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We study the mixing and degeneracy of two unbound energy eigenstates (resonances) in a two coupled channel
model of scattering and reactions. We derive the necessary and sufficient conditions for existence of an exceptional
point in the extended spectrum of bound and resonance energy eigenvalues in this model and show that these
are not the same as in the single channel case. When these conditions are satisfied, in the complex energy plane,
the two simple resonance poles of the scattering matrix merge into one double pole at the exceptional point. In
parameter space, the surface of the eigenenergies has a branch point of square root type and branch cuts in its real
and imaginary parts that start at the exceptional point and extend in opposite directions. The rich phenomenology
of crossings and anticrossings of energies and widths of the doublet of unbound states, as well as the changes of
identity of the poles of the scattering matrix observed when one control parameter is varied while the other is
kept constant, is fully explained in terms of sections of the eigenenergy surfaces.
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I. INTRODUCTION

In quantum scattering, an exceptional point occurs when
two resonance energy eigenvalues coalesce and give rise to
a double pole of the S matrix [1–6]. More precisely, when
the coalescing energy eigenvalues can be mathematically
described as two branches of the same analytic function
of two or more control parameters. In this picture, the
exceptional point is a branch point of the multivalued function
describing the complex resonance energy eigenvalues in
parameter space [7–9]. Exceptional points have been found
or observed in a wide variety of physical systems. Among
them are acoustical systems [10], the spectra of the Hidrogen
atom [11], and systems found in atoms in optical lattices
[12,13], complex atoms in laser fields [14], and laser driven
molecular photodissociation dynamics [15–18]. They have
also been found in electron-molecule collisions [19], nuclear
physics [4,20,21], chaotic optical microcavities [22], and the
quantum phase transitions of superfluids and superconductors
[23–25]. The experimental determination of an exceptional
point in the resonance spectrum of a microwave cavity was
described in terms of the eigenvalues and eigenvectors of a
complex symmetric non-Hermitian 2 × 2 Hamiltonian matrix
with its entries depending on the control parameters of the
experimental setup [26–31]. Exceptional points also occur
in optics [8,32] and in quantum mechanical systems such
as the scattering of a beam of particles by a double barrier
potential [33–36], periodic quasiexactly soluble PT-symmetric
potentials [37,38], and the mass spectrum of the heavy neutral
Higgs bosons in the minimal supersymmetric extension of the
standard model [39].

In this work we are concerned with some physical manifes-
tations of the exceptional point phenomenon in the mixing and
degeneracy of two unbound energy eigenstates in an isolated
doublet of quantum resonances. The discussion is made in
the framework of a two-coupled-channel model of quantum
scattering and reactions in collisions of complex quantum
systems [40].

In single channel scattering, a necessary and sufficient con-
dition for the existence of an exceptional point at EEP = k2

EP ,

with kEP complex and ImkEP < 0, is the vanishing of the Jost
function and its first derivative with respect to k at that point.
In the case of scattering in a two-coupled-channel system,
the vanishing of the Jost determinant is a necessary but not a
sufficient condition for the existence of an exceptional point. In
this work, we derive the necessary and sufficient conditions for
the existence of an exceptional point in the extended spectrum
of resonance energy eigenvalues of a two-channel model of
scattering and reactions. When these conditions are satisfied,
the two degenerating complex energy eigenvalues coalesce,
producing a double pole of the scattering matrix in the complex
energy plane and a branch point singularity in the surface that
represents the complex energy eigenvalues in parameter space.
We will also show that, when the Jost determinant and its first
derivative with respect to the wave number vanish at k = kn

but the third condition for existence of an exceptional point
in the coupled channel model is not satisfied, the scattering
matrix has only a simple pole at k = kn, which, of course, is
not an exceptional point although the two zeros of the Jost
determinant coincide at the same value k = kn.

In the laboratory, when the control parameters are varied
in a neighborhood of the critical values corresponding
to the exceptional point, the branch point singularity
of the eigenenergy surface manifests itself through a rich
phenomenology of crossings and anticrossings of energies and
widths [41], as well as the so called “change of identity” [42]
of the poles of the S matrix.

The characterization of the singularities of the energy
surfaces at a degeneracy of unbound states in parameter space
arises naturally also in connection with the Berry phase of
unbound states predicted by Hernández et al. [43–45] and
later and independently by Heiss [46]; see also the work by
Mailybaev et al. [47]. The Berry phase of two resonant states
was measured by Richter and the Darmstadt group [30,48].

The theoretical treatment of crossings, anticrossings, and
changes of identity of resonance states presented in this paper
is a generalization of a previous discussion on resonance
degeneracy of unbound states in single channel scattering
[9,35,44] to the case of mixing degeneracy and exceptional
points in a multichannel model of scattering and reactions in
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collisions of complex quantum systems. The plan of the paper
is as follows: In Secs. II, III, and IV, we give a brief reminder
of some relevant concepts on resonances in multichannel
scattering. Sections V and VI are devoted to a discussion
of doublets of resonances and degeneracy of resonances and
exceptional points in a multichannel model of scattering and
reactions. In Sec. VII, we show that the pole position function
of the isolated doublet of unbound states has a branch point
singularity at the exceptional point in parameter space. The
singularity of the energy surface at the exceptional point is
also characterized as a branch point in Sec. VIII, where we
also introduce a contact equivalent approximant to the energy
surface at the exceptional point. The numerical computation of
the exceptional point is briefly described in Sec. IX. Section X
is devoted to a discussion of crossings and anticrossings of
resonance energies and widths, as well as the changes of
identity of the poles of the S matrix, in terms of sections of the
energy surfaces. We end our paper with a short summary and
some conclusions.

II. MULTICHANNEL SCATTERING

We start by defining our notation and briefly recalling some
notions of scattering theory that are used below.

Let us consider the scattering of a spinless, structureless
projectile on a spinless spherically symmetric target which
has N bound states. The Hamiltonian of the system may be
written as the sum of three terms,

H = H0 + Htar + Hint, (1)

where H0 is the Hamiltonian of the free relative motion of tar-
get and projectile, Htar is the Hamiltonian of the target, and Hint

is the interaction Hamiltonian between target and projectile.
By expanding the wave function �(�xtar,�r) of the total

system in terms of the complete set of energy eigenfunctions
of the target {ηE (�xtar)} we obtain

�(�xtar; �r) =
∑

α

ηEα
(�xtar)ψα(�r) +

∫
dE ′ηE ′(�xtar)ψE ′(�r). (2)

In this expression, the subindices Eα and E ′ are the energy
eigenvalues in the discrete and continuum parts of the energy
spectrum of the target, �xtar is a shorthand for the coordinates
of the constituent particles of the target, and �r is the
relative distance between projectile and target. All position
coordinates, �xtar and �r , are measured from the center of mass
of the total system.

Insertion of the expansion (2) of �(�xtar; �r) in the
Schrödinger equation of the total system

H� = E� (3)

gives us∑
α′

[
− h̄2

2m
∇2 + Eα′ + Hint(�xtar,�r)

]
ηEα′ (�xtar)ψα′(�r)

+
∫

dE ′
[
− h̄2

2m
∇2 + E ′ + Hint(�xtar,�r)

]
ηE ′(�xtar)ψE ′(�r)

= E

(∑
α′

ηEα′ (�x)ψα′(�r) +
∫

dE ′ηE ′(�xtar)ψE ′(�r)

)
. (4)

We now multiply through by η∗
Eα

(�xtar) and integrate over
the target coordinates. Because the functions ηα(�xtar) are
orthogonal this gives the following infinite set of coupled
equations

− h̄2

2m
∇2ψα(�r) +

∑
α′

Vα,α′ (�r)ψα′ (�r)

+
∫

Vα,E ′ (�r)ψE ′(�r ′)dE ′ = (E − Eα)ψα(�r), (5)

where

Vα,α′ (�r) =
∫

η∗
E,α(�xtar)Hint(�xtar,�r)ηEα′ (�xtar)d �τtar. (6)

On the right-hand side of (6), integration is made over all
coordinates of the constituent particles in the target.

Under certain conditions, it may be a good approximation to
retain in the summation over excited target states only a small
number N of discrete terms and none of the continuum [40].
For example, many nuclei have a single strongly excitable
low-lying collective state, such as the 2+ state in 12C or 24Mg.
This means that one can treat the scattering of α particles off
such nuclei in a two state approximation, including just the
ground state and this one collective state. In the case of a
target which has only two bound states, N = 2, and separating
the angular part, the set of coupled equations (5) reduces to
the following set of coupled radial Schrödinger equations,

H���(k,r) = E��(k,r), (7)

with

H� = − h̄2

2m

(
d2

dr2
+ �(� + 1)

r2

)
1 + V, (8)

where r is the radial coordinate, 1 is the 2 × 2 identity matrix,
and V is a 2 × 2 real symmetric matrix,

V =
(

V11(r) V12(r)

V12(r) V22(r)

)
, (9)

and ��(k,r) may be either a vector valued solution or a matrix
valued solution. By E we denote the diagonal matrix with
the nonvanishing entries Ei , E = diag(E,E − ε). The wave
numbers ki are related to the center of mass energy and the
threshold of the inelastic channel Q by

k2
1 = k2 = 2m

h̄2 E, k2 =
√

2m

h̄2 (E − ε) =
√

k2 − Q. (10)

We assume that the potential terms, V11(r), V22(r), and
V12(r), are short ranged and that the condition∫ ∞

0
exp(εr)|Vij (r)|dr < ∞, (11)

is satisfied for any real ε > 0. Under such assumptions,
the Schrödinger equation (7) has two 2 × 2 matrix valued
solutions F±

� (k,r) such that

lim
r→∞ F±

� (k,r) = h±
� (k,r) ≈ diag

(
exp

[
±ikir − �π

2

])
,

(12)

where h
(±)
� (kr) are the spherical Riccati-Hankel functions of

first and second kind, respectively.
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The columns of the F±
� (k,r) matrices are the Jost solutions

and, form a basis in a four-dimensional solution space of the
Schrödinger equation with a given value of E. In general, these
solutions are complex and satisfy the symmetry property

F±
� (k,r) = F(±)∗

� (−k∗,r), (13)

where asterisk denotes complex conjugation.
In the following we consider only the case of s-wave

scattering, � = 0, and we will omit the subscript �. We define
the 2 × 2 matrix of the regular solutions �(k,r) by its behavior
at the origin. For bounded s-wave potentials, these solutions
satisfy

�(k,0) = 0, �′(k,0) = 1, (14)

where prime means derivative with respect to r and 1 denotes
the 2 × 2 identity matrix. This definition shows that the
columns, φ(1)(k,r) and φ(2)(k,r), of the matrix of the regular
solution, � = [φ(1),φ(2)], also form a basis in the solution
space of the Schrödinger equation. In terms of the incoming
and outgoing wave Jost solutions, the matrix of the regular
solutions reads

�(k,r) = i

2
[F(−)(k,r)k−1F (−)(k) − F(+)(k,r)k−1F (+)(k)],

(15)

where F (−)(k) and F (+)(k) are the Jost matrices F (±)(k) =
F(∓)T (k,0) and k is the diagonal matrix of the wave numbers,
k = diag(k1,k2).

For real energies, the 2 × 2 matrix � of the regular solutions
is purely real because they satisfy a system of coupled
differential equations with real coefficients and real boundary
conditions. Even more important for our discussion, since the
boundary conditions (14) are independent of k and k2, and
the potentials satisfy (11), the 2 × 2 matrix � of the regular
solutions is an entire function of k and k2, for all finite values
of these variables.

The 2 × 2 matrix of the physical solutions � = [ψ (1),ψ (2)]
is defined as the matrix of those solutions which are regular at
the origin and have a unit incoming flux only in the i channel.
Then the matrix �(k,r) of the physical solutions is obtained
from the matrix of the regular solutions Eq. (15) as

�(k,r) = �(k,r)[F (−)(k)]−1. (16)

Therefore, the scattering matrix, which is symmetric, reads

S(k) = k−1/2F (+)(k)[F (−)(k)]−1k+1/2. (17)

Bound and resonance energies correspond to zeros of the
determinant of the Jost matrix,

J (−)(kn) = det[F (−)(kn)] = 0. (18)

III. TWO CHANNELS COUPLED BY SQUARE
WELL POTENTIALS

Doublets of resonances and accidental degeneracy of
unbound states may occur in the scattering of a projectile
by a target when the interaction gives rise to two regions
of wave trapping. In the two-coupled-channel model we are
discussing, the two regions of trapping are determined by the

diagonal terms V11(r) and V22(r) in the interaction matrix V.
The coupling term V12(r) allows the mixing and interaction of
the resonances in the doublet.

In this section we consider the simple but illustrative case of
two � = 0 channels with constant attractive channel potentials
Vii of range a

Vii(r) = −|Vii |, i = 1,2, 0 � r � a,
(19)

Vii(r) = 0, r > a,

coupled by a constant potential barrier of height V12

V12(r) = |V12|, 0 � r � a,
(20)

V12(r) = 0, r > a.

In this case, the set of coupled equations (7) and (8) may be
written as

d2�(k,r)

dr2
+ 2m

h̄2 (E − V)�(k,r) = 0, (21)

with V nonvanishing and independent of r for 0 � r � a and
V = 0 for r > a.

The Jost regular solutions may be readily computed by
diagonalizing the 2 × 2 matrix (E − V) by means of the
orthogonal tranformation O,

O(E − V)OT = K = h̄2

2m
diag

[
K2

1 ,K2
2

]
, (22)

where the matrix O is a function of the wave number k and the
potential parameters V11, V22, and V12,

O = 1√(
K2

1 − K2
2

)(
K2

1 − K2
2

)
(
K2

1 − K2
2 U12

−U12 K2
1 − K2

2

)
,

(23)

in this expression

K2
1 = k2 − U11, Uij = 2m

h̄2 Vij , i,j = 1,2. (24)

The diagonalization of (E − V) decouples the system of
differential Eq. (21). Therefore, in the internal region, the 2 × 2
matrix of the Jost regular solutions takes the form

�(k,r) = O(sin Kr)K−1OT , 0 � r � a, (25)

where

sin Kr = diag(sin K1r, sin K2r), (26)

is the diagonal matrix of the solutions of the decoupled
system in the internal region. It may be easily verified that the
expression (25) for �(k,r) satisfies the boundary conditions at
the origin Eq. (14).

The squares of the internal wave numbers, K2
1 and K2

2 , are
the solutions of the quadratic equation

(K2 − k2 + U11)(K2 − k2 + U22 + Q) − U 2
12 = 0, (27)

obtained by substitution of expression (25) for � in Eq. (21).
Hence,

K2
1,2 = k2 − 1

2 (U11 + U22 + Q)

± 1
2

√(
U11 − U22 − Q

)2 + 4U 2
12. (28)
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In the external region, r > a, the 2 × 2 matrix of the regular
solutions takes the form

�(k,r) = i

2
[exp(−ikr)k−1F (−)(k)

− exp(ikr)k−1F (+)(k)], r > a. (29)

The Jost matrices F (−)(k) and F (+)(k) are determined by
the requirement of continuity of �(k,r) and its first derivative
�′(k,r) at r = a. From Eqs. (25) and (29), one finds

F (−)(k) = exp(ika)[OK cos Ka − ikO sin Ka]K−1OT , (30)

and F (+)(k) = F (−)(−k).
From Eqs. (17) and (30), the scattering matrix is

S(k) = k−1/2M(−k)M−1(k)k1/2, (31)

where

M(k) = exp (ika)[OK cos Ka − ikO sin Ka]. (32)

The matrix M(k) satisfies the symmetry property

M(k) = M∗(−k∗), (33)

which it inherits from the Jost matrix F (−)(k) and the defining
equations (23), (25), and (27). Then it may readily be shown
that the scattering matrix S(k) is symmetric,

S(k) = ST (k), (34)

and unitary,

S†(k) = S−1(k). (35)

A short proof of the unitarity of S(k) is given in the Appendix.
Finally, the determinant of the Jost matrix is

J (−)(k) = det[F (−)(k)]

= 1

K1K2
exp(ika) exp(ik2a) sin K1a sin K2a

×
[

(K1 cot K1a − ik)(K2 cot K2a − ik2)

− i
U 2

12(
K2

2 − K2
1

)(
K2

1 − K2
2

) (K2 cot K2a

−K1 cot K1a)(k − k2)

]
, (36)

where K2
2 = k2 − U22 − Q.

IV. RESONANCES

In the two-coupled-channel system we are considering here,
bound and resonant energies are obtained as zeros of the
determinant of the Jost matrix.

The scattering matrix,

S(k) = k−1/2M(−k)M−1(k)k1/2, (37)

has poles at the zeros of detM(k).

When detM(k) is not vanishing, the matrices M(k) and
M−1(k) may always be written in the biorthonormal basis of
their own right and left eigenvectors as

M(k) =
2∑

i=1

|ui(k)〉mi(k)〈vi(k)| (38)

and

M−1(k) =
2∑

i=1

|ui(k)〉m−1
i (k)〈vi(k)|, (39)

where m1,2(k) are the eigenvalues of M(k) and |u1,2(k)〉 and
〈v1,2(k)| are the corresponding right and left eigenvectors of
M(k), respectively.

If detM(k) has a simple zero at k = kn, one of the two
eigenvalues of M(k) vanishes at k = kn, say m2(kn) = 0. Then

detM(k) ≈ (k − kn)m1(kn)m′
2(kn) + O[(k − kn)], (40)

where m′
2(kn) is the derivative of m2(k) with respect to k at

k = kn. In this case, the rank of M(k) is one and

M(kn) = |u1(kn)〉m1(kn)〈v1(kn)|, (41)

and S(k) takes the following form:

lim
k→kn

(k − kn)S(k)

= 1

m′
2(kn)

k−1/2
n M(−kn)|u1(kn)〉〈v1(kn)|k1/2

n . (42)

The symmetry of the S(k) matrix implies that its residue
at k = kn is also symmetric. Therefore, the following relation
holds:

k−1/2
n M(−kn)|u1(kn)〉 = k1/2

n |v1(kn)〉. (43)

Now let us introduce the notation

1

[m′
2(kn)]1/2

k1/2
n |v2(kn)〉 =

(
γ1(kn)

γ2(kn)

)
, (44)

where γ1,2(kn) are the partial half-widths at the resonance. In
this notation (42) is written as

lim
k→kn

(k − kn)S(k) =
(

γ1(kn)γ1(kn) γ1(kn)γ2(kn)

γ2(kn)γ1(kn) γ2(kn)γ2(kn)

)
(45)

Therefore, close to a simple pole at k = kn, the scattering
matrix S(k) takes the following form:

S(k) ≈ h̄2

m

kn

E − En

(
γ1(kn)γ1(kn) γ1(kn)γ2(kn)

γ2(kn)γ1(kn) γ2(kn)γ2(kn)

)
. (46)

Each complex zero of detM(k) will give rise to a resonant term
in S(k):

S(k)=
∑

n

h̄2

m

kn

E−En

(
γ1(kn)γ1(kn) γ1(kn)γ2(kn)

γ2(kn)γ1(kn) γ2(kn)γ2(kn)

)
+ SB(k),

(47)

S(k) = Sres(k) + SB(k). (48)

SB(k) is the background term.
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V. DOUBLETS OF RESONANCES
AND DOUBLE RESONANCES

In a system of two coupled channels with short ranged,
square well attractive potentials with constant depths V11 and
V22 and the same common range a, there are two regions of
wave trapping that may resonate together when coupled by a
square potential barrier of height V12 and the same common
range a. As will be seen in the numerical example in Sec. IX,
it may happen that, when the control parameters (V11, V22,
and V12) take values in some region R of parameter space,
the Jost determinant has an isolated pair of resonance zeros in
some domain D of the same Riemann sheet of the complex k

plane, all other resonance zeros lying outside D. In this case,
the scattering matrix S(k) has an isolated doublet of closely
spaced resonances. In this section, it is shown that the condition
of two simple zeros of the Jost determinant coinciding at the
same complex value, kn = kn+1 = kd , is a necessary but not
a sufficient condition for the scattering matrix S(k) having
a double pole at k = kd . We find under what conditions the
merging of two simple zeros into one double zero of the Jost
determinant gives rise to one double pole (double resonance)
of the scattering matrix S(k) and we derive explicit expressions
for the analytical structure of the scattering matrix S(k) for k

close to a double pole (double resonance) at k = kn.
Let us consider the case when the Jost determinant has two

simple zeros which for some special values of the control
parameters of the system, say (V ∗

11,V
∗

22,V
∗

12), may exactly
coincide.

At the point of coincidence, the two simple zeros give rise
to one double zero of the Jost determinant at k = kn. This
possibility may be realized in two ways.

(1) First, when both eigenvalues of the matrix M(k) have
one simple zero at k = kn. In this case, TrM(kn) = 0 and
detM(kn) = 0, the matrix M(k) itself is proportional to (k −
kn), and the scattering matrix takes the factorized form

S(k) =
(

k − k∗
n

k − kn

)
S′(k). (49)

In this case, although the two simple zeros of the Jost
determinant concide at the same value kn the scattering matrix
S(k) has only one simple pole at k = kn, and the reduced
scattering matrix S′(k) is regular at k = kn.

(2) Second, when one of the eigenvalues of the matrix
M(k), say m2(k), has one double zero at k = kn and the other
eigenvalue is nonvanishing at k = kn, then TrM(kn) �= 0 but
detM(kn) = 0.

Let us consider this second case in more detail, the matrix
M−1(k) may be written, in the biorthonormal basis of the left

and right eigenvectors of M(k) as

M−1(k) = |u1(k)〉 1

m1(k)
〈v1(k)| + |u2(k)〉 1

m2(k)
〈v2(k)|,

(50)

and

m1(kn) �= 0, m2(k) = 1
2 (k − kn)2m′′

2(k), m′′
2(kn) �= 0.

(51)

From this expression and Eq. (37),

lim
k→kn

(k − kn)2S(k)

= 2

m
′′
2(kn)

k−1/2
n M(−kn)|u2(kn)〉〈v2(kn)|k1/2

n . (52)

As before, the symmetry of S(k) implies that its residue at
the double pole at kn is also symmetric. Therefore,

2

m′′
2(kn)

k−1/2
n M(−kn)|u2(kn)〉 = k1/2

n |v2(kn)〉. (53)

Then the residue of S(k) at the double pole may be
written as

lim
k→kn

(k − kn)2S(k) =
(

γ1(kn)γ1(kn) γ1(kn)γ2(kn)

γ2(kn)γ1(kn) γ2(kn)γ2(kn)

)
, (54)

where(
γ1(kn)
γ2(kn)

)
=

√
〈v2(kn)|MT (−kn)k−1

n |v2(kn)〉
1
2m′′

2(kn)
k1/2

n |u2(kn)〉.

(55)

These results allow us to write the S(k) matrix for k in a
neighborhood of kn as

S(k) ≈ 1

(k − kn)2
N(k), (56)

where

N(k) =
(

γ1(k)γ1(k) γ1(k)γ2(k)

γ2(k)γ1(k) γ2(k)γ2(k)

)
. (57)

The analytical structure of the matrix S(k) for k close to kn

is obtained expanding the matrix N(k) in a Taylor series in k

about k = kn,

S(k) ≈ N(kn)

(k − kn)2
+ N′(kn)

(k − kn)
+ · · · ; (58)

that is,

S(k) = 1

(k − kn)2

(
γ1(kn)γ1(kn) γ1(kn)γ2(kn)

γ2(kn)γ1(kn) γ2(kn)γ2(kn)

)
+ 1

k − kn

(
2γ1(kn)γ̄1(kn) γ1(kn)γ̄2(kn) + γ̄1(kn)γ2(kn)

γ2(kn)γ̄1(kn) + γ̄2(kn)γ1(kn) 2γ2(kn)γ̄2(kn)

)
+SB (k),

(59)
where

γ̄i(kn) =
(

dγi(k)

dk

)
kn

. (60)
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Therefore, when one of the eigenvalues of the matrix M(k)
has one double zero and the other is nonvanishing at k = kn,
the scattering matrix S(k) has one double pole and one simple
pole at k = kn, as shown in Eq. (59).

VI. UNIFORMIZATION

In the foregoing discussion, the channel wave numbers, k

and k2, were considered as independent variables. Expressing
each channel wave number in terms of the energy, as in
Eq. (10), the scattering matrix and the Jost determinant, as
functions of the wave number, have a branch point at the
threshold of the inelastic channel. Therefore, in order to discuss
the analytic properties of the zeros of the Jost determinant
as functions of the control parameters (V11,V22,V12), it is
convenient to define a new independent variable t , as

t2 = k − √
Q

k + √
Q

, k =
√

Q
1 + t2

1 − t2
, k2 = 2

√
Q

t

1 − t2
.

(61)

In terms of t , the scattering matrix S(t) and the Jost
determinat J (−)(t ; V11,V22,V12) are analytic, single valued
functions of t complex [40]. Furthermore, J (−)(t) is an entire
function of t complex. Then, all zeros of J (−)(t ; V11,V22,V12)
are points on the complex t plane which has only one single
Riemann sheet.

Pole position function. The position of the poles of the
scattering matrix S(k) in the complex t plane is determined by
the zeros of the Jost determinant

J (−)(tn; V11,V22,V12) = 0. (62)

According to the implicit function theorem of Weierstrass, this
condition defines, implicitly, the pole position function

tn = tn(V11,V22,V12), (63)

as branches of a multivalued function of the control parameters
(V11,V22,V12),

tn(V11,V22,V12) = J −1(0; V11,V22,V12). (64)

Each branch of the pole position function tn is a continuous
single valued function of the control parameters (V11,V22,V12).

The energy eigenvalues are obtained from the pole position
function as

En,i(V11,V22,V12) = h̄2

2m
k2
n(V11,V22,V12) + Qδi,2, i = 1,2,

(65)

where

k2
n(V11,V22,V12) = Q

(
1 + t2

n (V11,V22,V12)

1 − t2
n (V11,V22,V12)

)2

. (66)

Each energy eigenvalue, En(V11,V22,V12), may be repre-
sented as a surface in a parameter space with coordinates
(ReE,ImE,V11,V22,V12).

VII. SINGULARITY OF THE DOUBLET’S POLE POSITION
FUNCTION AT THE EXCEPTIONAL POINT

In this section, we discuss the analytical structure and
properties of the singularity of the pole position function of

the isolated doublet of unbound states at the exceptional point
(degeneracy of resonance eigenenergies) in parameter space.

Let us start by recalling that the codimension of a resonance
degeneracy is two [49]; hence, it will be enough to consider the
Jost determinant as a function of only two control parameters,
say V11 = V22 = v and V12 = u, all other control parameters
of the problem will be kept fixed. When the system has an
isolated doublet of resonances which may become degenerate,
the corresponding branches of the pole position function, say
t1(v,u) and t2(v,u), may be equal (cross or coincide) at an
exceptional point. In this case, it is not possible to solve the
implicit Eq. (62) for the pole position function of the two
individual members of the doublet and one must solve (62) for
the pole position function of the isolated doublet of resonances.

The physical system has a degeneracy of unbound states
(resonances), at t = td , if two simple resonance zeros of the
Jost determinant merge into one double resonance zero at td ,
t1(v∗,u∗) = t2(v∗,u∗) = td �= 0,

J (−)(td ; v∗,u∗) = 0,

(
∂J (−)(t ; v,u)

∂t

)
td

= 0,

(67)(
∂2J (−)(t ; v,u)

∂t2

)
td

�= 0,

and the conditions for a double pole in S(k) are satisfied,

detM(td ) = 0, TrM(td ) �= 0. (68)

The pole position function t1,2(v,u) of the isolated doublet
of resonances is implicitly defined by the equation

J (−)(t1,2; v,u) = 0, (69)

and the conditions (68) for (v,u) in a neighborhood of the
exceptional point (v∗,u∗).

We may solve formally this equation for t1,2(v,u) by first
recalling that the Jost determinant J (−)(t ; v,u) is an entire
function of t and may be written in the form of an infinite
product, according to Hadamard’s form of the Weierstrass
factorization theorem [50] and by using a theorem of Pfluger
[51], we may write

J (−)(t ; v,u) = [(
t − 1

2 (t1 + t2)
)2 − 1

4 (t1 − t2)2
]
G1,2(t ; v,u),

(70)

where

G1,2(t ; v,u) = exp[G(t)]
1

t1(v,u)t2(v,u)

∞∏
3

(
1 − t

tn(v,u)

)
.

(71)

In this expression G(t) is an entire function of t and {tn(v,u)}
is the set of zeros of J (−)(t ; v,u).

The first factor on the right-hand side of (70) may be
written as(

t − 1
2 [t1(v,u) + t2(v,u)]

)2 − 1
4 (t1(v,u) − t2(v,u))2

= (t − t
(+)
1,2 (v,u))(t − t

(−)
1,2 (v,u)). (72)

This equation relates the pole position function, t1,2(v,u),
of the doublet to the pole position functions of the individual
unbound (resonance) states.
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Solving (72) for t1,2(v,u) when J (−)(t ; v,u) vanishes and
G1,2(t,v,u) is nonvanishing, we get

t1,2(v,u) = �1,2(v,u) ± √
�1,2(v,u), (73)

where

�1,2(v,u) = 1
2 [t1(v,u) + t2(v,u)] (74)

and

�1,2(v,u) = 1
4 [t1(v,u) − t2(v,u)]2, (75)

with (v,u) in a neighborhood of the exceptional point (v∗,u∗).
According to the preparation theorem of Weierstrass [50],

the functions �1,2(v,u) and �1,2(v,u) appearing in the right-
hand side of Eq. (73), are regular functions of (v,u) at the
exceptional point, and admit a Taylor series expansion about
that point. Then, from Eqs. (73), (74), and (75), it follows

that the pole position function of the degenerating doublet of
resonances t1,2(v,u) has a branch point of square root type at
the exceptional point, when �1,2(v∗,u∗) vanishes.

VIII. SINGULARITY OF THE ENERGY SURFACES
AT THE EXCEPTIONAL POINT

The resonance energy eigenvalues E1(v,u) and E2(v,u) of
the isolated doublet of resonances may be obtained from the
corresponding zeros t1(v,u) and t2(v,u) of the Jost determinant
through

Ei(v,u) = h̄2Q

2m

(
1 + t2

i (v,u)

1 − t2
i (v,u)

)2

, i = 1,2. (76)

From this expression, and (74) and (75), we find that the sum
and the difference of the energy eigenvalues may be expressed
in terms of the regular functions �1,2(v,u) and �1,2(v,u) as

1

2
(E1 + E2) =

(
h̄2Q

2m

) (
1 − [

�2
1,2(v,u) − �1,2(v,u)

]2)2 + 16�2
1,2(v,u)�1,2(v,u){[

1 − {
�2

1,2(v,u) − �1,2(v,u)
}]2 − 4�1,2(v,u)

}2 , (77)

1

4
(E1 − E2)2 =

(
4h̄2Q

m

)2 �2
1,2(v,u)�1,2(v,u)

[
1 − {

�2
1,2(v,u) − �1,2(v,u)

}2]2

{[
1 − {

�2
1,2(v,u) − �1,2(v,u)

}]2 − 4�1,2(v,u)
}4 . (78)

Therefore, the functions 1/2[E1(v,u) + E2(v,u)] and
1/4[E1(v,u) − E2(v,u)]2 are regular at the exceptional point
and admit a Taylor series expansion about that point.

The two energy eigenvalues, E1 and E2, in the isolated
doublet of unbound states may be expressed in terms of the
two regular functions of the control parameters of the system
in Eqs. (77) and (78) as

E1,2(v,u) = 1
2 (E1(v,u) + E2(v,u)) ±

√
1
4 [E1(v,u) − E2(v,u)]2.

(79)

This expression shows that the two degenerating energy
eigenvalues in an isolated doublet of unbound states are two
branches of a multivalued function of the control parameters.
If we represent the real and imaginary parts of the energy
eigenvalues of the system as surfaces in parameter space, these
surfaces have four sheets, which are connected in pairs at the
degeneracy point.

A contact equivalent approximant, Ê1,2, to the doublet
eigenenergy surface at the crossing point is readily ob-
tained when the expressions (77) and (78) are substituted
for 1/2[E1(v,u) + E2(v,u)] and 1/4[E1(v,u) − E2(v,u)]2 in
Eq. (79) and the functions �2

1,2(v,u) and �2
1,2(v,u), are

expanded in a Taylor series and we keep only the first-order
terms,

E1,2(v,u) ≈ Ed (v∗,u∗) + �Ed (v,u) + ε̂1,2(v,u), (80)

where

ε̂1,2(v,u) = ±
√

1
4

[
C

(1)
1 (v − v∗) + C

(1)
2 (u − u∗)

]
. (81)

The complex coefficients C
(1)
i may readily be computed from

the Jost determinant with the help of the implicit function
theorem [50].

In order to simplify the notation, let us call �η the real
position vector of the point (v,u) relative to the exceptional
point (v∗,u∗) in parameter space, η1 = v − v∗ and η2 = u − u∗
and let the components of the real constant vectors �R and �I be
the real and imaginary parts of the complex coefficients C

(1)
i ,

�η =
(

v − v∗
u − u∗

)
, �R =

(
ReC(1)

1

ReC(1)
2

)
, �I =

(
ImC

(1)
1

ImC
(1)
2

)
.

(82)

In this notation

ε̂1,2 = 1
2 [ �R · �η + i �I · �η]1/2. (83)

Solving for the real and imaginary parts of the function
ε̂1,2(v,u), we obtain

Reε̂1,2(v,u) = ± 1

2
√

2
[+

√
( �R · �η)2 + ( �I · �η)2 + �R · �η]1/2,

(84)

Imε̂1,2(v,u) = ± 1

2
√

2
[+

√
( �R · �η)2 + ( �I · �η)2 − �R · �η]1/2,

(85)

and

sgn(Reε̂1,2)sgn(Imε̂1,2) = sgn( �I · �η), (86)
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FIG. 1. The real part of the degenerating energy eigenvalues of
the doublet as function of the control parameters is represented as
a two-sheeted surface. This surface has a branch point of square
root type at the exceptional point where the two energy eigenvalues
coincide and a branch cut along a line that starts at the exceptional
point and extends in the positive direction of the Ov axis.

where

�I · η̂o = 0 and �R · η̂o = −| �R · η̂o|. (87)

η̂o is the unit vector parallel to �η.
The real and imaginary parts of the pole position func-

tion ReE1,2(v,u) and ImE1,2(v,u), as functions of the real
parameters (v,u), both have an algebraic branch point of
square root type at the exceptional point. The functions
ReE1,2(v,u) and ImE1,2(v,u) both have branch cuts that start at
the same exceptional point but extend in opposite directions in
parameter space (see Figs. 1 and 2).

Equality of the complex resonance energy eigenvalues (de-
generacy of resonances), E1(v∗,u∗) = E2(v∗,u∗) = Ed (v∗,u∗),
occurs only at the exceptional point with coordinates (v∗,u∗)
and only at that point.

IX. NUMERICAL COMPUTATION
OF THE EXCEPTIONAL POINT

In order to locate the exceptional point in the energy
spectrum of the two-coupled-channel system, the coupled
equations (67) and (68) were solved numerically. The zeros
of the Jost determinant are found by an algebraic computer
package that searches for the minima of |J −(tn; v,u)| in the
complex t plane. In the computation, the parameters Q = 0.6,
a = 1 were kept fixed and only the parameters V12 = V21 = u
and V11 = V22 = v were allowed to vary. Starting with the
values v = 2.306 53 and u = 3.400 891, we find the first
isolated doublet of resonances at t1 = 0.633 873 − i0.118 476,
and t2 = 0.633 905 − i0.118 439, corresponding to the fol-
lowing values of the wave number k1 = 3.055 631 794 −
i1.239 436 172 and k2 = 3.056 124 704 − i1.239 315 385.

Then the numerical values of the control parameters v and
u are adjusted until t1 and t2 become equal to some common
value td . We also computed |∂J (−)(t ; v,u)/∂t |t=td to verify that
the second equation (67) was also satisfied to some previously

FIG. 2. The imaginary part of the degenerating energy eigenval-
ues of the doublet as function of the control parameters is shown as a
two-sheeted surface. This surface has a branch point at the exceptional
point and a branch cut that starts at the exceptional point and extends
in the negative direction of the Ov axis.

prescribed accuracy. In this way, by fine tuning the control
parameters to the values v = 2.306 533 986 9 and u =
3.400 893 217 3, we found that the first doublet of resonances
becomes degenerate at the value td = 0.633 889 − i0.118 458
corresponding to the following value of the wave number
kd = 3.055 8764 − i1.239 375 71.

We numerically solved the implicit transcendental
equations (67) and (68) that define the eigenenergy surface
of the degenerating isolated doublet of unbound states. The
results of this numerical computation of the real and imaginary
parts of the pole position function of the degenerating
doublet of unbound state are represented as surfaces in Eu-
clidean spaces with coordinates (Rek,v,u) and (Imk,v,u) (see
Figs. 1 and 2).

X. PHENOMENOLOGY OF THE EXCEPTIONAL POINT

For the sake of completeness, in this section we discuss
briefly some of the rich phenomenology observed when the
complex energy eigenvalues of the doublet are measured
as functions of the control parameters of the system. This
phenomenology gives a direct evidence on the topology of
the energy surfaces at the exceptional point. A more detailed
discussion of this topic in the case of resonances in a single
channel elastic scattering in a physical system with a double
barrier potential may be found in Hernández et al. [35].

The topological and geometrical properties of the singular-
ity of the energy surfaces at an exceptional point are accessible
to experimental determination. When one control parameter
is slowly varied while keeping the other constant, crossings
and anticrossings of energies and widths are experimentally
observed [26,27,41]. When the system is slowly transported
in a double circuit around the exceptional point in parameter
space, it is observed that the wave function of the system
acquires a geometric or Berry phase [30,43,45–48,52,53].
Additional information on the topology of the singularity of

046209-8



EXCEPTIONAL POINTS AND NON-HERMITIAN . . . PHYSICAL REVIEW E 84, 046209 (2011)

FIG. 3. The curves Ĉn(π1) and Ĉn+1(π1) are the intersection
of the hyperplane π1 : η1 = η̄1 > 0 and the two-sheeted surface
ε̂n,n+1. The projections of Ĉn(π1) and Ĉn+1(π1) on the planes
(ImE,η2) and (ReE,η2) show a crossing of widths and anticrossing
of energies, respectively. The projections on the plane (ReE,ImE) are
the trajectories of the S-matrix poles in the complex energy plane. In
the figure, η2 = u − u∗.

the energy surface at an exceptional point is obtained from
the so called changes of identity of the poles of the scattering
matrix [42,54].

Sections of the energy surfaces. The adiabatic measurement
of the difference of complex energy eigenvalues of the doublet
as one of the control parameters, say η2, is varied, while
the other parameter is kept constant allows the experimental
determination of the intersection of this eigenenergy surface
with the plane defined by the condition η1 = η̄1, with η̄1

constant,

Ên(η̄1,η2) − Ên+1(η̄1,η2) = ε̂n,n+1(η̄1,η2). (88)

This intersection defines two three-dimensional curves for
each value of η̄1

ε̂n,n+1(η̄1,η2) ∩ πi =
{

Ĉn(πi) i = 1,2,3.

Ĉn+1(πi)
(89)

The projections of the sections Ĉn(πi) and Ĉn+1(πi) on the
planes (ReÊn,n+1, ImÊn,n+1) are the trajectories of the S-matrix
poles in the complex energy plane. The projections of the
sections Cn(πi) and Cn+1(πi) on the planes (ReÊn,n+1,η2) and
(ImÊ,η2) show the crossings and anticrossings of energies and
widths, respectively. In Figs. 3, 4, and 5 we show these sections
and their projections for three fixed values of the parameter
η1: η̄1(1) < 0, η̄1(2) = 0, and η̄1(3) > 0. The condition η̄1 =
constant with η̄1(1) < 0 defines a plane π1 which intersects
Ên,n+1 in the region where the two sheets of ReÊn,n+1 are well
separated but the two sheets of ImÊn,n+1 cross at the branch
cut; η̄1(2) = 0 defines a plane π2 that intersects Ên,n+1 at the
exceptional point where both ReÊn,n+1 and ImÊn,n+1 cross;
η̄1(3) > 0 defines a plane π3 that intersects Ên,n+1 in the region
where the two sheets of ReEn,n+1 cross at the branch cut but
the two sheets of ImÊn,n+1 are well separated and do not cross.

FIG. 4. The curves Ĉn(π2) and Ĉn+1(π2) are the intersections
of the hyperplane π2 that goes through the exceptional point
(η∗

1,η
∗
2) in parameter space and the two-sheeted surface ε̂n,n+1(η1,η2).

The projections of Ĉn(π2) and Ĉn+1(π2) on the planes (ReE,η2)
and (ImE,η2) show a joint crossing of energies and widths. The
projections on the plane (ReE,ImE) are the critical trajectories of the
S-matrix poles in the complex energy plane. At the crossing point,
the two simple poles coalesce into one double pole of S(E).

[In Eq. (88) and the following, the subindices (n,n + 1) have
been substituted for (1,2) to stress the fact that our analysis
applies to any isolated pair of coherent resonant states.]

Crossings and anticrossings of energies and widths. When
the difference of complex resonance energy eigenvalues,
Ên(η1,η̄2) − Ên+1(η1,η̄2) = �E − i1/2��, is measured as a
function of the slowly varying parameter η1, keeping the
other parameter constant, η2 = η̄2, crossings or anticrossings
of energies and widths are experimentally observed.

FIG. 5. The curves Ĉn(π3) and Ĉn+1(π3) are the intersection of
the hyperplane π3 : η1 = η̄1 < 0 and the two-sheeted surface ε̂n,n+1.
The projections of Ĉn(π3) and Ĉn+1(π3) on the planes (ReE,η2) and
(ImE,η2) show a crossing of energies and an anticrossing of widths,
respectively. The projections of on the plane (ReE,ImE) do not cross.
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From Eqs. (84)–(86), we obtain

�E =
√

2

2
[+

√
( �R · �η)2 + ( �I · �η)2 + ( �R · �η)]1/2|η1=η̄1 , (90)

and

�� = −
√

2[+
√

( �R · �η)2 + ( �I · �η)2 − ( �R · �η)]1/2|η1=η̄1 . (91)

Hence,

�E�� = −( �I · �η)|η1=η̄1 ,
(92)

(�E)2 − 1
4 (��)2 = ( �R · �η)|η1=η̄1 .

Therefore,
(1) ( �R · �η)|η1=η̄1 > 0 implies �E �= 0 and �� = 0, that is,

energy anticrossing and width crossing;
(2) ( �R · �η)|η1=η̄1 = 0 implies �E = 0 and �� = 0, that is,

joint energy and width crossings, which is also degeneracy of
the two complex resonance energy eigenvalues;

(3) ( �R · �η)|η1=η̄1 < 0 implies �E = 0 and �� �= 0, that is,
energy crossing and width anticrossing.

These three posibilities are graphically shown in Figs. 3, 4,
and 5.

These results generalize the well known level repulsion
theorem of von Neumann and Wigner [55] from the case of
bound states in a single channel potential model to the case of
resonant states in a two-coupled-channel model of scattering
and reactions.

The general character of the crossing-anticrossing relations
of the energies and widths of a mixing isolated doublet
of resonances, discussed above, has been experimentally
established by von Brentano et al. [26,27,41].

Trajectories of the S matrix poles and changes of
identity. Close to the crossing point, the trajectories of
the S matrix poles in the complex energy plane are the
branches of a hyperbola whose equation is obtained by elim-
inating η2 between ReÊm(η̄1,η2) and ImÊm(η̄1,η2),m = 1,2
[Eqs. (84)–(86)],

(ReÊm)2 − 2 cot φ1(ReÊm)(ImÊm) − (ImÊm)2

− 1
4 ( �R · η̄c)η̄1 = 0, (93)

where cot φ1 = R1
I1

and the constant vector �ηc is such that

( �I · �ηc)η̄1 = 0. We find three types of trajectories, which are
distinguished by the sign of ( �R · �ηc)η̄1 , as shown in Figs. 3, 4,
and 5.

A small change in the control parameter η̄1 may change
the sign of ( �R · �ηc)η̄1 . When this happens, it produces a small
change in the initial position of the poles, but the trajectories
may change from the type shown in Fig. 3 to the type
shown in Fig. 5. This sudden change of the trajectories’ type
exchanges almost exactly the final position of the poles, as
can be appreciated from Figs. 3 and 5. This dramatic change
was called a “change of identity” [42], and it is due to the
topology of the energy hypersurface in the neighborhood of
the exceptional point.

Changes of identity when going around the exceptional
point. The double valued nature of the eigenenergy surface
in the neighborhood of the exceptional point is made evident
by the motion of the resonance poles in the complex k plane

when the system is transported in a closed path around the
exceptional point in parameter space. When the physical
system is transported once around the exceptional point in
parameter space, the two poles of the isolated doublet of
unbound states trace the two halves of a starlike trajectory
until the positions of the poles are exactly exchanged (see
Fig. 6). When the physical system is transported twice around
the exceptional point in parameter space, each one of the
two poles traces a complete closed starlike trajectory and

FIG. 6. The two poles of the isolated doublet of unbound states
trace a starlike trajectory in the complex k plane, shown on the upper
part of the figure, when the physical system is transported in parameter
space twice around the exceptional point in the circular path shown
at the lower part of the figure. The two loops in the circular path are
shown in the figure slightly displaced for easy viewing.
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returns to its initial position in the complex k plane (see
Fig. 6). The corresponding eigenfunctions of the system also
return to their initial values but they acquire a geometric
phase [30,43,45–48,52,53].

XI. SUMMARY AND CONCLUSION

In this paper, we have been concerned with some math-
ematical and physical aspects of the mixing and degeneracy
of two unbound energy eigenstates of a two-coupled-channel
model of scattering and reactions in collisions of complex
quantum systems. The physical system is described in terms
of a two-channel Hermitian Hamiltonian matrix with a short
ranged 2 × 2 potential matrix V. We find that the vanishing
of the Jost determinant and its first derivative with respect
to t at some value of t , say t = tn, is a necessary but not a
sufficient condition for the existence of an exceptional point
at tn. The necessary and sufficient condition for the existence
of an exceptional point at t = tn may be expressed in terms of
the matrix M(k) [Eq. (32)] as

J (−)(td ; v∗,u∗) = 0, (94)(
∂J (−)(t)

∂t

)
td

= 0 and

(
∂2J (−)(t)

∂t2

)
td

�= 0, (95)

and

detM(td ) = 0, trM(td ) �= 0, (96)

where

M(t) = F (−)(t)OK, (97)

in these expressionsJ (−)(t) is the Jost determinant andF (−)(t)
is the Jost matrix, K is the diagonal matrix of the wave
numbers in the inner region and O is the orthogonal matrix
that diagonalizes the potential matrix V in the inner region.

The coupled equations (94)–(96) were solved numerically
to locate the exceptional point in the extended energy spectrum
of the two-coupled-channel system. We also solved numeri-
cally the implicit transcendental equations (69) and (94)–(96)
that define the eigenenergy surface of the degenerating isolated
doublet of unbound states in the two-coupled-channel system
in the simple but illustrative case of two square well confining
potentials coupled by square potential barrier. From the explicit
knowledge of the Jost determinant and the M(k) matrix as
functions of the control parameters it is possible to obtain
a two parameter function which is contact equivalent to the
exact energy-pole position function at the degeneracy point
in parameter space. This function is an unfolding of the
exceptional point in parameter space and gives a very precise
and accurate representation of the eigenenergy hypersurface in
the neighborhood of the exceptional point. The hypersurface
that represent the complex energy eigenvalues in parameter
space has a branch point of rank 1 (square root type) at
the exceptional point, it also has branch cuts in its real
and imaginary parts that start at the same exceptional point
but extend in opposite directions in parameter space. The
properties of plane sections of the energy hypersurfaces
with this interesting topology allow us to explain the rich
phenomenology of crossings and anticrossings of energies
and widths of the resonances in an isolated doublet and the

sudden change of shape of the S-matrix pole trajectories in the
complex energy plane observed when one control parameter
is varied while the other is kept constant at a value close to the
exceptional value.
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APPENDIX: PROPERTIES OF THE S(k) MATRIX

From Eq. (17), the scattering matrix is

S(k) = k−1/2F (+)(k)[F (−)(k)]−1k+1/2, (A1)

and from Eq. (30) the Jost matrix F (−)(k) is

F (−)(k) = exp(ika)[OK cos Ka − ikO sin Ka]K−1OT .

(A2)

From (A1) and (A2), the scattering matrix may be written
as

S(k) = k−1/2M(−k)M−1(k)k1/2, (A3)

where

M(k) = exp (ika)[OK cos Ka − ikO sin Ka]. (A4)

The matrix M(k) satisfies the symmetry property

M(k) = M∗(−k∗), (A5)

which it inherits from the Jost matrix F (−)(k) and the defining
equations (28), (A2), and (A4).

The time reversal invariance of the system of coupled
equations (10) implies that the scattering matrix S(k) is
symmetric as may readily be verified from the expression (A3)
and (A4).

First, from (A4)

MT (−k)k−1M(k) = K cos Ka(OT k−1O)K cosKa

+ sin Ka(OT kO) sin Ka. (A6)

Since K and k are diagonal, the matrix on the right hand side
of this equation is obviously symmetric.

Therefore,

MT (k)k−1M(−k) = MT (−k)k−1M(k). (A7)

From this relation, it follows that

MT (−k)k−1 = MT (k)k−1M(−k)M−1(k), (A8)

and

k1/2[M(−k)M−1(k)]T k−1/2 = k−1/2M(−k)M−1(k)k1/2.

(A9)

Comparing this last expression with Eq. (A3), we get

S(k) = ST (k). (A10)

Hence, the scattering matrix S(k) is symmetric.
Then, from (A3), (A5), and (A10), it follows that the

scattering matrix is unitary:

S†(k) = S−1(k). (A11)
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(Birkhäuser, Boston, 2002.)

[51] A. Pfluger, Commun. Math. Helv. 16, 1 (1943).
[52] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).
[53] A. Mondragón and E. Hernández, J. Phys. A: Math. Gen. 29,

2567 (1996).
[54] W. Vanroose, Phys. Rev. A 64, 062708 (2001).
[55] J. von Neumann and E. P. Wigner, Physik Z. 30, 467 (1929).

046209-12

http://dx.doi.org/10.1103/PhysRev.138.B1198
http://dx.doi.org/10.1103/PhysRevLett.17.490
http://dx.doi.org/10.1016/0375-9601(79)90478-X
http://dx.doi.org/10.1016/0370-2693(94)91182-7
http://dx.doi.org/10.1016/0370-2693(94)91182-7
http://dx.doi.org/10.1209/epl/i1996-00283-5
http://dx.doi.org/10.1103/PhysRevA.57.412
http://dx.doi.org/10.1023/B:CJOP.0000044002.05657.04
http://dx.doi.org/10.1007/s10773-006-9325-7
http://dx.doi.org/10.1007/s10773-006-9325-7
http://dx.doi.org/10.1007/BF01175976
http://dx.doi.org/10.1103/PhysRevA.79.053408
http://dx.doi.org/10.1103/PhysRevA.79.053408
http://dx.doi.org/10.1103/PhysRevLett.77.4980
http://dx.doi.org/10.1088/0305-4470/31/8/019
http://dx.doi.org/10.1088/0305-4470/31/8/019
http://dx.doi.org/10.1103/PhysRevLett.74.46
http://dx.doi.org/10.1103/PhysRevLett.74.46
http://dx.doi.org/10.1103/PhysRevLett.103.123003
http://dx.doi.org/10.1103/PhysRevLett.103.123003
http://dx.doi.org/10.1021/jp9060736
http://dx.doi.org/10.1088/0953-4075/43/9/095401
http://dx.doi.org/10.1088/0953-4075/43/9/095401
http://dx.doi.org/10.1140/epjd/e2009-00315-2
http://dx.doi.org/10.1103/PhysRevLett.84.1681
http://dx.doi.org/10.1103/PhysRevLett.84.1681
http://dx.doi.org/10.1103/PhysRevC.80.034619
http://dx.doi.org/10.1103/PhysRevC.80.034619
http://dx.doi.org/10.1088/0954-3899/36/1/013101
http://dx.doi.org/10.1103/PhysRevLett.103.134101
http://dx.doi.org/10.1103/PhysRevLett.99.100601
http://dx.doi.org/10.1103/PhysRevLett.99.100601
http://dx.doi.org/10.1103/PhysRevA.77.013618
http://dx.doi.org/10.1103/PhysRevA.77.013618
http://dx.doi.org/10.1103/PhysRevLett.99.167003
http://dx.doi.org/10.1103/PhysRevLett.99.167003
http://dx.doi.org/10.1016/S0370-2693(99)00378-0
http://dx.doi.org/10.1016/S0370-2693(99)00378-0
http://dx.doi.org/10.1103/PhysRevE.62.1922
http://dx.doi.org/10.1103/PhysRevE.62.1922
http://dx.doi.org/10.1038/35047030
http://dx.doi.org/10.1038/35047030
http://dx.doi.org/10.1103/PhysRevLett.84.5687
http://dx.doi.org/10.1103/PhysRevLett.84.5687
http://dx.doi.org/10.1103/PhysRevLett.86.787
http://dx.doi.org/10.1103/PhysRevLett.106.150403
http://dx.doi.org/10.1103/PhysRevLett.106.150403
http://dx.doi.org/10.1098/rspa.2003.1155
http://dx.doi.org/10.1098/rspa.2003.1155
http://dx.doi.org/10.1088/0305-4470/33/24/308
http://dx.doi.org/10.1088/0305-4470/33/24/308
http://dx.doi.org/10.1088/0305-4470/36/8/310
http://dx.doi.org/10.1088/0305-4470/36/8/310
http://dx.doi.org/10.1088/0305-4470/39/32/S11
http://dx.doi.org/10.1088/0305-4470/39/32/S11
http://dx.doi.org/10.1088/1751-8113/40/48/014
http://dx.doi.org/10.1088/1751-8113/40/48/014
http://dx.doi.org/10.1088/0305-4470/39/2/014
http://dx.doi.org/10.1088/1751-8113/41/25/255206
http://dx.doi.org/10.1007/s10773-011-0763-5
http://dx.doi.org/10.1007/s10773-011-0763-5
http://dx.doi.org/10.1088/0305-4470/30/15/034
http://dx.doi.org/10.1088/0305-4470/30/15/034
http://dx.doi.org/10.1088/0305-4470/26/20/039
http://dx.doi.org/10.1088/0305-4470/26/20/039
http://dx.doi.org/10.1007/s100530050339
http://dx.doi.org/10.1103/PhysRevA.72.014104
http://dx.doi.org/10.1103/PhysRevA.72.014104
http://dx.doi.org/10.1103/PhysRevLett.90.034101
http://dx.doi.org/10.1103/PhysRevLett.90.034101
http://dx.doi.org/10.1088/0305-4470/26/20/039
http://dx.doi.org/10.1088/0305-4470/26/20/039
http://dx.doi.org/10.1007/BF02568560
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1088/0305-4470/29/10/032
http://dx.doi.org/10.1088/0305-4470/29/10/032
http://dx.doi.org/10.1103/PhysRevA.64.062708

