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Resonant acceleration of charged particles in the presence of random fluctuations
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We present a quantitative theory of the nonlinear dynamics and surfatron resonant acceleration of charged
particles in the presence of random fluctuations of magnetic field. We demonstrate that the surfatron mechanism
of acceleration is sufficiently stable versus the influence of fluctuations and particle accelerate even in the presence
of a random noise. We estimate the maximum energy which particles could gain in the course of the surfatron
acceleration.
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I. INTRODUCTION

Transport and acceleration of charged particles in turbulent
electromagnetic fields is one of the challenging problems of
plasma physics. In collisionless plasma (e.g., interplanetary
plasma, interstellar medium, regions of planetary magneto-
spheres) neither the redistribution of energy between various
particle populations nor the energy dissipation (transformation
of magnetic field energy into kinetic energy of particles) can
be achieved by particle collisions. One of the alternative
mechanisms is the interaction of charged particles with
the electromagnetic turbulence (EMT) appearing due to the
growth and eventual saturation of plasma instabilities.

Various physical conditions in different systems lead to
quite diverse models of the acceleration of charged particles
by EMT. Fluid models are used to describe the acceleration of
particles by large-scale turbulence in the Solar corona [1,2].
For many systems, the turbulence can be approximated as an
ensemble of localized electromagnetic structures (so-called
“magnetic clouds”). The interaction of particles with such
clouds was first discussed in Ref. [3], and similar models
are still in use (see, e.g., Ref. [4]). An ensemble of plane
electromagnetic waves is one of the most straightforward
models of EMT [5–8]. It was shown in Refs. [6] and [8] that in
such a model the acceleration of particles can be almost free,
with the average energy of the particle ensemble growing as
∼t2. The presence of this regime indicates that at the resonance
particles interact not with the waves’ ensemble as a whole,
but rather with a particular wave. The free acceleration of a
particle by a single electromagnetic (or electrostatic) wave can
be explained by the so-called “surfatron” mechanism (see, e.g.,
Refs. [9–12]). However, the presence of other harmonic(s) in
the turbulent spectrum puts the upper bound on the time a
particle spends in the resonance with a particular wave (see
Ref. [13]).

The surfatron mechanism is traditionally used to describe
the particle acceleration by shock waves [14–16]. In this
mechanism particles can accelerate along the nonlinear wave
front in the presence of a background magnetic field in
the Solar corona [17], in the interplanetary medium and in
planetary magnetospheres (see Refs. [18,19] and references
therein), and in a magnetospheres of stars [20]. Such a mech-
anism also is realized in the vicinity of the X line appearing
during magnetic reconnection [21]. However, the stability of

surfatron acceleration in the presence of fluctuations of the
magnetic field near shock-wave fronts and in the vicinity of
the X line remained an open question. In the current paper
we demonstrate that fluctuations of the magnetic field in
a relatively broad range of frequencies cannot completely
destroy the surfatron resonance.

II. MAIN EQUATIONS

We study the resonant interaction of a charged particle with
a single electromagnetic wave in the presence of surrounding
random magnetic fluctuations that model the rest of EMT.
We consider the following geometry of the system (as in
Ref. [12]): The background magnetic field B0 and the random
magnetic field B�(t) are directed along the ẑ axis, the plane
electromagnetic wave (with frequency ω̂ and wave vector k̂)
propagates along the ŷ axis, and particles move in the
(x̂,ŷ) plane (a schematic view is presented in Fig. 1). To
make the calculations more straightforward, we consider only
fluctuations that are parallel to B0. The more general case
of three-dimensional (3D) fluctuations will be considered in
subsequent publication(s).

The Equations of motion of a nonrelativistic particle with
charge q and mass m can be written as

˙̂vx = (q/mc)[̂vφBw sin φ + v̂y(B0 − Bw sin φ + B�)],
˙̂vy = −(q/mc)̂vx(B0 − Bw sin φ + B�),
˙̂x = v̂x, ˙̂y = v̂y . (1)

In (1), v̂ is the particle velocity, φ = k̂ŷ − ω̂̂t , Bw is the
amplitude of the wave, v̂φ = ω̂/̂k, and c is speed of light.
Introduce dimensionless quantities t = t̂ω0, v = v̂/̂v0, vφ =
v̂φ /̂v0, k = k̂v̂0/ω0, ω = ω̂/ω0, r = r̂ω0/̂v0, β = Bw/B0, and
�(t) = B�(t)/B0. Here v̂0 is a typical initial particle velocity,
and ω0 = qB0/mc is the cyclotron frequency. Throughout the
text we use β = 2π . With the different variables (1) takes the
form

v̇x = vφβ sin φ + vy(1 + �(t) − β sin φ),

v̇y = −vx(1 + �(t) − β sin φ). (2)

We assume that �(t) is a random process with zero mean
(a nonzero mean can be included in B0). �(t) is constant
during the fixed time interval τ̂ = τ/ω0 and when t = ti = τ i
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FIG. 1. Scheme of particle motion.

(i = 1,2,3, . . .) the value of �(t) changes randomly according
to its probability distribution.

In the present paper we assume that k � 1 and the high-
frequency EMT corresponds to τ � 1. This means that during
one cyclotron gyration the particle experiences many �(t)
jumps. The averaging of (2) over the fast-oscillating random
field corresponds to omitting the terms with �(t). In such
a system the majority of particles move around the Larmor
circles (the dashed line in Fig. 1). It was shown in Refs. [9–13]
that the most interesting phenomena are associated with the
resonance wave-particle interaction, occurring when the y

component of the particle velocity matches the phase speed of
the wave vy ≈ vφ . Over one period of Larmor rotation, most
of the particles pass through resonance with just small changes
in energy (the process called scattering on resonance [12,13]).
However, some particles can be captured into resonance
with the wave (over a sufficiently long time almost all the
particles would be captured, see, e.g., Ref. [12] and references
therein). When a particle is captured, it ceases moving along a
Larmor circle and starts moving together with the wave, while
accelerating along its front. In the absence of the random field
�(t), the equations of motion in the captured state are

v̇x = vφ, φ̈ = −kvx(1 − β sin φ). (3)

As k � 1, φ changes much faster than vx . The Hamiltonian
for the second equation in (3) is

Hφ = φ̇2/2 + kvx(φ + β cos φ).

A schematic view of the phase portrait of this system (for a
fixed value of vx > 0) is presented in Fig. 2. A characteristic
frequency of φ oscillations is � = (vxβk)1/2 [12].

FIG. 2. A schematic phase portrait of the system without fluctua-
tions for β > 1. The gray curve is a “scattered” trajectory, the dashed
curves are captured orbits, and the solid black curve is a separatrix.

The captured motion has an adiabatic invariant I = ∮
φ̇ dφ,

which is the area under the unperturbed trajectory (the integral
is taken along the route passing though a current location of
the particle). The once-captured particle stays captured as long
as the value of I is smaller than the area S under the separatrix
on the resonant phase plane. The value of S is

S =
∮

sep
φ̇ dφ = 23/2

√
k|vx |

×
∫ φa

φs

√
|(φs − φ) + β(cos φs − cos φ)|dφ, (4)

where φs is the value of φ at the hyperbolic point and φa is
shown in Fig. 2. As the particle accelerates in the resonance
vx ∼ vφt [see (3)], the value of S grows. Together with
the conservation of I (which is the case in the absence of
fluctuations of the magnetic field) the growth of S ensures the
permanent capture (see Ref. [12]).

III. INFLUENCE OF RANDOM FLUCTUATIONS
OF MAGNETIC FIELD

The particle motion is qualitatively different for different
values of �τ . We consider the case �τ � 1. The presence
of fast oscillations of the magnetic field does not significantly
change the dynamics of particles during the Larmor rotation,
but, as we show below, it is important for resonance accelera-
tion. Equations (3) become

v̇x = vφ(1 + �(t)),

φ̈ = −kvx(1 − β sin φ) − kvx�(t). (5)

Due to the presence of random fluctuations, the value of I

changes. As � = 2πdHφ/dI (see Ref. [22]), we have 	I ≈
2π	Hφ/� for small 	I . Approximating the action of �(t) as
a series of pulses with impulses �(t)τ and uniform periodicity
τ , we obtain the change (	I )i during the ith pulse:

(	I )i ≈ 2π

�
φ̇i(	φ̇)i = 2π

�
φ̇ikvx�(ti)τ. (6)

A typical dynamics of a single particle is presented in Fig. 3.
The particle is captured at the rightmost point of the small circle
in the center of Fig. 3(a). At the moment of capture I = S. Then
S starts growing as ∼(vφβkt)1/2 and I changes according to
(6). If τ is sufficiently small, at the initial stage S grows faster
than I and the particle “falls” toward the bottom of the potential
well during the first few rotations on the (φ,φ̇) plane. While the
particle is deep inside the well, its dynamics is quite similar
to the dynamics without �(t) discussed above. The particle
accelerates (the horizontal strip, whose width grows as the
particle accelerates, as shown in Fig. 3(a); see also Ref. [12])
and � grows. In Fig. 3(b), the dashed line is � = (vφβkt)1/2

and the solid line is the numerical value, obtained as the
inverse of twice the time between two consecutive crossings of
the φ̇ = 0 line (times 2π ). The deviations of the numerical
value from the theoretical line are due to the (weak) de-
pendence of � on I (t), in other words, on the position of
the particle inside the separatrix loop. If the particle comes
closer to the separatrix, the ratio I (t)/S(t) increases and �(I )
decreases, which is most pronounced near t ≈ 68 and at the
very right, where the particle comes close to the separatrix and
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(a)

(b)

(c)

FIG. 3. Capture and release in the presence of fluctuations;
k = 100, Var[�i(t)] = 1, τ = 10−3. Right after the capture �τ ≈
3 × 10−2 and just before the release �τ ≈ 10−1.

eventually crosses it. However, the dependence of � on I (t)
is indeed quite weak: Deviations of numerical �(t) from the
theoretical curve are much smaller than variations of I (t).

The evolution of I can be viewed as random walk (6) with
time-dependent statistics of the steps—see Fig. 3(c). The inset
shows the magnification of a typical interval containing several
periods ∼2π/�. If in the process of the random walk the value
of I exceeds the current value of S, the particle is released from
resonance and starts moving along a larger Larmor circle.

We describe the behavior of a ensemble of particles in terms
of the probability distribution function 
(I,t): the probability
for a particle to have the value of adiabatic invariant in
the interval (I − δI/2,I + δI/2) at the time t is given by

(I,t)δI . We get

∂


∂K
= τ

∂


∂t
= ∂

∂I

(
D(I,t)

∂


∂I

)
, (7)

where K is the number of realizations of the random field �(t).
The diffusion coefficient D(I,t) is given by the variance of the
right-hand side in (6):

D(I,t) =
(

2π

�
kvxτ

)2

Var[φ̇i�i(t)]. (8)

Writing (8) we took into account that random walk (6) has two
distinct time scales. The first one is the period of a single
rotation in resonance (∼2π/�). The other is the time at
which the resonance orbit evolves. The results of numerical
simulations presented in Fig. 3 indicate that a typical particle
makes many turns before being released from the capture, and
for a one period of captured motion the values of � and vx can
be considered to be constant. Assuming that φ̇i and �i(t) are
uncorrelated and have zero mean, we get

D(I,t) = (2πkvxτ/�)2 Var(φ̇i)Var[�i(t)].

For Var(φ̇i) we have

Var(φ̇i) ≈ �

2π

∮
φ̇2

i dt = �

2π
I.

Therefore,

D(I,t) =
(

2π

�
kvxτ

)2
�

2π
Iϒ2,

where we denoted ϒ2 = Var[�i(t)]. As it was noted above, we
can neglect the dependence of � on I (except in the immediate
vicinity of the separatrix) and assume � ∼ (vxβk)1/2. As vx ∼
vφt , we get

∂


∂t
= D0t

3/2 ∂

∂I

(
I
∂


∂I

)
, (9)

where D0 = 2πτϒ2k3/2v
3/2
φ /β1/2. Introducing a unique time

t ′ = (2/5)t5/2, we can reduce (9) to a standard diffusion
equation

∂


∂t ′
= D0

∂

∂I

(
I
∂


∂I

)
. (10)

The long-time dynamics of an ensemble of particles can
be described as follows: The initial distribution 
(I,0) is
a δ function at a given value of I = I0. The value of S

at that moment is S0 = I0. After that the value of S starts
growing as S ∼ √

kβvφt ∼ (t ′)1/5. Meanwhile the evolution
of I can be described as a set of walks (6) and 
(I,t)
starts drifting and spreading according to (10). One obtains
from (10) that on a given trajectory the expected value of I

grows as ∼D0t
′ ∼ D0t

5/2. In the asymptotical regime (when
t � 1) S grows slower than the expected value of I . At a
certain moment t = t∗ [defined as I (t∗) = S(t∗)] the particle is
released from resonance. At that moment

√
kβvφt∗ ∼ D0t

5/2
∗ ,

and the velocity of a particle at the moment of release is

vmax = vφt∗ ∼ ϒ−1
√

βvφ/τk. (11)

IV. NUMERICAL SIMULATIONS

We performed a set of numerical simulations for different
values of k, τ , and ϒ . For each set of parameters, we computed
the average value of the maximum velocities achievable in
the process of capture by integrating (2) for an ensemble
of 103 particles all starting with the initial energy ε0 =
(v2

x + v2
y)/2 = 2 [for each particle, the value of the initial angle

arctan(vy/vx) was chosen randomly]. For each trajectory we
used an individual realization of �(t). We computed the final
velocity and averaged it over the ensemble. The results are
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FIG. 4. Ensemble average of vmax as a function of k, τ , and ϒ .

presented in Fig. 4. The symbols are the results of numerical
simulations and the curves are obtained from the analytic
description (11). One can see that the estimates of scaling
of vmax are in a good agreement with the results of the direct
numerical modeling.

To verify the probability density function (PDF)-based
description (10) and the evolution as random walk (6), we
performed numerical simulations in two ways. We integrated
exact system (2) with k = 100, ϒ = 1, τ = 10−3 for 104

particles with initial energy ε0 = 2 until the release from
resonance and computed the distribution of vmax. We also
computed 106 trajectories as a random walk of I using (6) as
long as I (t) < S(t). For each trajectory we obtained its value
t∗ such that I (t∗) = S(t∗) and computed vmax = vφt∗. Two
distributions of vmax are presented in Fig. 5: Their similarity
shows that the random-walk approximation can adequately
describe the dynamics of (2).

V. DISCUSSION AND CONCLUSIONS

In the present paper we considered the fast-noise approxi-
mation for the magnetic field fluctuations (�τ � 1). However,

FIG. 5. The distributions of vmax. 	N is the number of particles
with vmax (the width of histogram column is δv = 5) and N is the
total number of particles.

the regimes with �τ ∼ 1 and �τ � 1 are also quite important
for the description of the interaction of charged particles
with EMT. The regime �τ ∼ 1 could be investigated only
numerically due to the absence of the separation of time scales.
The regime �τ � 1 could be described analytically by the
method of averaging. Both problems will be subjects of our
further investigation.

Summing up, we considered the resonance wave-particle
interactions in the presence of random fluctuations of the back-
ground magnetic field. Random fluctuations are responsible for
the jumps of the adiabatic invariant of the captured motion I ,
thus limiting the duration of particle resonance acceleration.

We demonstrated that the system can be modeled
as a random walk or as a diffusion equation in the
(t,I ) space. We estimated the maximum value of energy
v2

max/2 ∼ (βvφ)/(ϒ2τk) that could be gained by captured
particles.
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