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General mechanism for amplitude death in coupled systems
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We introduce a general mechanism for amplitude death in coupled synchronizable dynamical systems. It is
known that when two systems are coupled directly, they can synchronize under suitable conditions. When an
indirect feedback coupling through an environment or an external system is introduced in them, it is found to
induce a tendency for antisynchronization. We show that, for sufficient strengths, these two competing effects
can lead to amplitude death. We provide a general stability analysis that gives the threshold values for onset of
amplitude death. We study in detail the nature of the transition to death in several specific cases and find that the
transitions can be of two types—continuous and discontinuous. By choosing a variety of dynamics, for example,
periodic, chaotic, hyperchaotic, and time-delay systems, we illustrate that this mechanism is quite general and
works for different types of direct coupling, such as diffusive, replacement, and synaptic couplings, and for
different damped dynamics of the environment.
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I. INTRODUCTION

The dynamics of many complex systems can be understood
as the collective behavior of a large number of dynamical
units coupled via their mutual interactions. The dynamics of
such connected systems has been an interesting topic of study
especially due to its relevance in understanding a large variety
of natural systems. Based on the the nature of interactions
among the coupled units, they can exhibit many emergent
phenomena such as synchronization, hysteresis, phase locking,
amplitude death, and oscillator death [1–3]. Among these, the
phenomenon of synchronization is the most widely studied and
has relevance in many contexts, such as neuronal networks,
communication, laser systems, etc. [1]. So also, the quenching
or suppression of dynamics called amplitude death is another
emergent phenomenon of equal relevance in such systems.
This can lead to interesting self-adjustable control mechanisms
and plays a prominent role as an efficient regulator of
the dynamics. The occurrence of amplitude death has been
reported in many cases, such as chemical reactions [4–7],
biological oscillators [8–10], coupled laser systems [11,12]
and relativistic magnetrons [13]. We would like to project
the importance of the phenomenon of amplitude death in
coupled systems in two contexts: one, as a desirable control
mechanism in cases such as coupled lasers where it leads
to stabilization [14,15], and two, as a pathological case of
oscillation suppression or disruption in cases like neuronal
disorders such as Alzheimer’s disease, Parkinson’s disease,
etc. [16–18].

The mechanisms so far reported to induce amplitude
death in coupled systems are de-tuning of oscillators under
strong coupling [19–21], coupling through conjugate variables
[22,23], dynamic coupling [24], and delay in coupling due to
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finite propagation or information processing speeds [25–28].
Distributed delays rather than discrete or constant delays
have been proposed as more realistic models in ecology and
neurobiology, where the variance of the delay plays a relevant
role [29]. So also, amplitude death has been studied in the
context of attractive and repulsive couplings in two chaotic
Lorenz systems [30]. In all these mechanisms, death occurs
dynamically due to the targeting of the units to one or more of
the equilibrium states or due to the stabilization of one of these
states. The equilibrium states or fixed points can be either that
of the uncoupled system or those evolved by coupling. While
these mechanisms can model the amplitude death observed in
coupled systems of oscillators, we find that all these methods
are system specific and may not work in a general case. In the
case of death by delay coupling, the limitations of the method
have been reported in several cases such as periodic [24] and
chaotic systems [31,32]. Moreover, there are many cases such
as neuronal disorders where depression of activity or death is
due to the presence of another agency or medium [16,17]. For
such cases, the mechanism of death is still not fully understood
and none of the above-mentioned mechanisms so far reported
is applicable.

In this work, we introduce a mechanism for amplitude death
caused by an indirect feedback coupling through a dynamic
environment, in addition to direct coupling.We essentially
project the role of the environment in controlling the dynamics
of connected systems. We find that, while it essentially
explains quenching of activity or suppression induced by an
external medium or agent, this method can also serve as a
general mechanism to induce death in coupled synchronizable
systems. Its generality lies in the fact that it seems to work
in any coupled system that can synchronize. It is effective in
quenching dynamics in a variety of systems such as periodic
oscillators, chaotic systems, hyperchaotic systems, and delay
systems. We show that this method also induces amplitude
death in systems with different forms of direct coupling
interactions, like diffusive, replacement, synaptic coupling,
etc. Specifically, we demonstrate that the present method,
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with a varied model for the environment, works in the case of
hyperchaotic systems for which delay coupling is not effective
to induce amplitude death. As such, it is an important step
in methodology toward achieving controls or stabilization to
desirable performance in many practical cases. The relevance
of this method lies in the fact that death can be engineered
and can be easily implemented in any system with coupled
synchronizable units.

In the present work we use the indirect feedback coupling
through the environment of our earlier work, where we
showed that such a coupling can induce anti-phase- (or
anti)synchronization in two systems which are not directly
connected [33]. Consider two systems coupled directly such
that with adequate strength of coupling they can exhibit syn-
chronous behavior. Then if we introduce an additional indirect
feedback coupling through the environment or another external
system such that it induces a tendency for antisynchronization,
then for sufficient strengths, these two competing tendencies
can lead to amplitude death. We find that, in the state of
amplitude death, the subsystems stabilize to a fixed point of the
coupled system. We also show that the method introduced here
can induce amplitude death in coupled systems with different
types of dynamics for the environment and for different types
of direct coupling.

We develop an approximate stability analysis which pro-
vides the threshold or critical values of the coupling strength
for amplitude death in the general context. Direct numerical
simulation giving the regions of amplitude death in the space
of coupling strengths agrees well with the transition curves
obtained from the stability analysis.

We also analyze in detail the nature of the transition to
the amplitude death state.We find that all the specific cases
studied exhibit either continuous or discontinuous transitions
to death. In the continuous case, as illustrated by two coupled
Rössler systems, during the transition the full reverse period-
doubling scenario is observed, and the system reaches a
one-cycle state before amplitude death occurs. The transition
to death then occurs due to a supercritical Hopf bifurcation.
In the discontinuous case, the transition is sudden due to
the disappearance of a distant attractor and stabilization of
a fixed point. For two coupled Lorenz systems, we find that
the transition to death is probably via a subcritical Hopf
bifurcation with long transients, and prior to this, the systems
go through a state of frustration between synchronized and
antisynchronized behavior.

II. AMPLITUDE DEATH VIA DIRECT AND
INDIRECT COUPLING

We start with two systems coupled mutually with two types
of coupling, namely, a direct diffusive coupling and an indirect
coupling through an environment. The dynamics can be written
as

ẋ1 = f (x1) + εdβ(x2 − x1) + εeγy, (1a)

ẋ2 = f (x2) + εdβ(x1 − x2) + εeγy, (1b)

ẏ = −κy − εe

2
γ T (x1 + x2). (1c)

Here, x1 and x2 represent two m-dimensional oscillators whose
intrinsic dynamics is given by f (x1) and f (x2), respectively.

The systems are mutually coupled using diffusive coupling
[the second term in Eqs. (1a) and (1b)]. The environment is
modeled by a one-dimensional overdamped oscillator y with
a damping parameter κ . The environment is kept active by
feedback from both systems as given by the last term in
Eq. (1c). Both systems also get feedback from y [the last
term in Eqs. (1a) and (1b)]. β is a matrix (m × m) with
elements 0 and 1 and defines the components of x1 and x2

that take part in the diffusive coupling. For simplicity, we take
β to be diagonal, β = diag(β1,β2, . . . ,βm), and in numerical
simulations only one component β1 is assumed to be nonzero.
γ is a column matrix (m × 1), with elements zero or 1, and it
decides the components of x1 and x2 that get feedback from
the environment. γ T is the transpose of γ and it decides the
components of x1 and x2 that give feedback to the environment.
We take εd to be the strength of direct diffusive coupling
between the systems and εe the strength of feedback coupling
between the systems and the environment.

The direct coupling εd gives a synchronizing tendency
between the two systems while the coupling through the
environment, εe, gives an antisynchronizing tendency. Thus,
when both the couplings are above their critical values, there
is a competition between the two tendencies, and the net result
is amplitude death. In the amplitude death state, the coupled
systems are driven to a fixed point.

We illustrate the above scheme for two coupled chaotic
Rössler systems represented by the following equations (i,j =
1,2, i �= j ):

ẋi1 = −xi2 − xi3 + εd (xj1 − xi1) + εey,

ẋi2 = xi1 + axi2, ẋi3 = b + xi3(xi1 − c), (2)

ẏ = −κy − εe

2

∑
i

xi1.

The resulting time series for a synchronized state with only
direct coupling, an anti-phase-synchronized state with only
indirect coupling, and the amplitude death state with both
direct and indirect couplings are shown in Fig. 1. When εe =
0, and εd is sufficiently large, we observe synchronization
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FIG. 1. Time series of the first variables xi1, i = 1,2, of two
coupled Rössler systems. (a) Synchronization for (εd,εe) = (0.2,0.0).
(b) Anti-phase-synchronization (εd,εe) = (0.0,1.0). (c) Amplitude
death for (εd,εe) = (0.2,1.0). Here, the Rössler parameters are a =
b = 0.1,c = 18. The damping parameter of the environment is taken
to be κ = 1.
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FIG. 2. Time series of the first variables xi1 of the coupled Lorenz
systems for the parameters (σ = 10,r = 28,b = 8/3) and κ = 1.
(a) Synchronization for (εd,εe) = (5,0). (b) Antisynchronization for
(εd,εe) = (0,12). (c) Amplitude death for (εd,εe) = (5,12).

[Fig. 1(a)]. When εe is increased for εd = 0, the systems are
in an anti-phase-synchronized state [Fig. 1(b)]. When both εe

and εd are sufficiently large, the systems stabilize to a state of
amplitude death [Fig. 1(c)].

We apply the same scheme to two coupled chaotic Lorenz
systems as given by the following equations:

ẋi1 = σ (xi2 − xi1) + εd (xj1 − xi1) + εey,

ẋi2 = (r − xi3)xi1 − xi2, ẋi3 = xi1xi2 − bxi3, (3)

ẏ = −κy − εe

2

∑
i

xi1.

We find that amplitude death occurs in this case also. This
is illustrated in Fig. 2, where time series for a synchronized
state [Fig. 2(a)], an antisynchronized state [Fig. 2(b)], and an
amplitude death state [Fig. 2(c)] are shown.

So far we have presented the method for identical systems.
However, the method also works for nonidentical systems. In
general, for nonidentical systems the direct coupling will give
a generalized synchronization between the coupled systems.
Similarly, the antisynchronization due to the indirect coupling
will also become of a generalized type. The combination of
direct and indirect coupling still leads to amplitude death. As
an example, consider two coupled Rössler systems. In Eq. (2),
we keep the parameters of one system fixed and vary the
parameter c of the other system. We find that for sufficient
strength of coupling the systems go to the amplitude death
state even for large deviations in c. Also, the amplitude death
state occurs when the individual noninteracting systems are in
different dynamical regimes. This is shown in Fig. 3, where
time series for a generalized synchronized state [Fig. 3(a)],
an anti-phase-synchronized state [Fig. 3(b)], and an amplitude
death state [Fig. 3(c)] are shown for two nonidentical Rössler
systems.

III. LINEAR STABILITY ANALYSIS

We present an analysis of the stability of the steady state
of two systems coupled via the scheme given in Eq. (1). For
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FIG. 3. Time series of the first variables xi1, i = 1,2, of two
coupled nonidentical Rössler systems. Here, the parameters a and
b of the two Rössler systems are chosen to be same (a = b = 0.1),
while the parameters c of the systems are chosen such that one of the
systems is in a chaotic state (c = 18) and the other in a periodic state
(c = 4). The damping parameter of the environment is chosen to be
κ = 1. (a) Generalized synchronization for (εd,εe) = (1.0,0.0). (b)
Anti-phase-synchronization for (εd,εe) = (0.0,1.0). (c) Amplitude
death for (εd,εe) = (1.0,1.0).

this, we write the variational equations formed by linearizing
Eq. (1) as

ξ̇1 = f ′(x1)ξ1 + εdβ(ξ2 − ξ1) + εeγ z,

ξ̇2 = f ′(x2)ξ2 + εdβ(ξ1 − ξ2) + εeγ z, (4)

ż = −κz − εe

2
γ T (ξ1 + ξ2),

where ξ1, ξ2, and z are small deviations from the respective
values. We denote synchronizing and antisynchronizing ten-
dencies through the variables ξs and ξa , respectively, as given
by

ξs = ξ1 − ξ2, ξa = ξ1 + ξ2. (5)

Then Eq. (4) can be written as

ξ̇s = f ′(x1) + f ′(x2)

2
ξs + f ′(x1) − f ′(x2)

2
ξa − 2εdβξs,

ξ̇a = f ′(x1) − f ′(x2)

2
ξs + f ′(x1) + f ′(x2)

2
ξa + 2εeγ z, (6)

ż = −κz − εe

2
γ T ξa.

For stability, all the Lyapunov exponents obtained from Eq. (6)
should be negative.

In general, it is not easy to analyze the stability of the syn-
chronized state from Eq. (6). However, considerable progress
can be made if we assume that the time average values of f ′(x1)
and f ′(x2) are approximately the same and can be replaced by
an effective constant value μ. In this approximation we treat ξ1

and ξ2 as scalars. This approximation simplifies the problem
such that only the relevant features remain and is expected to
give features near the transition. This type of approximation
was used in Refs. [33,34] and it was noted that it describes the
overall features of the phase diagram reasonably well. Thus,
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Eq. (4) becomes

ξ̇s = μξs − 2εdξs, (7a)

ξ̇a = μξa + 2εez, (7b)

ż = −κz − εe

2
ξa. (7c)

We note that Eqs. (7b) and (7c) are coupled while Eq. (7a) is
independent of the other two. The synchronizing tendency is
given by Eq. (7a), and the corresponding Lyapunov exponent
is

λ1 = μ − 2εd . (8)

The antisynchronizing tendency is given by Eqs. (7b) and (7c).
The corresponding Jacobian is

J =
(

μ 2εe

−εe/2 −κ

)
and the eigenvalues are

λ2,3 =
(μ − κ) ±

√
(μ − κ)2 − 4

(
ε2
e − μκ

)
2

. (9)

As noted in the preceding section, amplitude death is obtained
when both synchronizing and antisynchronizing tendencies are
present and the corresponding coupling constants are greater
than the critical values required for the respective phenomena.
The synchronizing and antisynchronizing tendencies become
effective when the corresponding Lyapunov exponents, i.e.,
the real parts of the eigenvalues, are negative. From Eq. (8) we
obtain the condition

εd > μ/2, (10)

while from Eq. (9) we get the following conditions:
(1) If (μ − κ)2 < 4(ε2

e − μκ), λ2,3 are complex and the
condition of stability is

κ > μ. (11)

(2) If (μ − κ)2 > 4(ε2
e − μκ), λ2,3 are real and the stability

conditions become

κ > μ and ε2
e > μκ. (12)

If Eqs. (10) and (11) or (12) are simultaneously satisfied, the
oscillations cannot occur and the systems stabilize to a steady
state of amplitude death. For a given κ and μ, the transition to
amplitude death occurs at critical coupling strengths εdc and
εec that are independent of each other. That is,

εdc = const (13)

and

εec = const. (14)

These general stability criteria are numerically verified for
different systems in the following section.

We can also analyze the stability of amplitude death by
noting that the amplitude death corresponds to a fixed point
of the coupled system. Thus, the condition for the stability of
amplitude death is that all Lyapunov exponents of the fixed
point are negative. This can be done for different systems
numerically and is discussed in the next section.

IV. NUMERICAL ANALYSIS

We apply our scheme to two chaotic systems, Rössler and
Lorenz.

A. Coupled Rössler systems

Now, we apply the scheme of coupling introduced in Eq. (1)
to the case of two chaotic Rössler systems. The occurrence of
amplitude death in this case is illustrated in Fig. 1(c). This is
further confirmed by calculating the Lyapunov exponents [35]
also. When the systems are in the amplitude death state, all
the Lyapunov exponents of the coupled system are found to
be negative. Figure 9(b) below shows the largest Lyapunov
exponent of the coupled system as a function of coupling
strength εe.

We study the transition to death by identifying regions of
amplitude death in the parameter plane of coupling strengths
εe-εd for a chosen value of κ . To characterize the state of
amplitude death, we use an index A, defined as the difference
between the global maximum and global minimum values of
the time series of the system over a sufficiently long interval.
The case where A = 0 represents the state of amplitude death,
while A �= 0 indicates oscillatory dynamics. The parameter
value at which A becomes ∼0 is thus identified as the threshold
for onset of stability of amplitude death states. Using this index,
the transition curves in the parameter plane εe-εd are plotted
in Fig. 4. We note that the points obtained from numerical
simulations agree with the stability criteria Eqs. (13) and (14)
obtained in the preceding section.

We also verify numerically the criteria for transition to
amplitude death given in Eq. (12). For this, the numerically
obtained values of ε2

ec are plotted against κ in Fig. 5. The line
corresponds to the stability condition Eq. (12) and the points
are obtained from numerical simulations. It is seen that the

 0
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 0.45  0.55  0.65

ε d
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III

FIG. 4. Transition from region of oscillations (I) to region of
amplitude death (II) in the parameter plane εe-εd for coupled Rössler
systems. Numerical simulations are done with κ = 1. The points mark
the parameter values (εec,εdc) at which the transition to amplitude
death occurs. Solid triangles show the transition to amplitude death
as εd is increased for a constant εe. The horizontal line formed by
these triangles confirms the stability condition Eq. (13). Similarly,
the circles correspond to transition to the amplitude death state as εe

is increased for a constant εd and confirm the stability condition of
Eq. (14).
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FIG. 5. Transition from region of oscillations (I) to region of
amplitude death (II) in the parameter plane κ-ε2

e for the coupled
Rössler system. The points of amplitude death are obtained numeri-
cally when the index A becomes zero. The solid curve is a linear fit
corresponding to the stability condition Eq. (12), with the effective
μ = 0.1. The deviation from straight line behavior for small values
of κ is discussed in the text.

agreement is good for larger values of κ . However, for small
values of κ , the points deviate from straight line behavior.
The reason can be seen from Eq. (11) which gives the lower
limit on κ . As κ decreases, the damping of the environment
variable y is reduced. However, this damping is essential for
the antisynchronizing tendency arising from the coupling to
the environment. This leads to the deviations for small values
of κ .

For two coupled Rössler systems as given in Eq. (2), we
study the complete phase diagram in the parameter plane
of coupling strengths, identifying the regions of different
dynamic states such as amplitude death, complete synchro-
nization, and antisynchronization. Amplitude death states
are identified using the index A as mentioned above. To
identify synchronized or antisynchronized states, we use the
asymptotic correlation values as the index, calculated using
the equation

C = 〈[x11(t) − 〈x11(t)〉][x21(t) − 〈x21(t)〉]〉√〈[x11(t) − 〈x11(t)〉]2〉〈[x21(t) − 〈x21(t)〉]2〉 . (15)

The phase diagram thus obtained for the coupled Rössler
system is shown in Fig. 6. When the coupling strengths εd and
εe are small, the systems are not synchronized (white region).
For small values of εe, when εd is increased, the systems
synchronize (light-gray region). When εe is increased, the
systems become antisynchronized (dark-gray region). When
both the coupling strengths are above a certain threshold as
given by the stability conditions Eqs. (13) and (14), the systems
stabilize to the state of amplitude death (black region). We
also note that the transition from complete synchronization
to antisynchronization corresponds to a phase transition
where the average phase difference between the oscillators
changes from 0 to nearly π . This is similar to the phase-flip
bifurcation reported in the context of time-delay coupled
systems [36,37].

 0

 0.15
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 0  0.3  0.6

ε d

εe

FIG. 6. Regions of different dynamical states in the parameter
plane of coupling strengths εe-εd in the case of two coupled Rössler
systems. The indices used to identify the different regions are the
average correlation C [Eq. (15)] and the index A. The black region
corresponds to the state of amplitude death (A ∼ 0), the light-gray
region to the synchronized state (C ∼ 1), the dark-gray region to the
antisynchronized state (C ∼ −1), and the white region to the state
where |C| < 1. Here, the parameters are the same as in Fig. 1.

The nature of the transitions to the state of amplitude death
is further characterized by fixing one of the parameters εe or
εd and increasing the other. This is shown in Fig. 7, where
the index A is plotted for increasing εe for a chosen value of
εd . Here, the transition from the oscillatory to the amplitude
death state is continuous such that, as the coupling strength is
increased, the amplitude of the oscillations gradually decreases
to zero. A similar transition is observed for the case where εe

is kept fixed and εd is increased.
We also notice from the time series and phase space plot

that, as the coupling strength increases (εd or εe), the Rössler
systems undergo the full reverse period-doubling sequence to
the one cycle state before going to the amplitude death state.
Then, the transition to the state of amplitude death occurs via
a supercritical Hopf bifurcation. The bifurcation diagram for
this transition is shown in Fig. 8. This is further confirmed
by computation of the fixed points of the coupled system and
their stability near the transition region. Numerical simulations
show that the coupled Rössler systems in Eq. (2) stabilize to
the steady state corresponding to synchronized states of the

 0

 20

 40

 0.4  0.43  0.46

A

εe

FIG. 7. The index A as a function of εe for a fixed value of εd =
0.2 for two coupled Rössler systems. As εe is increased, we observe
a continuous transition to the state of amplitude death (εec ∼ 0.45).
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x’
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FIG. 8. Bifurcation diagram obtained by plotting the maxima of
x11 (x ′) for sufficiently long period by increasing the coupling strength
εe for εd = 0.2 and κ = 1. Here, the systems go through a reverse
period-doubling bifurcation as εe increases, leading to a one-cycle (at
εe ∼ 0.35) before amplitude death occurs (εec ∼ 0.45).

subsystems. These synchronized steady states are obtained
from Eq. (2) as

x∗
i1 = [

c ±
√

c2 − 4abκ/
(
κ − ε2

ea
)]/

2,

x∗
i2 = −x∗

i1/a, x∗
i3 = −b/(x∗

i1 − c), (16)

y∗ = −εex
∗
i1/κ.

Of the two fixed points, the one with the plus sign in the
second term of the x∗

i1 equation is unstable and the one with
the minus sign in the second term of the x∗

i1 equation become
stable in the amplitude death state. The nature of the transition
to the stable fixed point is determined by the eigenvalues of the
corresponding Jacobian, and we find that at the transition, real
parts of the complex conjugate pairs of eigenvalues become
negative [Fig. 9(a)], indicating a supercritical Hopf bifurcation
as described in Ref. [38]. In the amplitude death region, all the
Lyapunov exponents of the coupled system [given in Eq. (2)]
are found to be negative. The largest Lyapunov exponent of
the coupled system crosses zero at the transition, and this is
shown in Fig. 9(b). The nature of the transition is found to be
the same when εe is kept fixed and εd is increased.

The above numerical results are presented for one set
of parameters of the Rössler system. We have varied the
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FIG. 9. (a) Real parts of the largest eigenvalues of the Jacobian
obtained from Eq. (2), evaluated at the fixed point given in Eq. (16), for
increasing εe and fixed values of εd = 0.2 and κ = 1. At the transition
(εec ∼ 0.435), the real parts of one pair of complex conjugate
eigenvalues cross zero. (b) Largest Lyapunov exponent of the coupled
Rössler system given in Eq. (2) for increasing εe for fixed values
of εd = 0.2 and κ = 1. The zero crossing of the largest Lyapunov
exponent (εec ∼ 0.435) indicates the transition to the amplitude death
state. In both figures, zero is shown as a dotted line.
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FIG. 10. Regions of different dynamical states in the parameter
plane of coupling strengths εe-εd in the case of Lorenz systems. The
black region corresponds to the state of amplitude death (A ∼ 0), the
light-gray region to the synchronized state (C ∼ 1), the dark-gray
region to the antisynchronized state (C ∼ −1), and the white region
to the state where |C| < 1.

parameters and verified that the method works for other values
of the parameters.

B. Coupled Lorenz systems

We repeat the same study in the case of two coupled
Lorenz systems. It is interesting to note that, in this case, the
coupled systems stabilize to a fixed point that corresponds to
antisynchronized states for the subsystems (x11 = −x21,x12 =
−x22,x13 = x23) as shown earlier in Fig. 2(c). The regions of
different dynamical states in the parameter plane of coupling
strengths in this case are shown in Fig. 10. When both εd

and εe are small, the systems are not synchronized (white
region). For very small values of εd and large εe, the systems
are antisynchronized (dark gray), and when εd is increased
from this state, the systems go to the amplitude death state
(black region). For small values of εe and large εd , the
systems are synchronized (light gray). As εe increases, the
systems first lose synchronization, and for larger values of
εe, they stabilize to the state of amplitude death (black). In
the desynchronized state before the amplitude death state,
the attractor in the phase space is highly distorted and the
system goes through a state of frustration, trying to stabilize to
the antisynchronized state from the synchronized state before
death occurs. This is illustrated in Fig. 11, where the time
series of the synchronization error between the two Lorenz
systems is shown. Near this transition region, some initial
conditions remain in a chaotic transient state for a long time

-15

 15

 101000  105000  109000

x 1
1-

x 2
1

Time

FIG. 11. Synchronization error (x11 − x21) as a function of time
in the case of Lorenz systems for εd = 5 and εe = 4.665.
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A

εe

FIG. 12. The index A as a function of εe for a fixed value of
εd = 5.0 for two coupled Lorenz systems. Note that the transition
to amplitude death is sudden (εec ∼ 7.88), as opposed to the case of
coupled Rössler systems, where the transition is continuous.

before becoming stabilized to the fixed point. The phenomena
of multistability and hysteresis are also observed in this region.
The nature of the transition to amplitude death in this case is
shown in Fig. 12. Unlike the case of coupled Rössler systems,
here we see that the amplitude of oscillations drops suddenly
at a critical strength of coupling. Thus, the transition is directly
from the chaotic to the amplitude death state. A similar type
of transition from the chaotic to the amplitude death state
in the case of time-delay coupled Lorenz systems has been
reported in Ref. [26]. We further characterize this transition
by computing the fixed points of the coupled system given in
Eq. (3) and evaluating their stability near the transition region.
Numerical simulations show that the coupled Lorenz systems
in Eq. (3) stabilize to the steady state corresponding to the
antisynchronized state of the subsystems. These steady states
are obtained from Eq. (3) as

x∗
11 = ±

√
[(r − 1)σ − 2εd ]b

σ + 2εd

, x∗
12 = (σ + 2εd )

σ
x∗

11,

x∗
13 = (σ + 2εd )

σb
x∗2

11 , x∗
21 = −x∗

11, (17)

x∗
22 = −x∗

12, x∗
23 = x∗

13, y∗ = 0.
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FIG. 13. (a) Real parts of the largest eigenvalues of the Jacobian
obtained from Eq. (3), evaluated at the fixed point given in
Eq. (17), for increasing εe and fixed values of εd = 5 and κ = 1.
At the transition (εec ∼ 7.31), the real parts of one pair of complex
conjugate eigenvalues cross zero. (b) Largest Lyapunov exponent of
the coupled Lorenz system given in Eq. (3) for increasing εe for
fixed values of εd = 5 and κ = 1. The zero crossing of the largest
Lyapunov exponent (εec ∼ 7.43) indicates transition to the amplitude
death state. In both figures, zero is shown as a dotted line.

For both the solutions, we find that at the transition, the real
parts of the complex conjugate pairs of eigenvalues of the
corresponding Jacobian become negative [Fig. 13(a)]. For
εd > εdc, numerically an unstable limit cycle is found to
coexist with the stable state of amplitude death for certain
initial values. As there is no stable limit cycle before amplitude
death, and an unstable fixed point becomes stable, it seems
that this is a subcritical Hopf bifurcation. All the Lyapunov
exponents of the system [Eq. (3)] are found to be negative at the
amplitude death state. At the transition, the largest Lyapunov
exponent of the coupled system becomes negative as shown in
Fig. 13(b).

V. AMPLITUDE DEATH IN OTHER CASES

We have presented a mechanism for inducing amplitude
death in coupled systems due to the competing effects of
synchronizing and antisynchronizing tendencies. We have
shown this in the context of two chaotic systems, namely,
coupled Rössler and coupled Lorenz systems. To test the
generality of the method, we apply it to a variety of systems and
find that, for all cases which are synchronizable, the method
works. We understand that extensive numerical simulations
may not analytically establish the generality of the mechanism.
However, the results of our numerical simulations appears to
indicate that this method is quite general.

We also give an intuitive physical argument to support our
claim of generality of the method. Our mechanism consists
of having two types of coupling. The first is direct coupling,
which leads to synchronization. We know that, if the coupling
constant is sufficiently large, the synchronization condition
ensures that the largest Lyapunov exponent transverse to the
synchronization manifold is negative. Considering the space
of coupled oscillators as a product of the individual systems
and a network of two nodes, the synchronization manifold
corresponds to the direction es = (1,1)T in the network
coordinates. Similarly, the coupling through the environment
which ensures antisynchronization leads to the condition that
the largest Lyapunov exponent transverse to the direction
ea = (1, − 1)T is negative. Since we have coupled only two
systems, ensuring that the largest exponents transverse to both
synchronizing and antisynchronizing directions, i.e., es and
ea , are negative, implies that all the Lyapunov exponents
are negative. Thus the system must converge to a fixed
point.

In this section, we present the results of applying this
method to periodic, time-delay, hyperchaotic, and driven
systems and different schemes of direct coupling.

A. Amplitude death in periodic systems

We study two standard limit cycle oscillators, namely,
Landau-Stuart and van der Pol oscillators, coupled using the
scheme given in Eq. (1). The Landau-Stuart system is a
nonlinear limit cycle oscillator, which has been previously
used as a model system for studying the phenomenon of
amplitude death [22,25]. In our case, the dynamics of two
coupled Landau-Stuart systems is given by the following set
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of equations:

ẋi1 = (
x2

i1 + x2
i2

)
xi1 − ωxi2 + εd (xj1 − xi1) + εey,

(18)
ẋi2 = (

x2
i1 + x2

i2

)
xi2 + ωxi1, ẏ = −κy − εe

2

∑
i

xi1.

From numerical analysis of the above equations with ω = 2,
we see that, for small values of εe and εd , the systems are
synchronized. For small values of εd and large values of εe, the
systems are in the antisynchronized state. When the strengths
of both εd and εe are sufficiently large, we observe amplitude
death. We note that here the transition to the state of amplitude
death is sudden, as in the case of Lorenz systems. However,
in this case, for a given strength of coupling, the stability of
the amplitude death state depends on the initial conditions
indicating multistability, that is, some initial conditions go to
the amplitude death state, while some other initial conditions
remain in the oscillatory state. Such a multistability has also
been reported for amplitude death phenomena in the case of
Landau-Stuart oscillators using conjugate coupling [22]. For
some initial values, amplitude death occurs even in the absence
of direct coupling (εd = 0). A possible explanation is that the
μ of the individual system is negative or zero such that the
stability condition κ > μ given in Eq. (11) is always satisfied.
It is seen that the area of the basin of amplitude death increases
as εd is increased.

We repeat the same study for the case of two coupled
periodic van der Pol systems given by the following equations:

ẋi1 = xi2 + εd (xj1 − xi1) + εey,
(19)

ẋi2 = α
(
1 − x2

i1

)
xi2 − xi1, ẏ = −κy − εe

2

∑
i

xi1.

We choose the parameter α = 1 such that the system has a
stable limit cycle when both the couplings are absent (i.e.,
εe = εd = 0). For a suitable strength of the direct coupling
εd , the systems synchronize, and amplitude death is observed
when both direct and indirect couplings are above their
respective thresholds. As far as the nature of the transition
to the state of amplitude death is concerned, the van der
Pol oscillator shows a different behavior from that of other
systems. We find that the nature of the transition to amplitude
death depends on the type of coupling parameter. Fixing εd

and increasing εe, we see a smooth transition similar to that in
the case of Rössler systems, and by fixing εe and increasing
εd , we get a sudden transition, as in the case of Lorenz
systems.

B. Amplitude death in time-delay systems

The Mackey-Glass time-delay system is well studied as a
model exhibiting hyperchaos. Stabilization to a fixed point
or amplitude death in such systems has been reported by
use of stabilization methods such as conventional feedback,
tracking filters, and delayed feedback [39]. Here we consider
two Mackey-Glass systems coupled via both direct and indirect

couplings as given by

ẋi = −αxi + βxτi

1 + xm
τi

+ εd (xj − xi) + εey,

(20)
ẏ = −κy − εe

2

∑
j=1,2

xj ,

where xi represents the Mackey-Glass system [40] and xτi

is the value of the variable xi at a delayed time xi(t − τ ).
The parameters of the Mackey-Glass systems are chosen such
that, the individual systems are in the hyperchaotic regime
(α = 1, β = 2, τ = 2.5, m = 10). For very small values of εd

and εe, the two systems are not synchronized. The systems
synchronize as εd is increased. For large values of εd , if εe

is increased, the systems go to a state of amplitude death.
When εd is small and εe is large, the systems are in an
antisynchronized state. As we increase εd , the systems go to the
amplitude death state. However, for large values of εd and εe,
the Mackey-Glass systems appears to show a different behavior
from the Rössler or Lorenz systems. We observe a reentrant
behavior to rhythmogenesis, both as εe increases and as εd

increases. This transition also satisfies our stability conditions
Eqs. (13) and (14). We find that the transition to the state
of amplitude death in the case of two coupled Mackey-Glass
systems is continuous and that the systems go through a reverse
period-doubling sequence, reaching a limit cycle before the
amplitude death occurs. This is similar to the case of Rössler
systems discussed earlier.

C. Amplitude death with alternate schemes
for direct coupling

So far, we have studied direct coupling of the diffusive
type. Synchronization is also possible with direct coupling of
different types. Here, we now study two such types of coupling.

1. Lorenz systems with replacement coupling

Here we consider Lorenz systems coupled using a different
scheme of coupling, namely, replacement coupling, as given
by the following equations:

ẋi1 = σ (xj2 − xi1) + εey, ẋi2 = (r − xi3)xi1 − xi2,
(21)

ẋi3 = xi1xi2 − bxi3, ẏ = −κy − εe

2

∑
i

xi1.

Here, the direct coupling is of the replacement type, such
that the x2 variable in the first function of the first system
is that of the second system, and vice versa. This type of
coupling leads to synchronization as reported in Ref. [41].
We introduce indirect coupling through the variable y. We
find that, for suitable values of the coupling strength εe, the
systems stabilize to a state of amplitude death.

2. Synaptically coupled Hindmarsh-Rose
model of neurons

The Hindmarsh-Rose system is a model of neurons which
shows the spiking and bursting behavior of the membrane
potential of a single neuron [42]. We take two neurons with
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excitatory synaptic coupling [43] between them and introduce
an indirect coupling as given by the following equations:

ẋi1 = xi2 − x3
i1 + ax2

i1 − xi3 + I

+ εey + εd

Vr − xi1

1 + exp[−λ(xj1 − θ )]
,

ẋi2 = 1 − bx2
i1 − xi2, ẋi3 = ρ[s(xi1 + χ ) − xi3],

ẏ = −κy − εe

2

∑
i

xi1. (22)

Here, the variable xi1 represents the membrane potential of
a neuron and the variables xi2 and xi3 are related to ion currents
across the membrane. We choose the parameters of the system
such that the individual neurons are in the chaotic bursting
state. When εe = 0 and εd is sufficiently large, the bursts of
both neurons become synchronized. For larger values of εd and
εe, we observe patches of amplitude death (shown in Fig. 14).
Thus as we keep one of the coupling parameters fixed (εe or εd )
and increase the other, we observe a transition to the amplitude
death state and again reentrant behavior to spikes.

D. Amplitude death with alternate dynamics
for the environment

In the previous sections, we have taken the intrinsic
dynamics of the environment to be that of an overdamped
harmonic oscillator. Here, we show that amplitude death is
possible with other intrinsic dynamics for the environment
also.

For this, we consider the case of two Rössler systems
coupled with a dynamic environment, where the intrinsic
dynamics of the environment is that of a damped harmonic

 0

 0.5

 1

 0  2  4

ε d

εe

FIG. 14. Region of amplitude death (black) in the parameter plane
of coupling strengths εe-εd for two coupled Hindmarsh-Rose neurons.
We choose the parameters of the system to be a = 3, b = 5, ρ =
0.006, s = 4, χ = 1.6, and I = 3.2. The parameters in the coupling
terms are chosen to be Vr = 3, θ = −0.25, λ = 10, and κ = 1. For
the neuronal systems, the criterion used in the text for identifying
the amplitude death state, i.e., the index A ∼ 0, needs to be changed.
Here, we use the maximum voltage from both neurons (xm) as the
index to identify the death state. The criterion for synchronized and
antisynchronized states also needs modification. Hence, the other
regions are not shown explicitly in the figure.

oscillator. The dynamics of the coupled system in this case is
given by

ẋi1 = −xi2 − xi3 + εd (xj1 − xi1) + εey1,

ẋi2 = xi1 + axi2, ẋi3 = b + xi3(xi1 − c), (23)

ẏ1 = y2 − εe

2

∑
i

xi1, ẏ2 = −y2 − κy1.

Here, the variables y1 and y2 represent a two-dimensional
environment together forming an underdamped harmonic
oscillator. For very weak coupling (εd ∼ 0,εe ∼ 0), the two
Rössler systems are not synchronized. When the coupling
strength εd is increased while εe is kept fixed at zero, the
systems become synchronized. On the other hand, when εe is
increased while εd is kept fixed at zero, the systems become
anti-phase-synchronized. When both εe and εd are above their
respective thresholds, amplitude death is observed.

We repeat the same study by taking the intrinsic dynamics
of the environment as that of an overdamped Duffing oscillator.
The equations in this case are

ẋi1 = −xi2 − xi3 + εd (xj1 − xi1) + εey,

ẋi2 = xi1 + axi2, ẋi3 = b + xi3(xi1 − c), (24)

ẏ = y − κy3 − εe

2

∑
i

xi1.

For small values of εe and εd , we see that the systems are not
synchronized. They become synchronized as εd is increased
from this state. For small values of εd and large values of εe,
the systems are in an anti-phase-synchronized state. When the
strengths of both εd and εe are sufficiently large, we observe
amplitude death. The phase diagram in this case is qualitatively
similar to that given in Fig. 6.

E. Amplitude death in hyperchaotic Rössler systems

We also consider the case of two hyperchaotic Rössler
systems as given by the following equations:

ẋi1 = −xi2 − xi3 + εey1

−εd cos θ [sin θ (xi1 − xj1) + cos θ (xi3 − xj3)],

ẋi2 = xi1 + axi2 + xi4 + εey2,

ẋi3 = b + xi3xi1

− εd sin θ [sin θ (xi1 − xj1) + cos θ (xi3 − xj3)],

ẋi4 = −cxi3 + σxi4 + εey3, ẏ1 = −κy1 − εe

2

∑
i

xi1,

ẏ2 = −κy2 − εe

2

∑
i

xi2, ẏ3 = −κy3 − εe

2

∑
i

xi4, (25)

where i,j = 1,2 and j �= i.
We choose the parameters of the system such that the

intrinsic dynamics of the systems is hyperchaotic. For this
system, the method of time-delay coupling is found ineffective
for producing amplitude death [32]. In the absence of coupling
via the environment, the direct coupling via a scalar signal
results in synchronization of the two hyperchaotic systems for
suitable values of parameters εd and θ , as reported in Ref. [44].

046212-9



V. RESMI, G. AMBIKA, AND R. E. AMRITKAR PHYSICAL REVIEW E 84, 046212 (2011)

-10

 10

 0  15  30

x i
1

Time

FIG. 15. Time series of the first variables xi1, i = 1,2, of
the two coupled hyperchaotic Rössler systems given in Eq. (25) in
the amplitude death state. Parameters of the systems are chosen to be
a = 0.25, b = 3, c = 0.5, and σ = 0.05. The parameters used in the
direct coupling terms are εd = 2.5 and θ = π/3 and in the indirect
coupling terms are κ = 10 and εe = 4.

We take the environment to be three dimensional in this case.
We find that amplitude death occurs in the coupled system
for suitable values of the coupling strengths εe and κ . This is
shown in Fig. 15.

F. Small oscillations in driven systems

We apply the scheme described in this paper to driven
systems such as driven van der Pol and Duffing systems.
In such driven systems, the fixed point is not a solution for
the individual or coupled systems. So the interpretation of
amplitude death as in other systems needs to be changed.
Here, we interpret the amplitude death state as the state of
very small-amplitude oscillations.
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 x
21

Time

(b)
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x 1
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21
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FIG. 16. Time series of the first variable xi1 of the coupled driven
systems showing small oscillations. Here, we interpret the small
oscillations as the state of amplitude death (see text). (a) Driven
van der Pol system for (εd,εe) = (1.0,3.5). The parameters of the
individual systems are taken to be α = 8.53, ω = 0.63, and β = 1.2.
(b) Driven Duffing system for (εd,εe) = (1.0,4.0). The parameters
of the individual systems are taken to be α = 0.25, ω = 1, and
β = 0.3

Driven van der Pol systems with direct diffusive coupling
and indirect coupling through the environment can be written
as

ẋi1 = xi2 + εd (xj1 − xi1) + εey,

ẋi2 = α
(
1 − x2

i1

)
xi2 − xi1 + β cos(ωt), (26)

ẏ = −κy − εe

2

∑
j

xj1.

We find that, when εe = 0 and εd increases, the two systems
become synchronized. In this state, if we start increasing
εe, we get a state of small oscillations or amplitude death.
Figure 16(a) shows the time series for such a state.

Figure 17(a) plots the index A as a function of εe. We
first see a transition from a limit cycle to two different limit
cycles for the two systems. This state subsequently goes to the
amplitude death state continuously as εe increases further. On
the other hand, if we keep εe fixed and increase εd , we find a
sudden transition to the amplitude death state. As εd increases
further, we find a continuous transition to a state of increasing
amplitude oscillations. This is shown in Fig. 17(b).

 0
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FIG. 17. Transition to amplitude death state in two coupled driven
van der Pol oscillators. Here the death state corresponds to a state of
small oscillations since the fixed point is not a stable state. The index
A remains finite although very small in the amplitude death state.
(a) The index A as a function of εe for fixed εd = 1.0. The transition
is continuous (εec ∼ 3.08). There is a sudden transition due to
a pitchfork bifurcation of the limit cycle observed at εe ∼ 2.55.
(b) The index A as a function of εd for fixed εe = 3.5. The transition
to the amplitude death state is sudden (εdc ∼ 0.72). We also observe a
reentrant continuous transition to periodic oscillations with increasing
amplitude at εd ∼ 1.14.
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The same study is repeated for the case of two coupled
Duffing systems given by the following equations:

ẋi1 = xi2 + εd (xj1 − xi1) + εey,

ẋi2 = −αxi2 + xi1 − x3
i1 + β cos(ωt), (27)

ẏ = −κy − εe

2

∑
j

xj1.

We find that a regime of small oscillations is possible in this
case also. This is shown in Fig. 16(b).

Thus, we have illustrated that the method for inducing
amplitude death in coupled systems introduced in this paper
works for periodic, time-delay, hyperchaotic, and driven
systems. It is effective in quenching the dynamics even
with different forms of direct coupling, such as replacement
coupling and synaptic coupling of neurons.

The context of coupled neurons presents an important case
of amplitude death which could explain the mechanism of
disruption or suppression of synaptic signals in the case of
neuronal disorders, such as Alzheimer’s disease, as being
due to induced activity and feedback through a protein called
amyloid beta (Aβ). Using numerical studies on a few neuronal
models, we have shown that the competing effects of synaptic
activity and the indirect interaction mediated by the protein
Aβ lead to subthreshold activity and synaptic silencing [45].

VI. DISCUSSION

In this paper, we show that indirect coupling through a
dynamic environment in addition to direct coupling can lead
to amplitude death in chaotic systems such as Rössler and
Lorenz systems. The approximate stability analysis developed

for general cases gives the transition region in parameter space,
which is further supported by direct numerical simulations.
The nature of the transition to amplitude death is found to be of
two typical types, one continuous and the other discontinuous.

In conclusion, the method for determining amplitude death
introduced in this paper is quite general and works for different
types of systems such as periodic, chaotic, hyperchaotic,
and time-delay systems and also with different types of
direct coupling, for example, diffusive, replacement coupling,
coupling via scalar signals, and synaptic coupling. We have
demonstrated that our method works in hyperchaotic Rössler
systems where time-delay coupling is ineffective in inducing
amplitude death. We have also presented a physical argument
for the generality of the method. Although the theory is
developed for the case of identical systems, we have verified
that this method of inducing amplitude death works in the
case of nonidentical systems as well. In fact, we did not find
any exception to our scheme provided the coupled systems are
synchronizable.

We also note that the method introduced in this paper
can be implemented in practical cases. What is needed is
the design of a suitable environment which can introduce the
appropriate indirect coupling between the systems. Moreover,
in many natural systems, the environment or external medium
exists and can be instrumental in causing suppression of
the dynamics. The mechanism presented here provides an
explanation for this phenomenon in such cases.
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