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Turbulent magnetic Prandtl number in kinematic magnetohydrodynamic turbulence:
Two-loop approximation
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The turbulent magnetic Prandtl number in the framework of the kinematic magnetohydrodynamic (MHD)
turbulence, where the magnetic field behaves as a passive vector field advected by the stochastic Navier-Stokes
equation, is calculated by the field theoretic renormalization group technique in the two-loop approximation. It is
shown that the two-loop corrections to the turbulent magnetic Prandtl number in the kinematic MHD turbulence
are less than 2% of its leading order value (the one-loop value) and, at the same time, the two-loop turbulent
magnetic Prandtl number is the same as the two-loop turbulent Prandtl number obtained in the corresponding
model of a passively advected scalar field. The dependence of the turbulent magnetic Prandtl number on the spatial
dimension d is investigated and the source of the smallness of the two-loop corrections for spatial dimension
d = 3 is identified and analyzed.
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I. INTRODUCTION

It is well known that diffusion processes of the magnetic
field in a conductive medium, which is described by the mag-
netohydrodynamics (MHD), are characterized by the dimen-
sionless magnetic Prandtl number Prm, the ratio of the co-
efficient of the kinematic viscosity to the coefficient of the
magnetic diffusivity (resistivity). On the other hand, in the
case when the conductive fluid is in the state of fully developed
turbulence (MHD turbulence), the diffusion processes are
rapidly accelerated and this fact is expressed in the appearance
of an effective value of the diffusion coefficient, namely,
the turbulent magnetic diffusivity. The ratio of the turbulent
viscosity to the turbulent magnetic diffusivity (turbulent
resistivity) is the so-called turbulent magnetic Prandtl number
Prm,t [1,2] in analogy with the turbulent Prandtl number of
the thermal diffusion [3,4], which obtains its universal value
in the limit of fully developed turbulence.

The need for the theoretical investigation and calculation of
the possible values of the turbulent magnetic Prandtl number is
dictated by its importance in many physical processes and their
simulations, such as the turbulent dynamo problem (see, e.g.,
Refs. [5–10] and references cited therein), astrophysical MHD
turbulence phenomena (see, e.g, Refs. [11–14] and references
cited therein), and MHD simulations and calculations (see,
e.g., Refs. [15,16]). Therefore, the determination of the
turbulent magnetic Prandtl number on the fundamental level
of a microscopic model of fully developed MHD turbulence is
very important.

An effective approach for theoretical investigation of
universal properties of models of fully developed turbulence
is the renormalization group (RG) method [4,17–19]. The
RG technique was used for the calculation of the turbulent
magnetic Prandtl number in Ref. [20], where the method of
Wilson’s recursion relations was applied. Later, in Ref. [21],
the turbulent magnetic Prandtl number was calculated in a
more general stochastic MHD model by using the field theo-
retic RG technique, which is based on the standard formalism
of the quantum field theory. Within the RG approach, the
turbulent magnetic Prandtl number is given in the form of a

perturbation series in the corresponding expansion parameter
of the model (see the next section). In this respect, the
analysis and calculations in Refs. [20,21] have been done in
the first-order (one-loop) approximation and it must be said
that, up to now, the value of the turbulent magnetic Prandtl
number was considered and calculated only in the leading
order of the perturbation theory [20–22]. On the other hand, the
situation is different in the case of the turbulent Prandtl number
in the model of a passive scalar quantity advected by the
turbulent environment where, aside from the first-order results
in the framework of various RG approaches [23–26], also the
next-to-leading (two-loop) approximation result exists [27,28],
which was obtained by using the field theoretic RG approach.

In Refs. [27,28], it was shown that the turbulent Prandtl
number in the model of a passive scalar field advected by the
stochastic Navier-Stokes equation is surprisingly very stable
under the perturbation theory (at least up to the second-order
approximation in the corresponding perturbation expansion) in
the sense that the two-loop corrections to the one-loop value
of the turbulent Prandtl number are very small and are less
than 2% of its leading one-loop value [28]. It must be also
stressed that the obtained result Prt = 0.7051 for the two-loop
turbulent Prandtl number is in rather good agreement with
experimental estimation of possible values of turbulent Prandtl
number [3,29,30].

On the other hand, the smallness of the two-loop RG
corrections to the turbulent Prandtl number is rather surprising
in the situation when the corresponding two-loop corrections
to other quantities, which characterize the fully developed
turbulence (such as the Kolmogorov constant and the skewness
factor), are comparable to, or are even larger than, their
one-loop values [31]. In Refs. [27,28], the negligible amount of
the two-loop corrections to the turbulent Prandtl number was
explained by the absence of the terms proportional to 1/(d − 2)
in the final expressions for them (see Ref. [27] for details).
Here, d is the spatial dimension. As we shall see in this paper,
the above mentioned cancellation of the terms proportional to
1/(d − 2) plays an important role here, but the main reason
for the almost vanishing of the two-loop corrections to the
two-loop Prandtl number is a little bit different.
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As was already mentioned above, in contrast to the turbulent
Prandtl number, the turbulent magnetic Prandtl number has
been calculated only to the first order in the framework of
the corresponding perturbation theory. In this paper, we would
like to start with a systematic investigation of the turbulent
magnetic Prandtl number in the second-order approximation
by using the field theoretic RG approach. The aim of this
paper is to find the two-loop value of the turbulent magnetic
Prandtl number in the kinematic MHD turbulence, i.e., in
the case when the magnetic field is weak enough and can
be considered as a passively advected vector field (i.e., the
Lorentz force term in the Navier-Stokes equation is omitted,
see the next section), and also to discuss its behavior within the
perturbation expansion. As we shall see, although the present
model of a passively advected vector field (weak magnetic
field) in the framework of the kinematic MHD turbulence
is considerably different from the corresponding model of a
passive scalar advection studied in Refs. [27,28], nevertheless,
it will be shown that the final two-loop turbulent magnetic
Prandtl number is the same as the corresponding turbulent
Prandtl number of the passive scalar advection. The second aim
of this paper is to identify properly the reason for the smallness
of the two-loop corrections to the turbulent magnetic Prandtl
number in the kinematic MHD turbulence (as well as to the
turbulent Prandtl number in the model of passively advected
scalar field [27,28]) by using a detailed analysis of their
dependence on the spatial dimension d. It will be shown that
the typical two-loop corrections to the turbulent (magnetic)
Prandtl number are from 20% to 30% of its one-loop value for
spatial dimensions d = 4,5, . . . ,10, i.e., they are considerably
larger in comparison with 2% corrections for d = 3. It is
shown that the main reason for so small two-loop corrections
for d = 3 is related to the almost exact cancellation of the
two-loop contributions given, on one hand, by the two-loop
Feynman diagrams and, on the other hand, by the expansion
to the leading order of scaling functions of the corresponding
response functions.

The paper is organized as follows. In Sec. II, the model
of the kinematic MHD turbulence is defined and the field
theoretic formulation of the model is given. In Sec. III, we
perform the ultraviolet (UV) renormalization of the model,
the two-loop renormalization constants are calculated, and
the stable scaling regime is established. In Sec. IV, the
two-loop turbulent magnetic Prandtl number is calculated
and its dependence on the value of the spatial dimension is
discussed. Obtained results are briefly reviewed and discussed
in Sec. V.

II. FIELD THEORETIC FORMULATION OF THE MODEL

A. The kinematic MHD turbulence

The advection of a passive solenoidal magnetic field b ≡
b(x) [x ≡ (t,x)] in the framework of the kinematic MHD is
described by the following system of stochastic equations:

∂tb = ν0u0�b − (v · ∂)b + (b · ∂)v + fb, (1)

∂tv = ν0�v − (v · ∂)v − ∂P + fv, (2)

where ∂t ≡ ∂/∂t , ∂i ≡ ∂/∂xi , � ≡ ∂2 is the Laplace operator,
ν0 is viscosity coefficient (in what follows, a subscript 0

will denote bare parameters of the unrenormalized theory),
ν0u0 = c2/(4πσ ) represents the magnetic diffusivity (where
we have already extracted dimensionless reciprocal magnetic
Prandtl number u0 for convenience), c is the speed of light, σ

is the conductivity, P ≡ P (x) is the pressure, and v ≡ v(x)
is a solenoidal (owing to the incompressibility) velocity
field. Thus, both v and b are divergence-free vector fields:
∂ · v = ∂ · b = 0.

The energy pumping given by a transverse Gaussian random
noise fb = fb(x) with zero mean and the correlation function

Db
ij (x; 0) ≡ 〈

f b
i (x)f b

j (0)
〉 = δ(t)Cij (|x|/L) (3)

represents the source of the fluctuations of the magnetic field
b and maintains the steady state of the system. Here, L is an
integral scale related to the corresponding stirring, and Cij is
a function finite in the limit L → ∞. In what follows, the
detailed form of the function Cij is unimportant; the only
condition that must be satisfied is that Cij decreases rapidly
for |x| � L. If Cij depends on the direction of the vector x
and not only on its modulus r = |x|, then it can be considered
as a source of the large-scale anisotropy.

On the other hand, the transverse random force per unit
mass fv = fv(x) in Eq. (2) simulates the energy pumping into
the system on large scales. We assume that its statistics is also
Gaussian with zero mean and pair correlation function

Dv
ij (x; 0) ≡ 〈

f v
i (x)f v

j (0)
〉

= δ(t)
∫

ddk
(2π )d

D0k
4−d−2εPij (k)eik·x, (4)

where Pij (k) = δij − kikj /k2 is the ordinary transverse pro-
jector, d denotes the spatial dimension of the system, D0 ≡
g0ν

3
0 > 0 is the positive amplitude, and the physical value

of formally small parameter 0 < ε � 2 is ε = 2. It plays an
analogous role as the parameter ε = 4 − d in the theory of
critical behavior, and the introduced parameter g0 plays the
role of the coupling constant of the model. In addition, g0 is
a formal small parameter of the ordinary perturbation theory
and is related to the characteristic ultraviolet (UV) momentum
scale 	 (or inner length l ∼ 	−1) by the following relation:

g0 � 	2ε . (5)

In Eq. (4), the needed infrared regularization is given by a
restriction of the integrations from below, namely, k � m,
where m corresponds to another integral scale. In what follows,
we shall suppose that L � 1/m.

The correlation function (4) is chosen in the form that, on
one hand, is suitable for description of the real infrared energy
pumping to the system [for ε → 2, the function D0k

4−d−2ε is
proportional to δ(k) for appropriate choice of the amplitude
factor D0, which corresponds to the injection of energy to the
system through interaction with the largest turbulent eddies]
and, on the other hand, its powerlike form gives possibility to
apply the RG technique for analysis of the problem [17–19].

The stochastic model given in Eqs. (1)–(4) represents a
simplification of real MHD turbulence problem in the sense
that in the real MHD problem, the velocity field v obeys the
stochastic Navier-Stokes equation with the additional Lorentz
force term that describes the influence of magnetic field on the
velocity field of a conductive fluid. Therefore, the magnetic
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field b in the present model behaves like a passively advected
vector field.

B. Field theoretic formulation of the model

The field theoretic formulation of the present model is based
on the well-known theorem [32] that asserts that the stochastic
problem (1)–(4) is equivalent to the field theoretic model of the
double set of fields 
 = {v,b,v′,b′} with the following action
functional:

S(
) = 1

2

∫
dt1 ddx1 dt2 ddx2

× [
v′

i(x1)Dv
ij (x1; x2)v′

j (x2) + b′
i(x1)Db

ij (x1; x2)b′
j (x2)

]

+
∫

dt ddx{v′[−∂t + ν0� − (v · ∂)]v

+ b′[−∂tb + ν0u0�b − (v · ∂)b + (b · ∂)v]} , (6)

where xi = (ti ,xi), i = 1,2, v′, and b′, are auxiliary transverse
fields that have the same tensor properties as fields v(x) and
b(x), Db

ij , Dv
ij are given in Eqs. (3) and (4), respectively, and

required summations over dummy indices are assumed.
The pressure term ∂P in Eq. (2) is omitted in action (6) as

a result of the fact that the auxiliary vector field v′(x) is also
transverse, i.e., ∂iv

′
i = 0, and by using the integration by parts,

it is evident that it vanishes, namely,∫
dt ddx v′

i∂iP = −
∫

dt ddx P ∂iv
′
i = 0.

The field theoretic model given by action functional (6)
corresponds to a standard Feynman diagrammatic perturbation
theory with the following set of bare propagators (in frequency-
momentum representation):

〈b′
ibj 〉0 = 〈bib

′
j 〉∗0 = Pij (k)

iω + ν0u0k2
, (7)

〈v′
ivj 〉0 = 〈viv

′
j 〉∗0 = Pij (k)

iω + ν0k2
, (8)

〈bibj 〉0 = Cij (k)

|−iω + ν0u0k2|2 , (9)

〈vivj 〉0 = g0ν
3
0k4−d−2εPij (k)

|−iω + ν0k2|2 , (10)

where Cij (k) is the Fourier transform of function Cij (r/L) in
Eq. (3). In the Feynman diagrams, these propagators are repre-
sented by lines that are shown in Fig. 1 (the end with a slash in
the propagators 〈b′

ibj 〉0 and 〈v′
ivj 〉0 corresponds to the fields b′

bibj 0 =

vivj 0 =

vivj 0 =

bibj 0

FIG. 1. Graphical representation of the propagators of the model.

Vijl =
v′i

vj

vl

Wijl =
b′i

vj

bl

FIG. 2. The interaction vertices of the model.

and v′, respectively, and the end without a slash corresponds
to the fields b and v, respectively). The triple vertices (or
interaction vertices) b′

i(−vj∂jbi + bj∂jvi) = b′
ivjVijlbl and

−v′
ivj ∂j vi = v′

ivjWijlvl/2, where Vijl = i(kj δil − klδij ) and
Wijl = i(klδij + kj δil) (in the momentum-frequency represen-
tation) are present in Fig. 2, where momentum k is flowing into
the vertices via the auxiliary fields b′ and v′, respectively.

The advantage of the formulation of the stochastic problem
given by Eqs. (1)–(4) through action functional (6) is related
to the fact that it allows one to use the well-defined field
theoretic means, e.g., the RG technique, to analyze the
problem and the statistical averages of random quantities in
the stochastic problem are replaced with the corresponding
functional averages with weight exp S(
) (see, e.g., Ref. [19]
for details).

III. RENORMALIZATION GROUP ANALYSIS

The RG analysis of a field theoretic model is based on the
analysis of UV divergences that, on the other hand, is given
by the analysis of the corresponding canonical dimensions.
The dynamical model (6) belongs to the class of the so-called
two-scaled models [17–19], i.e., to the class of models for
which the canonical dimension of some quantity Q is given by
two numbers: the momentum dimension dk

Q and the frequency
dimension dω

Q. Therefore, the dimensions of all quantities
can be found by using the requirement that each term of
action functional (6) must be dimensionless separately with
respect to the momentum and frequency together with the
standard definitions (normalization conditions) dk

k = −dk
x =

dω
ω = −dω

t = 1. The total canonical dimension dQ is then
defined as dQ = dk

Q + 2dω
Q [it is related to the fact that ∂t ∝ ∂2

in the free action (6) with choice of zero canonical dimensions
for ν0 and u0] and it plays the same role in the renormalization
theory of our dynamical model as the simple momentum
dimension does in static models.

The main conclusion of the corresponding dimensional
analysis is the fact that the coupling constant of the model,
namely, g0, is dimensionless (i.e., the model is the so-called
logarithmic) at ε = 0. Therefore, in the framework of the
minimal subtraction (MS) scheme [33], which is used in
what follows, all possible UV divergences in the correlation
functions of the model have the form of poles in ε. Then, by
using the general expression for the total canonical dimension
of an arbitrary one-irreducible Green’s function 〈
 · · · 
〉1−ir ,
which plays the role of the formal index of the UV divergence,
together with the symmetry properties of the model, one
can find that, in the case with d > 2, the superficial UV
divergences are present only in the one-irreducible Green’s
functions 〈v′

ivj 〉1−ir and 〈b′
ibj 〉1−ir and, at the same time,

action functional (6) has all necessary tensor structures to
remove divergences multiplicatively (see, e.g., [19,33]). All
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divergences can be removed by the counterterms of the forms
v′�v and b′�b, which can be explicitly expressed in the
multiplicative renormalization of the parameters g0,u0, and
ν0 in the form

ν0 = νZν, g0 = gμ2εZg, u0 = uZu, (11)

where the dimensionless parameters g, u, and ν are the
renormalized counterparts of the corresponding bare ones,
μ is the renormalization mass (a scale-setting parameter),
an artifact of the dimensional regularization. Quantities Zi =
Zi(g,u; d; ε) are the so-called renormalization constants and
they contain poles in ε.

On the other hand, the renormalized action functional has
the form

SR(
)

= 1

2

∫
dt1 ddx1 dt2 ddx2

× [
v′

i(x1)Dv
ij (x1; x2)v′

j (x2) + b′
i(x1)Db

ij (x1; x2)b′
j (x2)

]

+
∫

dt ddx{v′[−∂t + νZ1� − (v · ∂)]v

+ b′[−∂tb + νuZ2�b − (v · ∂)b + (b · ∂)v]} , (12)

where Z1 and Z2 are the renormalization constants, which are
related to the renormalization constants defined in Eq. (11) as

Zν = Z1, Zg = Z−3
1 , Zu = Z2Z

−1
1 . (13)

Thus, one is left with two independent renormalization
constants Z1 and Z2, and their explicit forms in the MS scheme
are

Z1(g; d; ε) = 1 +
∞∑

n=1

gn

n∑
j=1

z
(1)
nj (d)

εj
, (14)

Z2(g,u; d; ε) = 1 +
∞∑

n=1

gn

n∑
j=1

z
(2)
nj (u,d)

εj
, (15)

where coefficients z
(1)
nj and z

(2)
nj are independent of ε and

are determined by the requirement that the one-irreducible
Green’s functions 〈v′

ivj 〉1−ir and 〈b′
ibj 〉1−ir must be UV

finite when written in the renormalized variables, i.e., they
have no singularities in the limit ε → 0. On the other hand,
one-irreducible Green’s functions 〈v′

ivj 〉1−ir and 〈b′
ibj 〉1−ir

are related to the corresponding self-energy operators v′v

and b′b, which are expressed via Feynman diagrams, by
the Dyson equations. In frequency-momentum representation,
they can be written in the form

〈v′
ivj 〉1−ir = −[−iω + ν0p

2 − v′v(ω,p)]Pij (p), (16)

〈b′
ibj 〉1−ir = −[−iω + ν0u0p

2 − b′b(ω,p)]Pij (p). (17)

Thus, Z1 and Z2 are found from the requirement that the
UV divergences are canceled in Eqs. (16) and (17) after the
substitution e0 = eμdeZe for e = {g,u,ν}. This determines Z1

and Z2 up to a UV finite contribution, which is fixed by the
choice of the renormalization scheme. In the MS scheme, all
the renormalization constants have the following form: 1 +
poles in ε and, in the end, one comes to the explicit expressions

for coefficients z
(i)
nj ,i = 1,2, given in Eqs. (14) and (15) within

the corresponding order of the perturbation theory.
The expansion of the renormalization constant Z1 in

Eq. (14) is known up to the second order in g (two-loop
approximation), i.e., the explicit form of the coefficients z

(1)
11 ,

z
(1)
21 , and z

(1)
22 was already calculated. The simplest one-loop

result z
(1)
11 was obtained, e.g., in Ref. [34] and it reads as

z
(1)
11 = − Sd

(2π )d
(d − 1)

8(d + 2)
, (18)

where Sd denotes the surface area of the d-dimensional unit
sphere defined as

Sd ≡ 2πd/2

�(d/2)
, (19)

and �(x) is Euler’s gamma function. The two-loop corrections
z

(1)
21 and z

(1)
22 were found by authors of paper [31]. The

coefficient z
(1)
22 is simply related to the coefficient z11 (see

Ref. [31] for details):

z
(1)
22 = −(

z
(1)
11

)2
, (20)

and the explicit form of the coefficient z
(1)
21 can be found in

Ref. [31]. It is a rather huge and complicated expression,
therefore, we shall not present it here explicitly.

On the other hand, as for the renormalization constant Z2

in Eq. (15), up to now, it is known only to the first order of the
perturbation theory, namely,

z
(2)
11 = − Sd

(2π )d
(d − 1)

4du(u + 1)
, (21)

and it was found, e.g., in Ref. [35]. Therefore, the first
necessary step needed for the systematic investigation of
the properties of the present model within the second order
of the perturbation theory is to find the explicit form of
the coefficients z

(2)
21 and z

(2)
22 in Eq. (15). To this end, the

corresponding analysis of the structure of the self-energy
operator b′b given in the Dyson equation (17) must be done.

The self-energy operator b′b is given by the sum of
singular parts of the corresponding one-irreducible Feynman
diagrams. In the two-loop approximation, it can be written as

b′b = �1 + �2 = �1 +
8∑

l=1

sl�
2
l , (22)

where sl, l = 1, . . . ,8, are components of the vector

s = (1,1,1,1/2,1,1,1,1), (23)

which represents the corresponding symmetry coefficients of
the two-loop diagrams that are shown in Fig. 3. The analytic
form of the singular part of the one-loop contribution �1 is
given as

�1 = − Sd

(2π )d
gνp2

4ε

(
μ

m

)2ε
d − 1

d(u + 1)
, (24)

which leads to the explicit expression for coefficient z
(2)
11 as it

is given in Eq. (21). In Eq. (24), m is an integral scale and it is
introduced to provide the needed infrared (IR) regularization
(see, e.g., Ref. [31] for details). On the other hand, the two-loop
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Γ1 =

Γ2
3 =

Γ2
1 = Γ2

2 =

Γ2
4 =

Γ2
5 = Γ2

6 =

Γ2
8 =Γ2

7 =

FIG. 3. The one- and two-loop diagrams that contribute to the
self-energy operator b′b(ω,p) in Eq. (17).

contributions �2
l , l = 1, . . . ,8, are given by the calculation of

the two-loop diagrams in Fig. 3 and can be written in an integral
representation as

�2
l = g2ν p2 Sd

16(2π )2d

(
μ

m

)4ε 1

ε

{
(d − 1)2

2d(1 + u)

Sd

ε
Al

+ Sd−1

∫ 1

0
dx (1 − x2)(d−1)/2 Bl

}
, (25)

where x is the cosine of the angle between two independent
momenta k and q over which the integration is taken in the
two-loop case, i.e., x = k · q/(|k||q|), and the explicit forms
of coefficients Al and Bl for l = 1, . . . ,8 as functions of d, u,
and x are given in the Appendix.

Thus, by using the Dyson equation (17) together with the
relation (22) and the explicit expression (25), the coefficients
z

(2)
21 and z

(2)
22 in Eq. (15) for the renormalization constant Z2 are

given as

z
(2)
22 = − S2

d

(2π )2d

(d − 1)2[d(1 + u)(2 + u) + 2(d + 2)]

64d2(d + 2)u(1 + u)3
(26)

and

z
(2)
21 = SdSd−1

16u(2π )2d

∫ 1

0
dx (1 − x2)(d−1)/2

8∑
l=1

slBl, (27)

where the symmetry coefficients sl, l = 1, . . . ,8, are given
in Eq. (23) and functions Bl, l = 1 . . . ,8, are shown in the
Appendix.

The fact that fields v, v′, b, and b′ are not renormalized
means that, e.g., the renormalized connected correlation
functions WR = 〈
 · · · 
〉R are equal to their unrenormalized
counterparts W = 〈
 · · · 
〉 and the only difference is in the
choice of variables (renormalized or unrenormalized) and in
the corresponding perturbation expansion (in g or g0), i.e.,

WR(g,u,ν,μ, . . .) = W (g0,u0,ν0, . . .), (28)

where the dots stand for other arguments that are untouched
by renormalization, e.g., coordinates and times. Using the fact
that unrenormalized correlation functions are independent of
the scale-setting parameter μ, one can apply the differential
operator μ∂μ at fixed unrenormalized parameters on both sides
of Eq. (28), which leads to the basic differential RG equation

[μ∂μ + βg∂g + βu∂u − γνν∂ν]WR(g,u,ν,μ, . . .) = 0, (29)

where the so-called RG functions (the β and γ functions) are
given as

βg ≡ μ∂μg = g(−2ε + 3γ1), (30)

βu ≡ μ∂μu = u(γ1 − γ2), (31)

γi ≡ μ∂μ ln Zi, i = 1,2 (32)

where relations among renormalization constants (13) were
used and Z1 and Z2 are given in Eqs. (14) and (15),
respectively.

The IR asymptotic scaling behavior (the scaling behavior
deep inside of the inertial interval) of the correlation functions
of the model is driven by the IR stable fixed point of the
RG equations. The coordinates of a fixed point (g∗,u∗) are
determined by the requirement of vanishing of the β functions,
namely,

βg(g∗) = 0, βu(g∗,u∗) = 0. (33)

Our interest is concentrated to the nontrivial fixed point with
g∗ �= 0 and u∗ �= 0, and within two-loop approximation, its
coordinates are

g∗ = g(1)
∗ ε + g(2)

∗ ε2 + O(ε3), (34)

u∗ = u(1)
∗ + u(2)

∗ ε + O(ε2), (35)

with

g(1)
∗ = (2π )d

Sd

8(d + 2)

3(d − 1)
, (36)

g(2)
∗ = (2π )d

Sd

8(d + 2)

3(d − 1)
λ, (37)

u(1)
∗ = 1

2

(
− 1 +

√
9d + 16

d

)
, (38)

u(2)
∗ = 2(d + 2)

d[1 + 2u
(1)
∗ ]

[
λ − 128(d + 2)2

3(d − 1)2
B(u(1)

∗ )

]
, (39)

where λ is related to the coefficient z
(1)
21 in Eq. (14) by the

following equation:

λ = 2

3

(2π )2d

S2
d

(
8(d + 2)

d − 1

)2

z
(1)
21 , (40)

and its explicit form can be found in Ref. [31]. (Here, for
convenience, we use the same notation as in Refs. [27,31].). On
the other hand, the coefficientB(u(1)

∗ ) is given by the coefficient
z

(2)
21 in Eq. (27) by substitution u → u

(1)
∗ as follows:

B(u(1)
∗ ) = (2π )2d

S2
d

z
(2)
21 (u(1)

∗ ). (41)
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The type of a fixed point is determined by the properties of
the matrix of the first derivatives

�ij =
(

∂βg/∂g ∂βg/∂u

∂βu/∂g ∂βu/∂u

)
(42)

calculated at the point (g∗,u∗). For IR stable fixed point, the real
parts of all its eigenvalues are positive. In our case, the matrix
element ∂βg/∂u vanishes identically (βg does not depend on
u), therefore, the eigenvalues are given directly by the diagonal
elements. It can be shown by numerical analysis of the diagonal
elements of the matrix (42) that their real parts are positive for
ε > 0, i.e., the fixed point is IR attractive.

It is important to say that the form of βg and βu in
Eqs. (30) and (31) does not depend on order of the perturbation
expansion, i.e., it is exactly given by the one-loop approxima-
tion without higher-loop corrections. This fact leads to the
exact values for the anomalous dimensions γ1 and γ2 at the IR
stable fixed point (g∗,u∗), namely,

γ ∗
1 = γ ∗

2 = 2ε

3
. (43)

The existence of the stable IR fixed point means that the
correlation functions of the model exhibit scaling behavior
with given critical dimensions in the IR range, but we shall not
discuss this question here (the corresponding discussion within
one-loop approximation can be found in Ref. [35], where also
the problem of the anomalous scaling is analyzed).

IV. THE TURBULENT MAGNETIC PRANDTL NUMBER

In Ref. [27], the second-order approximation RG formula
for the turbulent (effective) inverse Prandtl number was
derived, which holds inside the inertial interval and does
not depend on the renormalization scheme [see Eq. (33) in
Ref. [27]]. Using this formula, the second-order corrections to
the turbulent Prandtl number have been calculated, and it was
shown that the two-loop corrections are very small (they are
less than 2% of the leading one-loop result) [27,28].

We shall not repeat all steps in derivation of the formula
(33) in Ref. [27], but it can be shown that by using the same
arguments as in Ref. [27], the corresponding RG expression
can be also derived for the turbulent inverse magnetic Prandtl
number ueff in the present model of the kinematic MHD
turbulence. The formula can be also written in the same form
as for the turbulent inverse Prandtl number in the model of
passively advected scalar field [27], namely,

ueff = u(1)
∗

{
1 + ε

[
1 + u

(1)
∗

1 + 2u
(1)
∗

(
λ − 128(d + 2)2

3(d − 1)2
B(u(1)

∗ )

)

+ (2π )d

Sd

8(d + 2)

3(d − 1)
[av − ab(u(1)

∗ )]

]}
, (44)

where λ and B(u(1)
∗ ) are now given in Eqs. (40) and (41),

respectively, and quantities av and ab(u(1)
∗ ) are given by the

corresponding expansions to the leading order in ε of the
scaling functions of response functions 〈vv′〉 and 〈bb′〉 of
the velocity field and the magnetic field, respectively (see
Ref. [27] for details). The explicit form of the coefficient av can
be found in Ref. [27], therefore, we shall not present it here.
On the other hand, the coefficient ab(u(1)

∗ ) can be calculated

in the framework of the present model in the same manner
as the coefficient aψ in Ref. [27]. The corresponding calcula-
tion gives

ab(u) = − Sd−1

2u(2π )d

∫ ∞

0
dk

∫ 1

−1
dx (1 − x2)

d−1
2

×
[

k

(1 + u)k2 + 2ukx + u
− θ (k − 1)

k(1 + u)

]
, (45)

where θ (y) is a standard Heaviside step function.
In general, the coefficients ab and B in Eq. (44) for the

turbulent inverse magnetic Prandtl number can be different
from the corresponding coefficients aψ and B in Eq. (33) in
Ref. [27] for the turbulent inverse Prandtl number. It is given by
the fact that, although the corresponding quantities are defined
by the same set of Feynman diagrams (compare Fig. 3 in this
paper to Figs. 2 and 3 in Ref. [27]), the diagrams have different
tensor structures, which reflect different internal properties of
the advected scalar and vector (magnetic) fields. However,
by direct comparison, it is evident that the coefficient ab in
Eq. (45) is the same as the corresponding coefficient aψ

in Eq. (38) in Ref. [27] and, at the same time, by direct
calculations it can be also shown that despite the fact that
the models are completely different, the final expression B in
Eq. (44) is the same as the corresponding quantity B in Eq. (33)
in Ref. [27]. This is a nontrivial fact, which can be seen only
when all two-loop diagrams shown in Fig. 3 are analyzed and
calculated.

Thus, by using the following values for needed coefficients
for d = 3 in Eq. (44), namely,

u
(1)
∗ = 1.393, (46)

λ = −1.101, (47)

av = −0.047718/(2π2), (48)

ab = −0.04139/(2π2), (49)

B(u(1)
∗ ) = −4.432 × 10−3, (50)

one comes to the following two-loop value of the turbulent
magnetic Prandtl number within the kinematic MHD turbu-
lence (for the physical value ε = 2), namely,

Prm,t = 0.7051, (51)

which coincides with the corresponding turbulent Prandtl
number Prt of passively advected scalar field [27,28].

The fact that the turbulent magnetic Prandtl number in the
present model of a passively advected vector (magnetic) field
in the framework of the kinematic MHD turbulence is the same
as the turbulent Prandtl number in the corresponding model
of a passive scalar advection [27,28] has only one possible
explanation. Let us briefly discuss it. The kinematic MHD
model differs from the model of passively advected scalar field
[27,28] in two details. First of all, it is the internal vector nature
of the passively advected magnetic field in the kinematic MHD
model and, second, it is a more complicated antisymmetric
interaction vertex in the model of kinematic MHD turbulence
(see Sec. II). It can be shown by direct calculations that, if
the interaction vertex in the vector model is taken in the same
form as in the model of passive scalar advection (i.e., when the
part b′

ibj ∂j vi of the vertex is omitted), then the results for the
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two-loop Feynman diagrams given in Fig. 3 are completely
different from those obtained in the kinematic MHD model
discussed in this paper (thus, they are also different from
the corresponding results in the model of passively advected
scalar field). It means that the antisymmetric structure of the
interaction vertex for the advected vector field in the kinematic
MHD model, which is given by the nonlinear terms in the
stochastic equation for the magnetic field in Eq. (1) [or by the
corresponding trilinear terms, which include fields b, v, and b′
in the action functional (6)], compensates the additional terms
related to the vector nature of the advected field in the one-
and two-loop Feynman diagrams and, as a result, the final
expressions for the diagrams are the same as for the model
of passively advected scalar field [27,28]. However, we
would like to stress once more that this equivalence between
corresponding one- and two-loop Feynman diagrams of the
present vector model and the model of a passively advected
scalar field discussed in Refs. [27,28] is not evident at first
sight, and to see it the corresponding analysis and calculations
of the diagrams must be done.

Thus, we can conclude that the diffusion processes of the
passive vector field (e.g., a weak magnetic field) advected
by the incompressible isotropic turbulent environment driven
by the stochastic Navier-Stokes equation in the framework
of the kinematic MHD turbulence have the same properties
as the corresponding diffusion processes of passive scalar
quantities advected by the same stochastic environment, at
least, up to the second-order approximation (the two-loop
approximation), which is discussed in this paper. However,
although we are not able to prove it, nevertheless, it seems
that this equivalence between diffusion properties of these
two models will be also held in all orders of the perturbation
theory as a result of the above discussed mechanism of
compensation. Of course, this assertion can not be simply
extended and applied to the corresponding models with the
presence of an internal asymmetry of the turbulent systems
[e.g., the turbulent environment with helicity (spatial parity
violation) or anisotropy], where the tensor structure of the
passively advected field can play a nontrivial role and can
lead to considerable differences in the corresponding diffusion
properties of advected fields with different internal tensor
structures. However, these questions are out of the scope of
this paper and will be studied elsewhere.

In the end, let us analyze the behavior of the two-loop
turbulent magnetic Prandtl number within the present model
as a function of spatial dimension d. It will give us important
information about the source of rather miraculous cancellation
of large two-loop contributions to the turbulent magnetic
Prandtl number (as well as to the turbulent Prandtl number
[27,28]), which are generated separately by coefficients λ and
B, respectively. This cancellation of large contributions leads
to the final result for the turbulent (magnetic) Prandtl number,
which is less than 2% different from its one-loop value for
the physical spatial dimension d = 3 (see the corresponding
discussion in Refs. [27,28]).

Because the two-loop turbulent magnetic Prandtl number
in the framework of the kinematic MHD turbulence is the
same as the corresponding two-loop turbulent Prandtl number
in the model of a passively advected scalar field (this assertion
is also true for their d dependence), the analysis and results

presented here for the turbulent magnetic Prandtl number as the
function of spatial dimension d will also hold for the turbulent
Prandtl number of a passively advected scalar field studied in
Refs. [27,28]).

For further convenience, it is appropriate to rewrite
Eq. (44) into the form that immediately gives us the in-
formation about the importance of the contributions of the
corresponding terms into the two-loop value of the turbulent
magnetic Prandtl number. Thus, one can write

ueff = u(1)
∗ [1 + ε(λ′ − B′ + a′

v − a′
b)], (52)

where we have used the following notation:

λ′ = 1 + u
(1)
∗

1 + 2u
(1)
∗

λ, (53)

B′ = 1 + u
(1)
∗

1 + 2u
(1)
∗

128(d + 2)2

3(d − 1)2
B(u(1)

∗ ), (54)

a′
v = (2π )d

Sd

8(d + 2)

3(d − 1)
av, (55)

a′
b = (2π )d

Sd

8(d + 2)

3(d − 1)
ab. (56)

In Table I, first of all, the dependence of the above defined
coefficients a′

v, a′
b, λ′, and B′ on the value of spatial

dimension d is shown. It can be seen that the coefficients a′
v

and a′
b, which are related to the expansion of the corresponding

scaling functions to the leading order in ε (see Ref. [27] for
details), have different behavior as functions of the spatial
dimension d. The absolute value of the coefficient a′

v is an
increasing function of d for relatively small values of the
spatial dimension. On the other hand, the absolute value
of the coefficient a′

b has the opposite behavior, i.e., it is a
decreasing function of the spatial dimension. It is evident
that their individual contributions to the two-loop turbulent
magnetic Prandtl number are rather large. As it can be seen in
Table I, their difference a′

v − a′
b, which directly contributes to

the two-loop value of the turbulent magnetic Prandtl number
in Eq. (52), is also significantly large almost for all small and
moderate values of the spatial dimension d. The contribution
of the difference a′

v − a′
b to the two-loop turbulent magnetic

Prandtl number vanishes completely only in two cases, namely,
when the spatial dimension of the system has the fractal value
near d = 2.75 and when d → ∞. The second case is related
to the fact that, in the limit d → ∞, both quantities a′

v and a′
b

are given by the same asymptotic expression, namely,

a′
v,b � − 4

3
√

π

�
(

d
2

)
�

(
d−1

2

)
∫ ∞

0
dk

∫ 1

−1
dx (1 − x2)

d−1
2

×
[

k

2k2 + 2kx + 1
− θ (k − 1)

2k

]
, d → ∞. (57)

On the other hand, as it can be seen in Table I, the
coefficients λ′ and B′ have the same behavior, namely, they
are both increasing functions of the spatial dimension d, at
least for the small and moderate values of d. Again, their
individual contributions to the two-loop turbulent magnetic
Prandtl number are large. However, their difference λ′ − B′
as a function of d becomes negligible in comparison to the
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TABLE I. The dependence of the coefficients a′
v, a′

b, λ′, and B′ given in Eqs. (53)–(56), their differences a′
v − a′

b and λ′ − B′, and the
one-loop value Pr(1)

m,t and the two-loop value Prm,t of the turbulent magnetic Prandtl number on spatial dimension d . The relative contribution ε

of the two-loop corrections with respect to the one-loop result for the turbulent magnetic Prandtl number as function of spatial dimension d is
also presented.

d 2.1 2.25 2.5 2.75 3 3.25 3.5 4 5 6 8 10 100 d → ∞

a′
v −0.0421 −0.1308 −0.2259 −0.2828 −0.3181 −0.3404 −0.3546 −0.3686 −0.3719 −0.3646 −0.3459 −0.3297 −0.2434 ≈−0.23

a′
b −0.2946 −0.2905 −0.2848 −0.2800 −0.2759 −0.2724 −0.2694 −0.2645 −0.2575 −0.2528 −0.2471 −0.2436 −0.2322 ≈−0.23

λ′ −3.7020 −1.9304 −1.1304 −0.8446 −0.6958 −0.6010 −0.5357 −0.4503 −0.3604 −0.3147 −0.2710 −0.2514 −0.2214 −2/9
B′ −4.3108 −2.1385 −1.2509 −0.9227 −0.7470 −0.6364 −0.5601 −0.4619 −0.3621 −0.3140 −0.2693 −0.2499 −0.2215 −2/9
a′

v − a′
b 0.2525 0.1597 0.0589 −0.0028 −0.0422 −0.0680 −0.0852 −0.1041 −0.1144 −0.1118 −0.0988 −0.0861 −0.0112 0

λ′ − B′ 0.6088 0.2081 0.1205 0.0781 0.0512 0.0354 0.0244 0.0116 0.0017 −0.0007 −0.0017 −0.0015 0.0001 0
Pr(1)

m,t 0.6501 0.6636 0.6839 0.7019 0.7179 0.7322 0.7452 0.7676 0.8023 0.8280 0.8633 0.8866 0.9869 1
Prm,t 0.2388 0.3823 0.5034 0.6101 0.7051 0.7832 0.8482 0.9419 1.0358 1.0683 1.0805 1.0750 1.0093 1
ε × 102[%] 63.3 42.4 26.4 13.1 1.8 7.0 13.8 22.7 29.1 29.0 25.2 21.2 2.3 0

values of the difference a′
v − a′

b starting from the spatial
dimension d = 4 (see Table I). On the other hand, the
contribution of the difference λ′ − B′ to the two-loop value of
the turbulent magnetic Prandtl number is important for d < 4
and it rapidly increases in the limit d → 2, where it obtains
infinite value. This behavior is related to the existence of the
terms proportional to 1/(d − 2) in the difference λ′ − B′ (see
Ref. [27] for details).

The final two-loop numerical values of the turbulent
magnetic Prandtl number Prm,t for various spatial dimensions
d together with the corresponding one-loop values Pr(1)

m,t

are also given in Table I. Besides, in Table I, the relative
contribution ε of the two-loop corrections with respect to the
one-loop result, which is defined as

ε =
∣∣∣∣Prm,t − Pr(1)

m,t

Pr(1)
m,t

∣∣∣∣, (58)

is presented for various values of the spatial dimension d. It is
evident that the two-loop corrections to the turbulent magnetic

2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

d

Pr
m,t

(1)

Pr
m,t

FIG. 4. The dependence of the one-loop Pr(1)
m,t and two-loop Prm,t

values of the turbulent magnetic Prandtl number on the spatial
dimension d .

Prandtl number are significant for small and moderate values
of the spatial dimension d and, typically, they are of the order of
tens of percent of the corresponding one-loop results. The only
exceptions are, on one hand, the narrow interval of the spatial
dimensions around d = 3, where the two-loop corrections to
the turbulent magnetic Prandtl number vanish or are very small
and, on the other hand, the spatial dimensions very close to
d = 2, where the two-loop corrections diverge in the limit
d → 2 as a result of the presence of the terms proportional
to 1/(d − 2). The vanishing of the two-loop corrections to the
turbulent magnetic Prandtl number near d = 3 is related to
the fact that, here the correction λ′ − B′, which is given by
the corresponding sets of the two-loop Feynman diagrams,
and the correction a′

v − a′
b, which is related to the expansion

of the corresponding scaling functions to the leading order in ε,
are comparable as for their absolute values and have opposite
signs (see Table I).

In Fig. 4, the dependence of the two-loop turbulent magnetic
Prandtl number on spatial dimension d is shown and compared
to the corresponding one-loop behavior. It is evident that the
two-loop corrections are small only for spatial dimensions near
d = 3. As was discussed above, this miraculous vanishing of
the importance of the two-loop corrections to the turbulent
magnetic Prandtl number for physical value of the spatial
dimension d = 3 is not given by the smallness of the individual
contributions λ′ − B′ and a′

v − a′
b (they are relatively large

and, separately, they give corrections about 10% to the one-
loop turbulent magnetic Prandtl number), but rather by their
simultaneous cancellation, which leads to the final fact that
the two-loop corrections to the turbulent magnetic Prandtl
number are less than 2% of the corresponding one-loop
result.

We would like to stress once more that all obtained results
and discussion also hold for the turbulent Prandtl number of
passively advected scalar quantity studied in Refs. [27,28].

V. CONCLUSION

In this paper, by using the field theoretic RG technique,
we have calculated and analyzed the turbulent magnetic
Prandtl number of a passively advected magnetic field by the
Navier-Stokes turbulent environment in the framework of the
kinematic MHD turbulence in the second-order approximation
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(two-loop approximation) of the corresponding perturbation
theory. It is shown that the two-loop turbulent magnetic
Prandtl number within the present model is the same as
the corresponding two-loop turbulent Prandtl number of a
passively advected scalar field by the stochastic Navier-Stokes
equation studied in Refs. [27,28]. It is shown that the reason for
the equivalence of the diffusion processes in these two different
models is given by a mechanism that compensates additional
parts in the one- and two-loop Feynman diagrams in the studied
vector model by the antisymmetric form of the corresponding
vertex. It is supposed that this compensation mechanism will
also hold in all orders of the perturbation theory, at least
when full symmetry of the developed turbulent environment
is assumed. However, this is a nontrivial hypothesis, which
can not be seen at first sight and can be proven only by direct
calculations at the corresponding level of approximation. In
this paper, the equivalence is shown and discussed at two-loop
level. We also suppose that the equivalence of the diffusion
processes of the advected vector and scalar fields in discussed
models was not valid when one supposes the presence of an
asymmetry of the turbulent environment (e.g., the presence
of anisotropy, spatial parity violation, compressibility, etc.).
In these cases, it is rather probable that the internal tensor
structure of the advected field will have a nontrivial impact on
the properties of the diffusion processes, which will lead to
the different behavior of the corresponding turbulent Prandtl
numbers. We hope to return to these questions in the near
future.

Further, the dependence of the two-loop turbulent magnetic
Prandtl number on the spatial dimension d has been calculated
and analyzed to find the reason of the smallness of the two-loop
corrections to the turbulent magnetic Prandtl number for real
spatial dimension d = 3. In this case, the two-loop correction
to the one-loop value of the turbulent magnetic Prandtl number
is less than 2%. It is shown that this result is given by almost
exact cancellation of two relatively large contributions given
by the corresponding two-loop Feynman diagrams (λ′ − B′)
and by the expansions to the leading order in parameter ε of
the scaling functions of the corresponding response functions
(a′

v − a′
b). However, this situation is rather specific and holds

only for narrow interval of fractal dimensions around d = 3.
For spatial dimensions d � 4, the crucial contribution to the
two-loop value of the turbulent magnetic Prandtl number is
given by the difference a′

v − a′
b and the contribution given by

the two-loop Feynman diagrams λ′ − B′ is negligibly small.
As it can be seen in Table I, this fact leads to the two-loop
corrections that are larger than 20% of the corresponding one-
loop result. However, the contribution of the difference λ′ − B′
to the two-loop value of the turbulent magnetic Prandtl number
is important for d < 4 and it rapidly increases in the limit
d → 2, where it obtains infinite value, which is related to
the existence of the terms proportional to 1/(d − 2) in the
difference λ′ − B′.

The results obtained in this paper are given for the turbulent
magnetic Prandtl number in the framework of the kinematic
MHD turbulence, but all discussed results are also valid
for the turbulent Prandtl number of a passive scalar field
advected by the Navier-Stokes velocity field as a result of
the aforementioned mathematical equivalence of these two
models.
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APPENDIX

The explicit form of the coefficients Al and Bl for l =
1, . . . ,8 in Eq. (25) is the following:

A1 = 1

d(1 + u)2
, A2 = (3 + u)

4(d + 2)(1 + u)
,

A3 = 1

4(d + 2)
, Ai = 0, i = 4, . . . ,8

B1 = 2ux(d − 1)

d(1 + u)3
√

1 + 2u + u2(1 − x2)
X1,

B2 = B21X2 + B22X3 + B23(X4 + X5) + B24X6

2d
,

B3 = B31X2 − B32X3

2dx(1 + u)
,

B4 = B41 + B42X1 + B43X3 + B44X7

4d
,

B5 = 2x

d(1 + u)2
√

1 + 2u + u2(1 − x2)
X1,

B6 = 2x[B61X2 + B62(X4 + X5) + B63X6]

d(1 + u)(1 − 2u + u2 + 4ux2)
,

B7 = −[B71 + B72X1 + B73X3 + B74(X4 + X5)

+B75X6 + B76X7]/[4d(1 + u)],

B8 = B81X1 + B82X2 + B83X3

dx(1 + u)
,

where

X1 = arctan

(
1 + u(1 + x)√

1 + 2u + u2(1 − x2)

)

− arctan

(
1 + u(1 − x)√

1 + 2u + u2(1 − x2)

)
,

X2 = arctan

(
1 + x√
1 − x2

)
− arctan

(
1 − x√
1 − x2

)
,

X3 = arctan

(
2 + x√
4 − x2

)
− arctan

(
2 − x√
4 − x2

)
,

X4 = arctan

(
2 + x√

2(1 + u) − x2

)

− arctan

(
2 − x√

2(1 + u) − x2

)
,
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X5 = arctan

(
1 + u + x√

2(1 + u) − x2

)

− arctan

(
1 + u − x√

2(1 + u) − x2

)
,

X6 = ln

(
2

1 + u

)
,

X7 = iπ + ln

(
1 − x2 + x

√
x2 − 1

x2 − 1 + x
√

x2 − 1

)
,

and

B21 = −2
√

1 − x2[1 + 12x2 + u3(4x2 − 1)

+u2(16x4 − 1) + u(1 − 16x2 + 48x4)]/

[(1 + u)2x(1 − 2u + u2 + 4ux2)],

B22 = [4 − (7 + d)x2 + 2x4]

(1 − u)x
√

4 − x2
,

B23 = 2x{−3 + 2u3 + 2x2 + 4u(1 − 4x2 + 2x4)

+u2(13 − 14x2) − d[1 + u2 + 2u(2x2 − 1)]}/
[(u − 1)(1 + u)2

√
2(1 + u) − x2

× (1 − 2u + u2 + 4ux2)],

B24 = 2{1 − 2x2 − 3u2(1 − 2x2) + 2u[1 + 4x2(1 − x2)]

+ d[1 + u2 − 2u(1 − 2x2)]}/
[(1 − u)(1 + u)2(1 − 2u + u2 + 4ux2)],

B31 = 2(1 − 5x2 + 4x4)√
1 − x2

,

B32 = 4 − (d + 7)x2 + 2x4

√
4 − x2

,

B41 = (10 − 4d)x2 − 4

(1 + u)x2(1 − x2)
,

B42 = 4{1 + u2(1 − x2) + u[2 + (d − 2)x2]}
(u − 1)x3

√
1 + 2u + u2(1 − x2)

,

B43 = 8u[4 + (d − 3)x2]

(1 − u2)x3
√

4 − x2
,

B44 = 3x2 − 2 + 2(d − 2)x4 + 2u(x2 − 1)2

(1 + u)x3(x2 − 1)3/2
,

B61 = −4
√

1 − x2

1 + u
,

B62 = 3 + u − 2x2

(1 + u)
√

2(1 + u) − x2
,

B63 = 2x

1 − u
,

B71 = −2(6 + u + u3 + 8ux2 + 4u2x2)

(1 + u)(1 − 2u + u2 + 4ux2)
,

B72 = 4(1 − d − du − u2 + u2x2)

(1 + u)x
√

1 + 2u + u2(1 − x2)
,

B73 = 4(2d − x2)

(1 − u)x
√

4 − x2
,

B74 = 8x[u4 − 2 + 2x2 − 3u3(4x2 − 5) + u(12x2 − 11)

− d(1 + 3u)(1 − 2u + u2 + 4ux2)

+u2(−3 − 2x2 + 8x4)]/

[(1 − u2)(1 − 2u + u2 + 4ux2)
√

2(1 + u) − x2],

B75 = 8{2x2 − 1 + u3(4x2 − 3) + u2(5 + 6x2 − 8x4)

+u(4x2 − 1) + d(u − 1)[1 + u2 + 2u(2x2 − 1)]}/
{(u2 − 1)[1 + u2 + 2u(2x2 − 1)]2},

B76 = {2x2(5 − 8x2) − 2u3(5 − 16x2 + 20x4)

−u(1 − 76x2 + 96x4) − u5(5 − 12x2 + 8x4)

+u6(1 − x2) + u2(5 + 31x2 − 32x4 − 32x6)

− 2u4(−5 + 16x2 − 16x4 + 8x6)

+ d[−2 + u5 + 8x2 + 2u4(4x2 − 1)

− 4u2(1 − 8x4) + 2u3(1 + 8x4)

+u(5 − 16x2 + 32x4)]}/
{(1 + u)x[1 + u2 + 2u(2x2 − 1)]2

√
x2 − 1},

B81 = 1 − d(1 + u) + u2(x2 − 1)

(1 − u)
√

1 + 2u + u2(1 − x2)
,

B82 = −
√

1 − x2,

B83 = 2d − x2

(1 − u)
√

4 − x2
.
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