the scalar dissipation evolution equation.
Finally, any disparity between viscosity and conductivity could
possibly cause the relationship between velocity and scalar
time scales to become spatially variant. Thus motivated, the
objective of this work is to revisit the classical paradigm
in a turbulent medium with strong spatiotemporal variations
in transport properties. Equally importantly, this work will
provide further assessment of the classical postulates, but in
a flow setup completely different from those considered in
previous literature.

C. Velocity versus scalar field—similarities and differences

In a related prior work [15], we investigated the effect of
steep viscosity variations on the dissipation-viscosity inde-
pendence postulate [14], which forms the centerpiece of many
widely used turbulence closure proposals. It was confirmed,
subject to the conditions of the investigation, that dissipation
was impervious to steep spatial gradients in viscosity. As
suggested by Taylor, the square of the velocity gradients varies
inversely with viscosity rendering the dissipation independent
of viscosity. It is natural to expect such behavior from scalar
fields as well. However, scalar field evolution, while similar
to that of velocity field in many aspects, exhibits some
notable differences. It was pointed out by Sreenivasan [6]
that the small-scale isotropy and universality are less evident
in scalar fields compared to velocity fields. Furthermore, it
was pointed out that there are fundamental differences in
the manner in which fluctuations cascade down to small
scales. Warhaft [17] observes that a passive scalar governed
by a linear equation displays characteristics very different
from the advecting velocity field: while the velocity field
is Gaussian, the probability density function of the scalar
field has exponential tails. The scalar field exhibits strong
inertial subrange intermittency even at low Reynolds number, a
feature typically absent in velocity fields. Yeung [9] studied the
Lagrangian statistical properties of velocity and passive scalar
fields using direct numerical simulations (DNS) for the case
of stationary isotropic turbulence with uniform mean scalar
gradients. The findings confirm that scalar dissipation is highly
intermittent and that it becomes decorrelated temporally more
rapidly than energy dissipation. Donzis et al. [11] performed
simulations of passive scalar mixing in high Reynolds number
turbulence and found that small scales in scalar field retain the
anisotropy of large scales even though a inertial-convective
range is evident. Their data also suggests that the probability
density functions of energy dissipation, enstrophy, and scalar
dissipation may converge to the same shape at high enough
Reynolds number. These differences between the velocity
and scalar fields indicate that the velocity findings of [15]
cannot be directly taken to be valid for scalar fields. Thus a
full-fledged reexamination of the classical mixing paradigm
for the inhomogeneous conductivity field is called for.

The remainder of the paper is arranged as follows. In
Sec. II, the problem description is given along with the
governing equations. The numerical method and cases studied
are described in Sec. III. The results are presented and analyzed
in Sec. IV. The paper concludes in Sec. V with a brief summary
of the findings in the current work and identification of avenues
for future investigations.

II. PROBLEM DESCRIPTION AND THEORY

Turbulent combustion involves complex interplay between
fluid, thermodynamic, and chemical processes. Investigation
of fundamental mixing mechanisms in such a complex flow
field would render the problem intractable. Our approach
is to devise a simple flow in which the effect of transport
property variation can be considered in isolation without the
complicating influence of other phenomena, such as chemical
reaction, heat release, or variations in thermodynamic proper-
ties. Accordingly, we follow the line of investigation used by
Lee et al. [15] to establish the effect of strong spatiotemporal
viscosity gradients on dissipation of kinetic energy.

We consider incompressible decaying turbulence in a pe-
riodic computational box filled with a heterogeneous mixture
of two species of equal density but vastly different transport
properties. The mixture composition is indicated by mixture
fraction—f (x,t)—which takes the value of zero in low con-
ductivity (κl) species and unity in high conductivity (κh = 5κl)
species. The two fluids are initially segregated, each occupying
one half (along the x direction) of the box. A turbulent velocity
field [u(x,t)] and a passive scalar (temperature) field [φ(x,t)]
are resident in this heterogeneous medium. Throughout the
paper, the term scalar will correspond to the temperature
field and not that of species mixture fraction. The velocity
and scalar fields are initially homogeneous, isotropic, and
specified using standard schemes [18]. The initial length scale
of the velocity and scalar fields are equal at about one-eighth
of the computational box length. While the initial scalar
gradient field is spatially homogeneous, scalar dissipation in
the two halves of the box differs by a factor of 5 due to the
difference in conductivities. With time, the turbulence field
evolves chaotically, advecting the scalar field and the two
species. Owing to the length and time scale disparities, the
scalar field mixes much more rapidly than the two species.
Under these conditions, the scalar field evolves in a medium
with strong spatiotemporal variations of conductivity. This
is the time duration of interest in this study. The transport
properties of relevance are scalar conductivity (κ), fluid
viscosity (μ), and diffusivity between the two species (D).
The corresponding dimensionless parameters are the Schmidt
number (viscosity/diffusivity), Reynolds number, and Prandtl
number (viscosity/conductivity).

It must be pointed out at the very outset that, as in the
preceding work [15], some of the details encountered in
practical flows—density variations, heat release, and boundary
effects—are not considered here. These complicating details
are application-dependent and can possibly obscure the fun-
damental physical phenomena under investigation. The heat
release effects manifest in our idealized problem through
the initial transport property variations and their subsequent
evolution. In the same spirit, some of the higher-order
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mixing effects—the influence of initial velocity-scalar length
scale ratio—will not be investigated in this work. For those
discussions, the reader is referred to [13]. In this work, we
will restrict ourselves to an initial length scale ratio of nearly
unity and investigate only the influence of transport property
variations.

The evolution of velocity field is governed by the mass
(1) and momentum (2) conservation equations. The mixing
process is governed by the mixture-fraction (3) and scalar (4)
evolution equations:

∂ui

∂xi

= 0, (1)

∂ui

∂t
+ ∂uiuj

∂xj

= − ∂p

∂xi

+ ∂

∂xj

(
μ(f )

∂ui

∂xj

)
, (2)

ḟ ≡ ∂f

∂t
+ ∂f uj

∂xj

= ∂

∂xj

(
D(f )

∂f

∂xj

)
, (3)

∂φ

∂t
+ ∂ujφ

∂xj

= ∂

∂xj

(
κ(f )

∂φ

∂xj

)
. (4)

The transport properties (κ,μ,D) are functions of mixture
fraction f and are calculated using mixture laws. Different
mixture laws considered in the study are given in Eqs. (8)
and (9).

To set the context for examining Taylor’s postulate
for scalars, the evolution equation for scalar dissipation
(εs = 〈κ ∂φ

∂xj

∂φ

∂xj
〉) for a variable conductivity (κ) mixture is

shown:

∂εs

∂t
+ ∂

∂xk

〈
κuk

∂φ

∂xj

∂φ

∂xj

〉

= T − H +
〈
κ̇

∂φ

∂xj

∂φ

∂xj

〉

− 2
∂

∂xj

〈
κ

∂φ

∂xj

∂

∂xk

(
κ

∂φ

∂xk

)〉
. (5)

The terms H [= 2〈 ∂
∂xj

(κ ∂φ

∂xj
) ∂
∂xk

(κ ∂φ

∂xk
)〉] and T (=

−2〈κ ∂uk

∂xj

∂φ

∂xk

∂φ

∂xj
〉) represent destruction and generation

of scalar dissipation, respectively. The third term on the
right-hand side (RHS) accounts for the spatiotemporal
variation of conductivity (κ̇ denotes substantial derivative)
and is present only in heterogeneous mixtures. Finally, the
fourth term on the RHS represents the transport effects. A
detailed discussion of these terms in the context of mechanical
dissipation is given in [15]. The scalar analog is as follows:
conductivity is present in every term on the RHS of the scalar
dissipation equation (5) and hence appears to have a major
role. Let us consider each term individually. The transport
term (fourth term on the RHS) involves the gradient of a
statistic and hence can be taken to be negligible in comparison
with other terms. In a homogeneous medium, the third term
on the RHS is absent.

According to the classical scaling arguments [7], both
generation and destruction terms are individually dependent
on diffusivity, but their difference is independent of diffusivity,
rendering Taylor’s postulate valid. The validity of Taylor’s
postulate in a heterogeneous medium hinges on (i) the balance
between T and H being maintained and (ii) the third term

on the RHS being much smaller than the difference between
T and H . It is evident that dominance of the third term can
completely change the mixing physics and render it completely
dependent on diffusivity variation. Therefore, the length scale
of κ variation critically determines the extent of applicability
of the classical paradigm to a variable transport-property
medium.

In this work, we will examine the conductivity-scalar
dissipation relation in an inhomogeneous medium wherein
viscosity-dissipation independence has been satisfactorily
established [15]. It must be mentioned at the very outset that
the viscosity-dissipation independence does not guarantee a
similar outcome for the scalar field. As pointed out earlier, the
scalar fields exhibit inertial range intermittency even at low
Reynolds numbers [17] and that can be expected to play a role
in the present study.

III. NUMERICAL APPROACH AND SIMULATION
PARAMETERS

Direct numerical simulation (DNS) of decaying turbulence
is performed in a cubic domain with 2563 grid points (Nx =
Ny = Nz = 256). The gas kinetic scheme, developed in [19]
and validated for DNS of turbulence in [18] and [15], is
used for computations. Although kinetic-theory–based DNS
computational methods are relatively new, many recent works
have established the accuracy and utility of such approaches
[20–23]. Periodic boundary conditions are employed in all
directions. Simulations start from a statistically homogeneous,
isotropic, and divergence-free velocity field with the initial
energy spectrum (in Fourier space k) given by

E(k,0) = ûi û
∗
i

4πk2
= Ak4e−Bk2

, k =
√

k2
x + k2

y + k2
z . (6)

Initially, only a narrow band of wave numbers are energized:
k ∈ [1,8]. The steps involved in generating an initial velocity
field are as follows.

(1) Generate an initial velocity field (u,v,w) in the phys-
ical space (Nx × Ny × Nz points) using a “uniform random
number generator” with individual velocity components in the
range (−1, + 1).

(2) Transform the velocity field to Fourier space using
forward discrete Fourier transform.

(3) Impose the incompressibility condition (�̂u · �k = 0) by

projecting �̂u on the plane normal to �k: �̂uI = �̂u − �k(�k · �̂u)/k2.

Replace �̂u with �̂uI
: �̂u → �̂uI

.
(4) Impose the required energy spectra condition E(k,0) =

Ak4e−Bk2
and wave number restriction:

�̂u →
�̂u

|�̂u|

√
E(k,0)

4πk2
if k ∈ [1,8], else �̂u = 0. (7)

(5) Transform back to physical space using inverse discrete
Fourier transform.

Such a scheme yields a random, isotropic, and incompress-
ible velocity field satisfying the desired energy spectra. A
similar procedure (except step 3) is followed for the initial
scalar field generation.

All simulations employ the same initial and boundary
conditions for the velocity and scalar fields. Since the objective
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TABLE I. Simulation cases A–E: Taylor microscale Reynolds
number (Reλ), Prandtl number (Pr), and Schmidt number (Sc) for
left and right halves of the computational domain at time t ′ = 0.
The mixing law used in each case is also shown (“uniform”means
premixed).

Cases

Parameters A B C D E

Reλ Left 64.49 64.49 64.49 64.49 193.47
Right 64.49 64.49 64.49 64.49 38.69

Pr Left 1.0 3.0 3.0 3.0 1.0
Right 1.0 0.6 0.6 0.6 1.0

Sc Left 1.0 1.0 1.0 1/4 3.0
Right 1.0 1.0 1.0 5/3 0.6

Mixing law Uniform Linear Wilkes Wilkes Wilkes

of this study is to examine the influence of transport properties,
we perform five simulations with different combinations of
initial Taylor microscale Reynolds number (Reλ), Prandtl
(Pr), and Schmidt (Sc) numbers as given in Table I. We
also perform a baseline simulation in which all transport
properties are spatially uniform. The initial condition for
the nonpremixed heterogeneous simulations are such that the
low conductivity species occupies the left half (along x) of
the computational domain [nx = (1–128),f = 0,κ = κl] and
the high conductivity species occupies the other (right) half
[nx = (128–256),f = 1,κ = κh = 5κl].

We use two vastly different mixing laws, linear and Wilkes,
for studying their effect on the validity of the classical
paradigm. The linear mixture law is given by

κ(f ) = f κh + (1 − f )κl, (8)

and the Wilkes mixture formula is given by

κ(f ) = κhf

f + (1 − f )�
+ κl(1 − f )

(1 − f ) + κl

κh
f �

, (9)

t'

x

FIG. 1. Evolution of planar scalar dissipation 〈εs〉yz for a single
species case (case A). (� : t ′ = 0.0; � : t ′ = 0.09; � : t ′ = 0.18; ◦ :
t ′ = 0.27; � : t ′ = 0.36;  : t ′ = 0.45; � : t ′ = 0.54).

(a)

(b)

(c)

t'

t'

t'
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t'

t'

x

x

x

FIG. 2. Evolution of yz-plane-averaged conductivity 〈κ〉yz

for a two species case: (a) case B; (b) case C; (c)
case D (� : t ′ = 0.0; � : t ′ = 0.09; � : t ′ = 0.18; ◦ : t ′ = 0.27; � :
t ′ = 0.36;  : t ′ = 0.45; � : t ′ = 0.54).

where

� = 1

4

[
1 +

(
κh

κl

) 1
2

]2

.

In simulations with variable viscosity μ (or diffusivity D), the
mixture law used for μ (or D) is the same as that used for
conductivity κ .
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(a)
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FIG. 3. Evolution of planar scalar dissipation 〈εs〉yz for
a two species case: (a) case B; (b) case C; (c) case
D (� : t ′ = 0.0; � : t ′ = 0.09; � : t ′ = 0.18; ◦ : t ′ = 0.27; � : t ′ =
0.36;  : t ′ = 0.45; � : t ′ = 0.54).

IV. RESULTS AND ANALYSIS

As turbulence evolves, the two species and the scalar field
mix due to advection and diffusion. The species segregation
makes the problem inhomogeneous along the x direction but
homogeneity in preserved in the yz plane. Each yz plane
corresponds to a different mixture composition. Hence the yz-
plane-averaged statistics 〈·〉yz are studied as a function of the x

coordinate, at various stages of flow evolution. The initial eddy
turnover time scale is used to nondimensionalize time as t ′ =
εs0t/ks0. Plane-averaged quantities are nondimensionalized

(a)

(b)

(c)

t'

t'

t'

t'

x

x

t'

t'

x

FIG. 4. Evolution of planar scalar gradient 〈φ,iφ,i〉yz for
a two species case: (a) case B; (b) case C; (c) case
D (� : t ′ = 0.0; � : t ′ = 0.09; � : t ′ = 0.18; ◦ : t ′ = 0.27; � : t ′ =
0.36;  : t ′ = 0.45; � : t ′ = 0.54).

using volume average of the corresponding quantity at the
initial time 〈·〉xyz,0 or at same time instant as appropriate.

First, we present the evolution of planar scalar dissipation
for the baseline simulation—case A, where the two species
are premixed. The conductivity is uniform throughout the box
and is chosen to be κ = (κl + κh)/2, which is the average of
the low and high conductivities used in simulations B–E. In
Fig. 1, nondimensionalized plane-averaged scalar dissipation
εs(x) has been presented for various stages of flow evolution.
Due to the initial homogeneous and isotropic distribution of
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k k

k
(a)

k k

k
(b)

t'

t'

FIG. 5. Evolution of planar spectra in case C (two species case):
(a) low conductivity plane nx = 64; (b) high conductivity plane nx =
192 (� : t ′ = 0.0; � : t ′ = 0.09; � : t ′ = 0.18; ◦ : t ′ = 0.27; � : t ′ =
0.36;  : t ′ = 0.45; � : t ′ = 0.54).

the scalar φ and a spatially uniform κ , scalar dissipation
is statistically uniform across the box. Scalar dissipation
initially increases throughout the box and peaks at about 1/10
eddy turnover time and decreases monotonically thereafter.
An initial increase in the scalar dissipation is attributed to
a nonlinear cascade, which generates smaller structures and
steepens the scalar gradient. Subsequently, molecular action
dissipates the small-scale structures resulting in weaker scalar
gradients and reduced dissipation.

Next, we turn our attention to mixing in a heterogeneous
medium. Our objective is to establish mixing characteristics of
the scalar field during a time period when the mixture is still
significantly heterogeneous. All simulations of heterogeneous
cases yield similar results, so we only present results from
cases B–D for the sake of brevity. The nondimensionalized
yz-plane averaged conductivity variation along the x direction,
〈κ〉yz/〈κ〉xyz,0, is plotted in Fig. 2 at various times (t ′ < 0.6)
for cases B, C, and D. Initially, the conductivity is five times
larger on one side than the other. After about one-half eddy
turnover time, the two species mix to a reasonable extent, but
still the ratio of maximum to minimum conductivity is about
4 in all cases (B–E).
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t

k

k k

(a)

t

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

kk

k
(b)

FIG. 6. Evolution of planar spectra in case C with wave
numbers normalized with the Batchelor scale: (a) low con-
ductivity plane nx = 64; (b) high conductivity plane nx =
192 (� : t ′ = 0.0; � : t ′ = 0.09; � : t ′ = 0.18; ◦ : t ′ = 0.27; � : t ′ =
0.36;  : t ′ = 0.45; � : t ′ = 0.54).

The evolution of scalar dissipation for cases B, C, and D is
shown in Figs. 3(a), 3(b), and 3(c), respectively. Initially, the
scalar dissipation is five times larger on the high conductivity
side. Then, as mixing proceeds, scalar dissipation increases
throughout the domain due to cascade. The cascade process
generates smaller scales, and hence steepens the scalar
gradient. The increase in scalar dissipation is higher in the low
conductivity region compared to that in the high conductivity
region. The peak of scalar dissipation is observed at around
1/5 and 1/10 eddy turnover time in low and high conductivity
regions, respectively. Subsequently, scalar dissipation decays
on both sides with the rate of decay being higher in the
larger conductivity region. This differential decay works to
reduce the disparity in scalar dissipation between the left
and right halves of the domain. Toward the end of the
simulation, scalar dissipation becomes more uniform along
x than at earlier times. Scalar dissipation does not exhibit
the strong dependence on x displayed by the conductivity at
the corresponding time. Also, a comparison of the evolution
of scalar dissipation in case B against that in cases C, D,
and E shows the mixture law does not seem to affect the
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final outcome—a relatively uniform distribution of the scalar
dissipation. Importantly, at this time, yz-plane averaged scalar
dissipation distribution in cases B–E becomes comparable to
the corresponding distribution for case A. Thus the scalar
dissipation is nearly uniform (i) in different regions of vastly
different conductivity within one simulation and (ii) across all
heterogeneous and homogeneous conductivity simulations. It
must be mentioned that the “conductivity–scalar dissipation
independence”is not as unequivocal as “viscosity-dissipation
independence” demonstrated in [15]. Nevertheless, the depen-
dence of scalar dissipation on conductivity is weak enough
to endorse the scalar equivalent of Taylor’s postulate in
heterogeneous mixtures.

Despite a large difference in conductivity between the
left and right halves, scalar dissipation is almost uniform
because of the compensatory behavior of the scalar gradient.
To demonstrate this, we show the evolution of the yz-plane
averaged scalar gradient 〈φ,iφ,i〉yz for cases B, C, and D in
Figs. 4(a), 4(b), and 4(c), respectively. The initial homo-
geneous and isotropic distribution of the scalar φ renders
the initial distribution of the scalar gradient 〈φ,iφ,i〉yz to be
uniform along x. However, as flow evolves, scalar gradient
〈φ,iφ,i〉yz grows more rapidly in the low conductivity region
compared to the region of high conductivity. Thus, a high
〈φ,iφ,i〉yz in low 〈κ〉yz region and low 〈φ,iφ,i〉yz in high 〈κ〉yz

region allows for a nearly uniform distribution of 〈κφ,iφ,i〉yz.
The planar scalar spectra for yz planes at nx = 64 and nx =

192 for case C are shown in Figs. 5(a) and 5(b), respectively.
The broader planar scalar spectrum for the yz plane at nx = 64
[Fig. 5(a)] compared to that at nx = 192 [Fig. 5(b)] indicates
the presence of smaller scales and hence steeper gradients in
the low conductivity region. The low and high conductivity

FIG. 7. (Color online) Isosurfaces of scalar gradient (φ,iφ,i) for a
two species case (case C): (a) time t ′ = 0.00; (b) time t ′ = 0.36; (c)
time t ′ = 0.54.
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FIG. 8. Evolution of velocity-to-scalar time scale ratio r with time
t ′: (a) case B; (b) case C; (c) case E (� : t ′ = 0.0; � : t ′ = 0.18; ∇ :
t ′ = 0.36; � : t ′ = 0.54).

region planar spectra are also presented in Fig. 6, except with
wave numbers normalized with the Batchelor scale:

λB =
(

νκ2

ε

) 1
4

. (10)
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FIG. 9. (Color online) Conditional scalar dissipation for different
yz planes for case C: (a) time t ′ = 0.45; (b) time t ′ = 0.54.

The normalized spectra show collapse at later stages of mixing.
The dependence of the normalized spectrum on the Prandtl
number is of interest and will be investigated in a separate
study.

To visualize the difference in scales of motion present
in the two halves of the box, isosurfaces of scalar gradient
magnitude (φ,iφ,i) are presented for simulation case C at
three different stages of flow evolution in Fig. 7. Initially, the
isosurfaces are smooth and uniformly distributed throughout
the computational domain as seen in Fig. 7(a). From Figs. 7(b)
and 7(c), we observe that, as flow evolves, isosurfaces become
more wrinkled on the lower conductivity side, thus indicating
the presence of smaller scales. In contrast, the right half of the
box (higher κ) is devoid of small scales. However, despite this
difference in length scales of the scalar field in the two halves of
the box at later times, the scalar dissipation is nearly identical.
The results from Figs. 4, 5, and 7 clearly confirm that small
scales in the scalar field adapt to the imposed conductivity
variation limiting the dependence of the scalar dissipation rate
on conductivity.

An important “scalar mixing modeling”assumption is that
the mixing time scale is proportional to that of the velocity
field. To verify this scaling in a heterogeneous mixture,
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FIG. 10. (Color online) Conditional scalar dissipation for differ-
ent yz planes for case E: (a) time t ′ = 0.45; (b) time t ′ = 0.54.

we investigate the behavior of velocity-to-scalar time scale
ratio r ,

r ≡ τu

τφ

= 〈3u2〉/〈ε〉
〈φ2〉/〈εs〉 . (11)

The velocity-to-scalar time scale ratio for two species cases B,
C, and E are shown in Figs. 8(a), 8(b), and 8(c), respectively.
The results show that the time scale ratio is nearly independent
of the Prandtl number, but a weak function of the Reynolds
number. Overall, the value of velocity-to-scalar time scale
ratio r computed in the present work is well within the range
reported in [12], in which the time scale results are compiled
from a variety of experiments and numerical simulations. As
mentioned in the Introduction, we do not address the effect of
the initial length scale ratio in this work.

The evolution of conditional scalar dissipation
〈κ ∂φ

∂xi

∂φ

∂xi
|φ〉yz/〈κ ∂φ

∂xi

∂φ

∂xi
〉yz is investigated next. Results

from different yz planes for cases C and E are presented in
Figs. 9 and 10, respectively, at eddy-turnover times
t ′ = 0.45 and 0.54. The conditional scalar dissipation
is shown as a function of normalized scalar value:
φ∗ = [φ − 〈φ〉(t)] /〈φ′2(t)〉. As turbulence evolves and
scalars mix, conditional scalar dissipation from planes
of different conductivity 〈κ〉yz values become nearly
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FIG. 11. Case B: (a) evolution of mean scalar dissipation condi-
tioned on κ normalized by volume averaged scalar dissipation at time
t ′ = 0; (b) scalar frequency conditioned on κ normalized by volume
averaged value at time t ′ = 0 (� : t ′ = 0.0; � : t ′ = 0.09; � : t ′ =
0.18; ◦ : t ′ = 0.27; � : t ′ = 0.36;  : t ′ = 0.45; � : t ′ = 0.54).

indistinguishable. Moreover, the normalized conditional
scalar dissipation is nearly unity in the interval φ∗ = (−2,2),
indicating a nearly Gaussian distribution. However, outside
of the range φ∗ = (−2,2), the conditional scalar dissipation is
much higher. This may be evidence of the scalar intermittency
mentioned in the Introduction. Interestingly, the conditional
scalar dissipation for all x planes exhibits the same qualitative
behavior, indicating that the intermittency features are not
strongly dependent on the conductivity values. Based on these
results and similar ones from other simulations, we conclude
that conditional scalar dissipation (including intermittency
characteristics) is reasonably impervious to conductivity,
viscosity, or species diffusivity (D).

The dependence of various scalar statistics on diffusivity
was examined thus far in terms of yz-plane-averaged statistics.
The mean value of diffusivity (conductivity) on each yz

plane varies strongly in the x direction as demonstrated in
Fig. 2. Due to the stochastic nature of turbulence, diffusivity
values also fluctuate moderately on each plane about the
mean value. A more precise assessment of the dependence

on diffusivity can be obtained by conditioning the statistics
on a fixed diffusivity value rather than on an x coordinate.
The evolution of mean scalar dissipation and scalar frequency
(dissipation/variance) conditioned on diffusivity values is
presented in Figs. 11(a) and 11(b), respectively, for the
simulation case B. Scalar dissipation is initially strongly
dependent on diffusivity. Very rapidly, the scalar dissipation
becomes nearly insensitive to diffusivity. During later times,
the higher diffusivity locations surprisingly exhibit lower
dissipation. This anomalous behavior can be attributed to
the fact that the fluctuations on the high diffusivity side are
much lower at later times due to the larger dissipation at the
early transient times. This disparity in scalar fluctuations can
be accounted for by normalizing the diffusivity-conditioned
dissipation with diffusivity-conditioned variance. The condi-
tioned frequency 〈fφ|κ〉 = 1/〈τφ |κ〉 = 〈εs |κ〉/〈(φ − φ̄)2|κ〉 is
plotted in Fig. 11(b). Initially, the conditioned frequency is a
strong function of diffusivity. At early times, the frequency
increases uniformly at all diffusivity values, as the scalar
dissipation increases due to scalar fluctuations cascading
down to smaller scales. After about one-third eddy turnover
time, the frequency becomes nearly uniform everywhere.
Figure 11 strongly supports the scalar equivalent of Taylor’s
postulate.

V. CONCLUSIONS

The objective of this work is to revisit the classical turbulent
mixing paradigm for the case of inhomogeneous fluid media.
Of specific interest is the dependence of scalar dissipation, con-
ditional dissipation, and scalar-to-velocity ratio on transport
properties. Previous validation studies in literature examine
the validity of the postulate in a uniform-conductivity medium
by varying the spectral cascade rate (large-scale fluctuation
magnitude and length scale) and demonstrating that the
dissipation changes accordingly. In contrast, here we maintain
the cascade rate spatially uniform and vary the conductivity in
space and time. Validity of the classical paradigm would entail
that scalar dissipation be spatially uniform, despite strong
variations in conductivity.

Toward this end, direct numerical simulations of scalar
(temperature) mixing are performed in a flow field with steep
variations in transport properties. The domain is a periodic
cube and the resident turbulence is initially homogeneous and
isotropic. The medium consists of two species of different
transport properties, each of which initially occupies one-half
of the computational domain. The fluctuating scalar field is
initially homogeneous and has nearly the same length scale as
the velocity field. Under these conditions, the scalar field can
be regarded as mixing in a medium with strong spatiotemporal
transport property gradients. The findings can be summarized
as follows.

(1) It is found that fluctuating scalar gradients do adapt to the
imposed conductivity variations rendering scalar dissipation
nearly insensitive to conductivity. During the late stages of
mixing, the yz-plane-averaged scalar dissipation is signifi-
cantly more uniform along the x axis than yz-plane-averaged
transport coefficients (conductivity, diffusivity, and viscosity),
which exhibit up to 400% variation.
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(2) The mean scalar frequency conditioned on a specific
value of diffusivity is nearly independent of diffusivity.

(3) When appropriately normalized, conditional scalar dis-
sipation also appears to be reasonably insensitive to conductiv-
ity. The extreme values of conditional scalar dissipation appear
to exhibit intermittent behavior. However, the intermittency
characteristics do not appear to depend on conductivity.

(4) Importantly, the scalar-to-velocity time scale ratio is also
found to be reasonably insensitive to the Prandtl number, but
weakly dependent on the Reynolds number.

The investigation identifies some important avenues for
future investigations as follows.

(1) The diffusivity-scalar dissipation independence is not
as conclusive as the viscosity-mechanical dissipation under
similar conditions [15]. The role of the missing physical
effect—pressure—must be clearly established.

(2) The scalar spectrum normalized by Batchelor scale
is self-similar for a given Prandtl number. However, the
self-similarity is restricted to small scales. The dependence of

the self-similar shape on the Prandtl number deserves further
examination.

(3) The apparent intermittent behavior of scalar gradients at
extreme values is clearly of great interest. This also calls for a
detailed investigation of intermittency, but first in the context
of constant scalar diffusivity (conductivity).

Along with the results reported in the previous study [15],
these findings reasonably support the applicability of Taylor’s
postulate in heterogeneous media. It must be emphasized that
the findings are valid only for flows with initial scalar-to-
velocity length scale ratio of order unity. If the scalar length
scale is much smaller than that of the velocity field, additional
effects may influence the results and consequently closure
models must be used judiciously.
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