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Exploring spiral defect chaos in generalized Swift-Hohenberg models with mean flow
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We explore the phenomenon of spiral defect chaos in two types of generalized Swift-Hohenberg model
equations that include the effects of long-range drift velocity or mean flow. We use spatially extended domains
and integrate the equations for very long times to study the pattern dynamics as the magnitude of the mean flow
is varied. The magnitude of the mean flow is adjusted via a real and continuous parameter that accounts for the
fluid boundary conditions on the horizontal surfaces in a convecting layer. For weak values of the mean flow,
we find that the patterns exhibit a slow coarsening to a state dominated by large and very slowly moving target
defects. For strong enough mean flow, we identify the existence of spatiotemporal chaos, which is indicated by
a positive leading-order Lyapunov exponent. We compare the spatial features of the mean flow field with that of
Rayleigh-Bénard convection and quantify their differences in the neighborhood of spiral defects.
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I. INTRODUCTION

The chaotic behavior of spatially extended dissipative
systems has been intensively studied in recent years [1].
Spatiotemporal chaos has been observed in a wide range
of physical systems, including Faraday waves that appear
on the surface of an oscillating layer of fluid [2], reacting
chemical mixtures [3], excitable media [4], and Rayleigh-
Bénard convection in a shallow fluid layer heated from below
[1]. In particular, the study of Rayleigh-Bénard convection
continues to provide fundamental insights into the dynamics
of pattern-forming systems that are driven far from equilibrium
[1,5]. The state of spiral defect chaos has received significant
attention since its discovery by Morris et al. [6]. Spiral defect
chaos is characterized by the complex dynamics of rotating
spiral defects, and interestingly it occurs for fluid parameters
where straight parallel convection rolls are linearly stable
[1,5]. Although much effort has been spent on building our
understanding of the origins and dynamical features of spiral
defect chaos, many open questions still remain.

A significant difficulty in studying spatiotemporal chaos
is that the experimental systems of interest are often large
and strongly driven. This presents significant obstacles for
both analytical and numerical approaches. For example, the
numerical simulation of the Boussinesq equations (which
govern Rayleigh-Bénard convection) in large domains, for
long simulation times, and for many values of the system
parameters is out of reach using currently available algorithms
and computing resources. Although significant progress has
been made in the ability to simulate convection for experimen-
tal conditions, the computational cost remains very high [7].
In light of challenges such as these, the use of simpler model
equations has played a pivotal role in furthering our physical

*mrp@vt.edu

understanding of spatiotemporal chaos. In Rayleigh-Bénard
convection, the two-dimensional Swift-Hohenberg equation
[8] has led to numerous physical insights regarding questions
of pattern formation [1]. However, the use of the Swift-
Hohenberg equation to study spatiotemporal chaos, and in
particular spiral defect chaos [9], has been called into question
[10], as will be further discussed below. This leaves no clear
choice for a model system to be used for the study of spiral
defect chaos with direct relevance to fluid convection.

The presence of a long-range mean flow is well known to
play an important role in the dynamics of Rayleigh-Bénard
convection [1,11,12]. This led to extensions of the Swift-
Hohenberg equation to account for these effects [9,13,14]. The
mean flow is a weak horizontal flow field that acts over length
scales larger than that of the convection rolls; it results from
the coupling to fluid vertical vorticity and is induced by roll
curvature, amplitude gradients, and wave-number gradients
[1,15,16]. The magnitude of the mean flow is much smaller
than that of the convective roll motion, making it very difficult
to measure in experiment. A typical way to visualize the mean
flow in numerical work is to present contours of the integrated
horizontal components of the fluid velocity over the depth of
the fluid layer [7]. Although the mean flow is weak, it can have
a significant effect on the dynamics and stability boundaries of
the flow field and also adds a slow time scale to the dynamics.
It has been shown numerically that the mean flow is required
for spiral defect chaos in Rayleigh-Bénard convection [17].

Spiral defect chaos was initially explored using numerical
simulations of the generalized Swift-Hohenberg equation by
Xi et al. [9]. These simulations were for rather short intervals
of time t ∼ 900, where t is the nondimensional time. For
the parameters used, a time of t = 4.73 corresponds to
the vertical diffusion time of heat τv in Rayleigh-Bénard
convection [13]. We note that to generate the spiral defect
state in this model system, the system needs to be taken far
enough from the convective threshold; otherwise, roll-type
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patterns would dominate with the system dynamics governed
by the motion of topological defects such as grain boundaries,
dislocations, and disclinations [18]. Schmitz et al. [10] later
explored the generalized Swift-Hohenberg equation for the
same parameters but for much longer simulation times t ∼
64 000. Their results suggested that the spiral defect state was
only a transient with the long-time dynamics characterized by
a slow coarsening process to a state dominated by large spirals.
This work has cast doubt on the ability of the Swift-Hohenberg
equation to exhibit persistent dynamics that resembles spiral
defect chaos.

In this paper, we present a careful numerical study of
these questions. In particular, we have performed very-long-
time simulations (t = 106 time units) in very large domains,
and for a wide range of mean flow strengths. We also
compute the leading-order Lyapunov exponent to determine
if the dynamics is chaotic. Our investigation is driven by the
results on Rayleigh-Bénard convection, which demonstrate the
importance of mean flow in spiral defect chaos [5,7].

The remainder of this paper is organized as follows. In
Sec. II, we discuss two types of generalized Swift-Hohenberg
model equations and provide some details regarding their
numerical solution and the computation of the leading-order
Lyapunov exponent. In Sec. III, we present our results
and discuss the effect of the mean flow on the dynamics.
Concluding remarks are given in Sec. IV.

II. APPROACH

A. The generalized Swift-Hohenberg models

A generalized, dimensionless form of the two-dimensional
time-dependent Swift-Hohenberg model is given by [9]

∂ψ

∂t
+ U · ∇ψ = εψ − (∇2 + 1)2ψ + N [ψ], (1)

[
∂

∂t
− σ (∇2 − c2)

]
∇2ζ = gm[∇(∇2ψ) × ∇ψ] · ẑ, (2)

where ψ(x,y,t) is a scalar field describing the spatial and
temporal variation of the convection patterns, ε is a con-
trol parameter giving the dimensionless distance from the
convective threshold, and ẑ represents the unit vector in the
out-of-plane direction. The variable ζ (x,y,t) is the vertical
vorticity potential defined via �z = (∇ × U)z = −∇2ζ , where
�z is the vertical component of fluid vorticity and U is the mean
flow or drift velocity. ζ can also be interpreted as the stream
function for the mean flow, given that

U = ∇ × (ζ ẑ) = (∂yζ, − ∂xζ ). (3)

In Eq. (2), σ is proportional to the Prandtl number, gm is
a positive real constant that characterizes the mean flow
coupling strength, and c is a real parameter introduced for
modeling the effect of free-slip (c = 0) or no-slip (c �= 0)
boundary conditions for the horizontal surfaces of a convection
layer. The term N [ψ] in Eq. (1) represents the nonlinearity
of the system, which has many different forms in the
literature based on system conditions [1,13,19]. In this paper,
we present numerical results for two representative cases:
(i) N [ψ] = −ψ3 for which the model equations are referred
to as the generalized Swift-Hohenberg (GSH) model [19],

and (ii) N [ψ] = −(|∇ψ |2ψ + ψ3), for which the equations
are referred to as Manneville’s model, which was derived in
Refs. [13,16] from the Boussinesq equations.

B. Numerical simulations

We numerically integrate Eqs. (1) and (2) using the
approach discussed by Cross et al. [20] and provide only
the essential details here. The domain is a square geometry
that is discretized on a spatially uniform grid with periodic
lateral boundary conditions. In our numerical simulations,
we begin from random initial conditions for ψ and set
initially ζ (x,y,t = 0) = 0. We have not performed a detailed
study of the long-time dynamics for many different initial
conditions due to the computational cost. However, all of our
numerical simulations are performed using different random
initial conditions, and in the course of analyzing our results
we have found no dependence upon the initial conditions.
We discretize the spatial domain using a 512 × 512 grid with
a grid spacing of 	x = 	y = λ0/8, where λ0 = 2π is the
critical wavelength of a convection roll. These parameters
are approximately equivalent to a Rayleigh-Bénard system
in a box geometry with an aspect ratio of � = L/d = 128,
where L is the side length of the box and d is the depth of
the convection layer. Each individual simulation is allowed to
evolve for t = 106 time units using a time step of 	t = 0.2.

The equations are stiff due to the very fast dynamics of
the biharmonic operator in comparison to the much slower
convective time scale of the pattern dynamics. An efficient
solution is obtained using a pseudospectral operator-splitting
approach [21]. The linear terms are treated exactly using
an explicit exponential time integration [22,23] and the
nonlinear terms are evolved forward in time using an explicit
predictor-corrector approach. To reduce the contributions of
high wave-number modes in the vorticity field, a Gaussian
filtering operator Fγ is applied to the right-hand side of Eq. (2)
[19]. In Fourier space, it is given by Fγ = exp(−γ 2q2/2),
where γ is the filtering radius and q is the wave number. In
our simulations, we have used a filtering radius of γ = λ0/2.

We compute the leading-order Lyapunov exponent using
the standard procedure described in detail in Ref. [24]. The
tangent space equations are

∂δψ

∂t
+ U · ∇δψ + δU · ∇ψ = εδψ − (∇2 + 1)2δψ

+ δN [ψ,δψ], (4)[
∂

∂t
− σ (∇2 − c2)

]
∇2δζ = gm[∇(∇2δψ) × ∇ψ

+∇(∇2ψ) × ∇δψ] · ẑ, (5)

where δU = ∇ × (δζ ẑ). The nonlinear term for the GSH
equation is

δN[ψ,δψ] = −3ψ2δψ, (6)

and for Manneville’s model it is

δN[ψ,δψ] = −(3ψ2 + |∇ψ |2)δψ − 2[(∇ψ) · (∇δψ)]ψ.

(7)
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The magnitude of δψ is renormalized after a time tN to yield
a measure of its growth ‖δψ(tN )‖, which is used to calculate
the instantaneous Lyapunov exponent, i.e.,

λ̃1 = 1

tN
ln ‖δψ(tN )‖. (8)

We have used tN = 2 in our simulations. This normalization is
repeated in time to generate many values of the instantaneous
Lyapunov exponent, whose time average yields the finite-time
Lyapunov exponent

λ1 = 1

Nt

Nt∑
i=1

λ̃1, (9)

where Nt is the number of renormalizations performed. The
limit Nt → ∞ yields the infinite-time Lyapunov exponent.

III. RESULTS

Experimental measurements of spiral defect chaos have
typically been performed using large aspect ratio domains,
moderate Rayleigh numbers, and compressed gases with a
Prandtl number of approximately unity [5]. Generalizations of
the Swift-Hohenberg model, as given by Eqs. (1) and (2),
have been used to study fundamental features of spiral
defect chaos. The choice of the system parameters in the
Swift-Hohenberg-type models is important in order to yield
dynamics that resembles spiral defect chaos. In order to
estimate the appropriate parameters, Xi et al. [9] compared
a three-mode amplitude equation for the GSH equation with
the experimental results of Ref. [25]. Using this approach
yielded values of σ = 1, ε = 0.7, and gm = 50. It was also
chosen to use c2 = 2, although a specific physical reason for
this particular choice is not given. This parameter set has been
adopted in most numerical explorations of spiral defect chaos
using the Swift-Hohenberg model, including that of Schmitz
et al. [10], where it was suggested that spiral defect chaos in
the numerical simulations was only a transient.

The choice of these system parameters highly affects the
magnitude and dynamics of the mean flow. The magnitude
of the mean flow is inversely proportional to σ and increases
with increasing values of the coupling strength gm. Cross [26]
has presented a careful study of the variation of the dynamics
with gm. For small values of gm the patterns were dominated
by target defects, and for large values of gm the patterns
were dominated by spirals. Schmitz et al. [10] computed
the appropriate value of gm based upon the zigzag stability
boundary for ε = 0.7 and σ = 1 and found that gm ≈ 12.
However, it was determined by numerical exploration that a
larger value was required to yield dynamics that resembled
spiral defect chaos, and a value of gm = 50 was used in their
numerics.

Our calculations here indicate an important role played by
the parameter c2 on the strength of mean flows. As described
above in Sec. II A, c2 is related to the choice of boundary
conditions on the bottom and top plates of a three-dimensional
convection system. Its value physically accounts for the
viscous damping that occurs near the horizontal surfaces. A
value of c2 = 0 corresponds to perfect slip on the top and
bottom plates, and a value of c2 �= 0 corresponds to a no-slip

boundary condition. In the development of the GSH equation
[19], the term c2 is introduced as an unknown constant. In
the derivation by Manneville [13,16], c2 emerges as part of
the expansion and averaging procedures used when starting
from the Boussinesq equations. Using the nondimensional
form of the equations shown in Eqs. (1) and (2) yields a
value of c2 = 1.03 (after rescaling) for no-slip boundaries [13].
However, as pointed out in Ref. [13], the precise numerical
value of c2 depends upon the approximation process as well
as the manner in which the averaging is done in the vertical
direction.

In the following, we have explored the details of the
mean flow and the spiral defect state using both Manneville’s
model and the GSH equation. What separates our work from
previous efforts is that we have explored the role of the
mean flow by systematically varying the value of c2 while
also computing the leading-order Lyapunov exponent for
very-long-time simulations. When using Manneville’s model,
we have chosen the system parameters to most closely align
with those of a Rayleigh-Bénard convection domain exhibiting
spiral defect chaos (i.e., ε = 0.7,σ = 2,gm = 50). When using
the GSH equation, we have used the values commonly used in
the literature (i.e., ε = 0.7,σ = 1,gm = 50). For both models,
we have explored the range of c2 values from 0.1 � c2 � 4.
We note that for our choice of the system parameters, the
Prandtl number is different between our simulations using
Manneville’s model and the GSH model. Our intention is not to
provide a quantitative comparison between these two models,
but rather to explore the role of mean flow in spiral defect
chaos.

The variation of the mean flow magnitude with c2 can be
quantified by computing the average kinetic energy of the mean
flow field. The time-dependent value of the spatially averaged
kinetic energy is given by

K(t) = 1
2

〈(
U 2

x + U 2
y

)〉
, (10)

where (Ux,Uy) are the x and y components of the mean flow
velocity and 〈· · · 〉 represents the spatial average. In Fig. 1, we
plot 〈K〉t , which represents the time-averaged value of K(t) as
a function of c2. The time averaging is performed from the data
of the final 105 time units. The error bars represent the standard
deviation of the variation of 〈K〉t about its mean value. The
circle symbols are numerical results for Manneville’s model
and the square symbols are results for the GSH equation. For
both models, the data can be fitted to 〈K〉t ∝ c−2, indicating the
rapid increase in the magnitude of the mean flow for decreasing
values of c2.

Figure 2 illustrates the pattern evolution for c2 = 2 using
Manneville’s model. The value of c2 = 2 is the typical value
used in the literature and corresponds to a weak mean flow.
At small time t = 103, the pattern is quite complex and
contains many dynamic spiral and defect structures, similar
to the scenario given in the simulations of Xi et al. [9]. The
coarsening to target structures is evidenced by the pattern at
t = 5 × 104 and represents the approximate duration of the
simulations by Schmitz et al. using the GSH equation [10].
This coarsening process is extremely slow, as can be seen by
comparing the patterns at longer times in Fig. 2 (the pattern at
t = 106 for these simulation parameters is shown in the bottom
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FIG. 1. The variation of the spatial and time-averaged kinetic
energy 〈K〉t with c2. The circle symbols are for Manneville’s
model with parameters ε = 0.7, σ = 2, gm = 50, and the square
symbols are for the GSH equation with ε = 0.7, σ = 1, gm = 50.
The lines are curve fits given by 〈K〉t = 0.013c−2 for the GSH
model and 〈K〉t = 0.005c−2 for Manneville’s model. The results
are averaged using the last 105 time units of a simulation with
total time t = 106. The error bars are the standard deviation of the
fluctuations of 〈K〉t about its mean value; their maximum values
are ∼10−2 and ∼10−3 for the GSH model and Manneville’s model,
respectively.

right panel of Fig. 3). Note that during the time evolution, some
big targets can break up and form small defects, which will then
interact and recombine with other targets or spirals, resulting
in the process of coarsening.

We have explored the long-time dynamics of the patterns
by varying the strength of the mean flow over the parameter
range of 0.1 � c2 � 4. Figure 3 illustrates the patterns at t =
106 for four different values of c2. For the cases shown, the
patterns resemble the state of spiral defect chaos for c2 � 0.7,
showing spatially complex structures with rapid dynamics of
small-scale spirals and localized defects. Although during the
evolution process some larger spirals or targets may be formed,
they are transients and will soon break up, with new small
spiral defects recreated; this procedure will repeat, but no long-
lasting, coarsened big targets or spirals can exist. However,
for larger c2 (e.g., = 2), the pattern has coarsened to a state
dominated by slowly moving target defects, as in the case given
in Fig. 2. These observations indicate that strong enough mean
flows, as achieved via controlling parameter c2 in the model
equations, are needed to reach a persistent chaotic or dynamic
state, not only for breaking up large targets or spirals but also
for locally recreating new small spiral-type defects to prevent
the coarsening procedure.

To further characterize the properties of system dynamics,
in Fig. 4 we examine the time variation of two global quantities:
the average kinetic energy K(t) as defined in Eq. (10), and the
convective heat flux J (t), which is given by

J (t) = 〈ψ2〉. (11)

Figure 4(a) indicates that as the strength of the mean flow
increases (i.e., the values of c2 decrease), the magnitude of

t = 1000 t = 50, 000

t = 100, 000 t = 200, 000

FIG. 2. Instances of the ψ field pattern for Manneville’s model
with system parameters ε = 0.7, σ = 2, gm = 50, and c2 = 2,
showing a slow process of pattern coarsening. Small spiral defects
dominate at early times (e.g., t = 103), whereas at large times the
pattern has evolved into a state dominated by large and very slow
moving target structures.

c2 = 0.1 c2 = 0.5

c2 = 0.7 c2 = 2

FIG. 3. The long-time patterns for Manneville’s model over a
range of mean flow strengths as determined by the value of c2.
The simulations are initiated with random initial conditions and
are integrated until t = 106. Other parameters are the same as in
Fig. 2.
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FIG. 4. Time variation of the pattern dynamics in Manneville’s
model for different magnitudes of the mean flow. The parameters used
are the same as those in Fig. 3. (a) Time variation of the convective
heat flux J (t) given by Eq. (11); (b) time variation of the average
kinetic energy K(t) defined by Eq. (10).

the heat flux decreases with increasing fluctuations about
the mean value. Such fluctuations are a result of the pattern
dynamics. More specifically, the dynamics of the defects yields
the excursions to larger and smaller values of the heat flux.
For the average kinetic energy as shown in Fig. 4(b), both the
magnitude of K(t) and its fluctuations increase with increasing
strength of the mean flow. Overall, Fig. 4 can be used to provide
some qualitative insight into the complexity of the dynamics.
It is clear that for c2 = 2 (which is the parameter used in most
previous studies), the disorder in the kinetic energy and heat
flux is significantly reduced.

Although global diagnostics such as the kinetic energy and
heat flux provide qualitative insights into the complexity of
system dynamics, they cannot be used to determine whether
the dynamics is chaotic. In order to do so, we have also
calculated the finite-time leading-order Lyapunov exponent
using the approach discussed in Sec. II B. In Fig. 5, we show
the variation of λ1 with the magnitude of the mean flow, for
which λ1 > 0 indicates chaos. The circle symbols are the
results for Manneville’s model, and the solid line is included

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

1.2

c2

λ
1

FIG. 5. The variation of the leading-order Lyapunov exponent λ1

with the magnitude of the mean flow. The value of λ1 is computed
using results for the final 105 time units. The circle symbols and
the solid line are for Manneville’s model using the system parameters
ε = 0.7, σ = 2, and gm = 50. The square symbols and the dashed line
are for the GSH equation using the typical system parameters of most
previous studies: ε = 0.7, σ = 1, and gm = 50. The lines are only
meant to guide the eye. The error bars represent the standard deviation
of λ1 about its mean value for each value of c2. The maximum value
of the error bar for Manneville’s model is ∼10−3 and for the GSH
equation is ∼10−2.

only to guide the eye. We emphasize that these results are
obtained from very-long-time simulations to ensure that any
slow coarsening dynamics has been captured. The reported
values of λ1 are computed using the final 105 time units. The
standard deviation of the fluctuations of λ1 about its mean
value is included as error bars. The maximum value of the
error bar for the parameters explored is ∼10−3. We have also
performed tests on the data in which λ1 is computed over
successive windows of time of various durations to quantify
the presence of any slow trends. Our reported values of λ1

appear to be the converged result, and for the duration of the
simulations explored we did not find any indication of slow
trends. However, this does not rule out the possibility of even
slower dynamics not captured in our simulations.

Our simulations indicate that the dynamics is weakly
chaotic for c2 ≈ 2, where λ1 ≈ 0.05. This weak chaos is due
to the slow dynamics of the pattern, as can be seen in Fig. 3,
where the targets are slowly moving among the more rapid
dynamics of defects such as spirals, dislocations, etc. The
value of λ1 increases with the decreasing value of c2 and thus
the increasing magnitude of the mean flow as given in Fig. 5.

We have also included in Fig. 5 the numerical results of
the GSH equation to enable a more direct comparison with
prior results in the literature. These results are shown as the
square symbols and the dashed line. We have allowed c2 to
vary while the remaining parameters are the typical values
used in the previous studies: ε = 0.7, σ = 1, and gm = 50.
Overall, our results indicate a very similar trend: the dynamics
is weakly chaotic for c2 ≈ 2 and becomes increasingly chaotic
for smaller c2 and larger magnitudes of the mean flow. We have
performed the same series of tests as for Manneville’s model to
account for the presence of any slow coarsening process. The
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maximum magnitude of λ1 error bars for the GSH equation is
∼10−2.

Although the connection between the Swift-Hohenberg
equations and the Boussinesq equations of Rayleigh-Bénard
is phenomenological, a direct comparison between the two
can provide further physical insights. In this comparison, we
focus mainly on spatial features of the mean flow field for
chaotic patterns containing a large number of spiral defects.
In Fig. 6(a), we illustrate the relationship between the pattern
and the magnitude of the mean flow. The image shown is for
Manneville’s model at t = 106 with c2 = 0.1. The dynamics

FIG. 6. (Color online) Spatial variation of the mean flow field for
chaotic patterns containing many spiral defects. The color contours
represent the magnitude of the mean flow field, with red regions (near
the spiral cores or defect structures) corresponding to large mean flow
magnitude and blue regions (near regions of straight rolls or target
structures) corresponding to small mean flow magnitude. The black
lines indicate convective roll boundaries. (a) Results for Manneville’s
equations at t = 106 using system parameters (ε = 0.7, σ = 2, gm =
50, c2 = 0.1). (b) Results for the Boussinesq equations using system
parameters ε = 0.7, Pr = 1, and � = 128 at time t = 232.9.

is chaotic with λ1 ≈ 1.2 as given in Fig. 5. The color contours
represent the magnitude of the mean flow field |U|, where red
indicates regions of large mean flow (located primarily near
the cores of spiral defects) and blue indicates regions of small
mean flow (located in regions of straight parallel rolls and near
target defects). The roll pattern is shown by the black lines,
which are given by contours of ψ = 0. The mean flow tends
to reach its local maximum at locations that contain defect
structures and remains large on a length scale of several roll
wavelengths around the defect.

We also performed numerical simulations of the three-
dimensional time-dependent Boussinesq equations that de-
scribe Rayleigh-Bénard convection. We used a parallel spectral
approach that is discussed in detail elsewhere (cf. [7]). We
have chosen the reduced Rayleigh number ε = 0.7, the Prandtl
number Pr = 1, and an aspect ratio of � = 128 for the spatial
domain. The top and bottom boundaries have the no-slip fluid
boundary condition and are held at constant temperature, while
periodic boundary conditions are used on the sidewalls. The
spatial variation of the mean flow is shown in Fig. 6(b). The
mean flow is computed as the vertical average of the horizontal
components of the fluid flow field, with red regions indicating
large mean flow (near the spiral core) and blue regions
corresponding to small mean flow (away from the spiral core).
The black lines indicate the contours of the convection rolls.
Due to the large aspect ratio of the domain, the computational
cost of the numerical simulation is considerable, and the
image shown is for a time t = 232.9, where t has been
nondimensionalized in the usual manner using the time for
heat to diffuse across the depth of the layer. Qualitatively,
the convective roll pattern is quite similar to what is shown
for the Swift-Hohenberg-type equations. The spatial variation
of the mean flow field, on the other hand, is different in terms of
its rate of decay with the distance from a defect core. The mean
flow field is largest at the core regions of the defect structures
and decays rapidly with distance away from the defect core.
In most cases, the length scale of this decay is approximately
that of a single roll [see Fig. 6(b)], as compared to several rolls
for results of Manneville’s model shown in Fig. 6(a).

The derivation of the Swift-Hohenberg equations is based
on a long-wavelength approximation and hence the corre-
sponding results are not expected to be accurate in the core
regions of defect structures [8]. This is illustrated in Fig. 7,
which shows a close-up view of the mean flow structure near
a spiral defect, with panel (a) for results of Manneville’s
model and panel (b) for the Boussinesq equations. In both
cases, the spiral is rotating in a counterclockwise direction.
For the Swift-Hohenberg equations, the mean flow exhibits a
quadrupole structure centered upon the spiral. The magnitude
of the quadrupole is spatially asymmetric and varies with the
defect dynamics. The mean flow for the Boussinesq equations
is a vortex rotating in the opposite direction to the rotation
of the spiral. Our results for the Boussinesq equations are
in agreement with those presented by Bodenschatz et al.
(see Fig. 18 in Ref. [5]).

IV. CONCLUSION

Using generalizations of the Swift-Hohenberg equation,
we have explored the spiral defect chaos state and the role
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FIG. 7. (Color online) A close-up view of the spatial variation
of the mean flow near a spiral defect in a chaotic pattern. The color
contours represent the magnitude of the mean flow as in Fig. 6, the
black lines indicate the convective roll boundaries, and the arrows are
vectors for the mean flow. (a) Results using Manneville’s equations
with system parameters ε = 0.7,σ = 2, gm = 50, and c2 = 0.4 at
time t = 7 × 105. (b) Results from the Boussinesq equations using
system parameters ε = 0.7, σ = 1, and � = 128 at time t = 232.9.

of the mean flow. Our results show that it is possible to
generate chaotic dynamics using Swift-Hohenberg-type model
equations that resemble the spiral defect chaos of Rayleigh-
Bénard convection. The important insight is that the strength

of the mean flow must be large enough. Reasonable parameter
values of ε, σ , and gm that lead to spiral defect chaos have been
explored at some length in the previous literature. However, the
precise value of parameter c2 depends on the approximations
used in the derivation of Manneville’s equations, and the
appearance of c2 is phenomenological in writing down the
GSH equations. Our results show that the dynamics varies
strongly with the magnitude of c2, and the commonly used
value of c2 = 2 yields a mean flow that is not strong enough
to generate persistent dynamics that resembles spiral defect
chaos. By choosing a smaller value of c2, the dynamics is
chaotic for as long as we have simulated (t = 106 time units).
Although we focused our discussion on results generated
using Manneville’s equations, our conclusions and insights
also apply to the GSH equations. The particular choice of the
form of the nonlinearity does not strongly affect the results
in any significant way that we have found. The necessity of
a strong enough mean flow to support spiral defect chaos is
in agreement with what has been found from the Boussinesq
equations [17].

However, there are significant differences between nu-
merical results from the Swift-Hohenberg-type model equa-
tions and those generated using the full three-dimensional
Boussinesq equations. The Swift-Hohenberg equations are
not expected to capture the small-scale features correctly due
to the long-wavelength approximation involved, and we have
quantified some aspects of this by comparing the mean flow
fields around a single spiral defect.

We anticipate that our results will have several uses. First is
that Swift-Hohenberg-type equations can be used as a model
to study spatiotemporal chaos in a system with direct relevance
to fluid phenomena such as Rayleigh-Bénard convection. This
is a significant advantage since numerical simulations of the
Boussinesq equations are computationally very expensive [7].
The Swift-Hohenberg model equations could be used to
explore fundamental ideas of spatiotemporal chaos that are
currently inaccessible to the full fluid equations. Examples
include a detailed study of microextensivity [27,28] or the
computation of the characteristic Lyapunov exponents [29,30].
In addition, our comparison of the spatial variation of the mean
flow around spiral defect core structures could be used to guide
the development of more accurate theoretical descriptions of
spiral defect chaos.
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