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Scaling properties of conduction velocity in heterogeneous excitable media
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Waves of excitation through excitable media, such as cardiac tissue, can propagate as plane waves or break up to
form reentrant spiral waves. In diseased hearts reentrant waves can be associated with fatal cardiac arrhythmias. In
this paper we investigate the conditions that lead to wave break, reentry, and propagation failure in mathematical
models of heterogeneous excitable media. Two types of heterogeneities are considered: sinks are regions in
space in which the voltage is fixed at its rest value, and breaks are nonconducting regions with no-flux boundary
conditions. We find that randomly distributed heterogeneities in the medium have a decremental effect on the
velocity, and above a critical density of such heterogeneities the conduction fails. Using numerical and analytical
methods we derive the general relationship among the conduction velocity, density of heterogeneities, diffusion
coefficient, and the rise time of the excitation in both two and three dimensions. This work helps us understand
the factors leading to reduced propagation velocity and the formation of spiral waves in heterogeneous excitable
media.
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I. INTRODUCTION

Analysis of wave propagation through spatially heteroge-
neous media is a classic problem in physics [1,2]. Here we
consider nonlinear excitable media, such as nerve, heart, or the
Belousov-Zhabotinsky (BZ) reaction in which a sufficiently
large perturbation from the equilibrium state can lead to
propagation of a wave. A typical behavior in an excitable
medium is that a wave once started will propagate to the
end of the medium or will annihilate if it collides with a
wave coming from another direction. However, even in a
homogeneous excitable medium, the dynamics can be unstable
to small perturbations, leading to transient dynamics in the
system that in turn result in wave break and spiral waves [3–5].
A further complication arises in natural and experimental
excitable systems, which necessarily contain heterogeneities
that lead to a variety of experimentally observed wave
patterns including rotating spiral waves. Examples include
heterogeneities in the form of water-in-oil microemulsions
[6,7] and experimentally generated catalyst patches in the
Belousov-Zhabotinsky reaction [8], irregularities in catalytic
surfaces [9–11], and variability in the spatial structure in
cardiac tissue and tissue culture [12–18]. Figure 1 shows an
example of such spiral waves in a monolayer tissue culture
from embryonic chick heart cells. The wave of calcium activity
here interacts with the heterogeneities in the culture, resulting
in wave break and reentry. Similarly, pathologically induced
heterogeneities in the whole heart, such as may be induced
by fibrosis of the heart, may lead to reentrant activation
patterns that are associated with serious abnormal cardiac
rhythms [16,17,19].

As a consequence of the underlying theoretical challenges
and their practical importance, there are many studies
of the role of heterogeneities in modulating cardiac
conduction. These studies analyze the roles of both localized
[18,20–25] and randomly distributed heterogeneities
[12–17,26–28]. While large localized heterogeneities often
act as anchoring sites for spiral waves of excitation, smaller,
randomly dispersed heterogeneities have more subtle effects
on the dynamics. The effects depend on the excitability of

the medium, the properties of the medium in the absence of
heterogeneities, and the types of heterogeneities. We will
consider two different types of heterogeneities. Breaks are
nonconducting regions with no-flux boundary conditions that
represent discontinuities resulting from tissue damage and
collagen deposition [26,27], while sinks are regions in space in
which the voltage is fixed at its rest value, similar to fibroblast
cells which are coupled to excitable myocytes [15,16,28].
As the density of random heterogeneities increases, the
conduction velocity typically decreases. This can have
contrasting effects depending on the underlying properties of
the medium. If the medium normally conducts plane waves
without breaking up, then as the density of heterogeneities
increases or if the excitability of the medium decreases, the
propagation slows and eventually becomes unstable, leading
to rotating spiral waves [13,14,28]. In contrast, for excitable
media in which spiral wave propagation is unstable, an
increase of heterogeneity can lead to a subsequent slowing
of the propagating wave and paradoxical stabilization of the
propagation [26,27,29].

Recent work has focused on understanding the decrease
of propagation velocity as a function of the density of
heterogeneities. Steinberg et al. proposed a dimensionless
number to characterize media at the point where plane waves
break up [28]. Bär and co-workers developed an effective
medium theory in which effective diffusion coefficients and
reaction rates describe the decrease of conduction velocity
with heterogeneity density [9–11].

In this paper we extend these earlier studies to show the
general relationship among conduction velocity, heterogene-
ity, and cell-cell coupling in model cardiac systems with breaks
and sinks. Specifically, we look at the conduction velocity of
plane waves and study how the density of heterogeneities and
the coupling between cells affect conduction velocity. Using
numerical and analytical methods we propose a functional
form for the relationship among the conduction velocity,
coupling, and the density of the heterogeneities.

This paper is organized as follows. In Sec. II we describe the
mathematical models used in this study. Section III contains
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FIG. 1. Snapshots of wave propagation in a cardiac monolayer
culture. The images show a calcium wave in a monolayer culture
of chick embryonic heart cells. The diameter of the monolayer is
1 cm, and the brighter areas indicate high intracellular calcium
concentration. The panels are 0.25 s apart. A wave starting from
top right corner of the culture propagates through the heterogeneous
medium to the left boundary. But the second wave is unable to
maintain its planar wave front, and the breaks lead to reentry.

numerical results of the velocity–heterogeneity density rela-
tionship in these models. In Sec. IV we present a theoretical
model for a single sink, and Sec. V contains a discussion of
the results.

II. MODELS OF EXCITABLE MEDIA

In this work we determine the velocity of wave propagation
for two different models of excitable media. Because our
primary focus is application to cardiac tissue, we assume
parameter values consistent with cardiac conduction.

A. Cellular automata

We study the effects of heterogeneities in a variant of the
Greenberg-Hastings (GH) cellular automata model [13,30].
Each site (ij ) in the medium at time t is assigned an
integer state, uij (t), falling between 0 and E + R, where
0 is the rest state, 1,2, . . . ,E , are excited states, and E +
1,E + 2, . . . ,E + R are refractory states. In this work, we
use E = 6 and R = 7. We introduce spatial heterogeneity
by assigning coordinates (i + εi , j + εj ), where εi and εj

are uniformly distributed in the interval [−0.5,0.5] [13]. To
simplify theoretical calculations, the distance between two
sites (i,j ) and (k,l) is represented by D[ki] and D[lj ], where
D[ki] = (|(k + εk) − (i + εi)|. With this distance metric two
sites (i,j ) and (k,l) are within a radius r if D[ki]&D[lj ] < r ,
i.e., these points lie within a square of side r . Each cell is also
assigned a random weight, Sij , for the cell’s influence on its
neighbors. Sij is assigned values from 0.5 to 1.5 randomly.
A certain fraction of the sites, φ, are assumed to be in a
state 0 for all times. These sites correspond to inexcitable

heterogeneities. For the other cells the transition rules are as
follows. If 1 � uij (t) < E + R, then uij (t + 1) = uij (t) + 1
and if uij (t) = E + R, uij (t + 1) = 0. If uij (t) = 0, then

uij = 1 if
∑

D[ki]&D[lj ]<r;0<ukl�E Skl∑
D[ki]&D[lj ]〈r;umn=0orumn〉E Smn

> θ . This means that in

order for a cell to be excited at time t + 1 the ratio of excited
cells to the cells that are in the resting state (u = 0) in a
neighborhood of radius r at time t must be greater than θ . We
assume cells are separated by a distance of 0.01 cm and that
each time step is 1 ms.

B. FitzHugh-Nagumo equations

The FitzHugh-Nagumo (FHN) equations are

∂e

∂t
= D∇2e + e(e − α)(1 − e) − g + I (r),

(1)
∂g

∂t
= ε(βe − g),

where D is the diffusion coefficient and I (r) is the applied
perturbation at position r . The fast variable e is like a
dimensionless transmembrane potential scaled to unity. e

varies between 0 and emax = 1. The slow variable g controls
the refractory period. We assume α = 0.02, ε = 0.01, and
β = 0.5, with D varying in the range 0.5–5.0 cm2/s.

We solve these equations numerically in two dimensions in
a 200 × 200 grid and in three dimensions in a 200 × 200 ×
200 grid. We use forward Euler integration with space step
δx = 0.01 and time step δt from 0.001 to 0.01. We take the
spatial unit to be 1 cm and time unit to be 1 ms. With this
choice of space and time units, the velocity varies between 14
and 40 cm/s for the range of D we consider.

In the FHN model, we define sinks by clamping cells at ran-
dom locations to their rest state (e = 0,g = 0) (i.e., Dirichlet
boundary conditions) and breaks by using Neumann boundary
conditions at randomly located heterogeneities. To character-
ize and analyze the effects of heterogeneities, we measure
conduction velocity v of the waves as a function of the density
of heterogeneous sites, ρ (measured in number of sites per
cm2). v is calculated by measuring the activation times across
a line perpendicular to the direction of propagation, at (N/4)th
and (3N/4)th sites in the medium, where N is the size of the
simulation domain. This gives the time taken for the wave to
travel N/2 sites. We take the median of the resultant velocity
values. For the simulations in the FHN model, ten different
realizations of heterogeneities were used, and the mean across
the distributions is presented. The standard error of the mean
velocity is less than 2% in the regime where the conduction
velocity depends linearly on ρ for both the sinks and breaks.

III. VELOCITY–HETEROGENEITY
DENSITY RELATIONSHIP

A. Cellular automata

In the discrete model, the velocity is the average distance an
excitation progresses in one iteration. We assume that the time
interval between iterations is 
t . Following Bub et al. [13]
we can estimate the velocity of the plane wave in the GH
model as follows. Assume the wave front is smooth. A cell at
a distance δ away from this wave front, where δ < r , will have
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2r(r − δ) excited cells in its neighborhood. Hence the ratio
of excited cells to nonexcited cells (i.e., all cells in the rest
state) is (r − δ)/(r + δ). If δ is the distance an excitation can
travel in one iteration this ratio would be equal to θ . Hence the
velocity in terms of r and θ is given by

vGH
0 = δ/
t = r(1 − θ )


t(1 + θ )
. (2)

This gives us an upper estimate of the velocity, vGH
0 , of the

plane wave in this model.
We now extend this result to include the effects of

nonexcitable cells. Again consider a cell at a distance δ away
from the wave front. The area in the neighborhood of the cell
that is excited is 2r(r − δ)(1 − φ), where φ is the fraction of
nonexcitable cells. Similarly, the area that is not excited is
2r(r + δ) + 2r(r − δ)φ. For the cell to be excited their ratio
has to be greater than θ . Hence the velocity is

vGH = δ/
t = r[1 − θ − (1 + θ )φ]


t(1 + θ )(1 − φ)
. (3)

By using Eq. (2), the result can be rewritten as

vGH = vGH
0

(
1 − φ

(
1+θ
1−θ

)
1 − φ

)
. (4)

Although this result is for a highly oversimplified model for
heterogeneities in excitable media, as we show below, the
dependence of the velocity on heterogeneity density is similar
to the dependence in the more realistic models.

We simulate the GH model in two dimensions with
200 × 200 points. A plane wave was initiated at one side of
the simulation domain. The velocity is calculated from the
minimum time required for the wave to excite any cell at
the other end of the domain. Figure 2(a) shows the velocity
thus calculated with θ = 0.35 and for r values of 0.025, 0.03,
0.035, 0.04, and 0.045 cm. In Fig. 2(b) we show the normalized
velocity from Eq. (4) superimposed on the theoretical curve.
There is a good agreement between the numerical simulations
and the theoretical estimate.

B. FHN model

1. Breaks

Previous studies [9,14,31] of heterogeneous excitable
media with diffuse heterogeneities have largely focused on
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FIG. 2. (Color online) (a) Conduction velocity in the Greenberg-
Hastings model for r values 0.025 (triangles), 0.03 (circles), 0.035
(squares), 0.04 (diamonds), and 0.045 (stars) as we vary the fraction
of heterogeneities φ. (b) v
t/r plotted against φ. The solid line is the
theoretically calculated value of vGH 
t/r from Eq. (3) for θ = 0.35.
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FIG. 3. (Color online) (a) Conduction velocity v as a function of
fraction of breaks, φ, for D = 0.5 (triangles), 1.0 (open circles), 2.0
(squares), and 4.0 (diamonds) cm2/s in the FHN model. (b) v/

√
D/τ

plotted against φ.

break heterogeneities. When there are many small break-
heterogeneities randomly distributed in the system, for low
density of breaks, Tusscher and co-workers [29,31] found that
the conduction velocity of the waves of excitation decreases
linearly. We extend these studies with many breaks and look
at how coupling in the medium affects velocity. According to
Luther’s law [32,33] the propagation velocity of plane waves
in a homogeneous medium, v0, is given by

v0 = k
√

D/τ, (5)

where k is a constant and τ is the rise time of excitation. In a
heterogeneous medium, when φ < 0.40, conduction velocity
decreases linearly with φ [Fig. 3(a)], where φ = ρl2

b represents
the fraction of breaks in the medium and l2

b the area of a break.
The slope of v versus φ curve depends only on v0, as shown
in Fig. 3(b), where v/

√
D/τ is plotted as a function of φ. It is

easy to deduce from this figure that the conduction velocity in
the linear regime decreases as

v = k
√

D/τ (1 − cφ), (6)

where c is a constant. Further increase in φ leads to conduction
failure when φ = φc � 0.41, which corresponds to a density of
4100 breaks/cm2, independent of D. The value of φc � 0.41
for conduction failure is the same as the site percolation
threshold for a square lattice [34–36]. This implies that
the wave can propagate between breaks as long as it can
find a connected path in the medium. Similar results were
obtained in the studies of the BZ reaction with random
fluctuations in excitability [37]. Here when the fraction of
the nonexcitable region exceeds the percolation threshold,
the conduction fails, irrespective of the dynamics in the
medium. Hence we conclude that the breaks only disconnect
the propagation pathway and do not otherwise modify the
properties of propagation.

The simulations in Fig. 3 are done with breaks of size δx2. If
we use breaks of size 4δx2 we find a linear decline of velocity
Eq. (6) and conduction failure at φc � 0.44. For breaks of
9δx2, φc � 0.55. The dependence of the conduction on the
size and the shape of the breaks requires further study.

2. Sinks

Earlier studies on the dependence of conduction velocity
in an excitable medium with sink heterogeneities described
a linear decrease in velocity as a function of the density of
sinks [28]. The basic idea was to develop theoretical insight
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FIG. 4. (Color online) (a) Conduction velocity v in the two-
dimensional FHN model as a function of density of sinks, ρ, for
D = 0.5 (triangles), 1.0 (circles), 2.0 (squares), 4.0 (diamonds), and
5.0 (stars) cm2/s. (b) v in the three-dimensional FHN model as a
function of ρ. Symbols have the same meaning as in (a).

into this finding using dimensional arguments. The current
work was motivated by an attempt to critically examine
and extend these earlier studies. However, numerical studies
carried out in the course of this work, both in two dimensions
and three dimensions, over broader parameter ranges than
those initially studied [28] showed discrepancies between the
proposed scaling relationships and the computed values.

To study the formation of reentrant waves in a heteroge-
neous medium we initiate plane waves in the two-dimensional
FHN model. When the medium is homogeneous the velocity,
v0, is given by Eq. (5). In a heterogeneous medium the velocity
decreases from v0. Figure 4(a) shows the velocity as a function
of the density of sinks (ρ) for D between 0.5 to 5.0 cm2/s. For
example, consider a medium with D = 0.5 cm2/s. When the
heterogeneities are very sparse in the medium (ρ < 36 cm−2),
the wave travels as a roughened plane wave, and the velocity
decreases approximately linearly. For ρ ∼ 36–58 the plane
wave breaks in several places, but it soon reforms, generating
a quasi-planar wave front. With a still higher density, the wave
breaks up, forming curved wave fronts leading to sustained
reentrant waves and spatiotemporally irregular patterns of
activation in the medium (Fig. 5). This region is represented by
a steeper, nonlinear change in velocity with ρ as in Fig. 4(a).
Here, in addition to the effects of the heterogeneities, the
convex wave-front curvature also contributes to a slowing of
the conduction velocity [38]. With an even higher density of
sinks (ρ > 100 cm−2) the wave is unable to propagate through
the medium, and the conduction fails at a critical density,
ρ = ρc.

Similar dynamics are also observed in the three-
dimensional FHN model. In Fig. 6 we show snapshots of
propagation in the three-dimensional FHN model for ρ =
200 cm−3 and ρ = 1000 cm−3. At even higher densities there
are more wave breaks in the medium. In Fig. 4(b) we show the
decline of propagation velocity with heterogeneity density for
D from 0.5 to 4.0 cm2/s. As in two dimensions, the velocity
decreases linearly for smaller ρ and eventually the conduction
fails at a critical density ρc.

The slope of the linear regime and the critical density
depends on the diffusion coefficient in the medium, as seen
in Fig. 4. In our simulations, the velocity decreases at a rate
∝ v0ρ(D)γ and conduction fails at constant ρ(D)γ , where
γ � 0.77 in two dimensions and γ � 1.01 in three dimensions.
In our previous paper [28] we found that the conduction fails
for constant values of

√
ρD. To further explore the change

FIG. 5. Snapshots of wave propagation in the FitzHugh-Nagumo
model [Eq. (1), with D = 0.6 cm2/s and ρ = 60/cm2]. We initiate a
plane wave from the lower boundary of the simulation domain which
breaks up and forms reentrant circuits. The brighter areas represent
regions with high activation. The panels are separated by 5 ms.

in conduction velocity in the presence of sink heterogeneities,
we analyze the change in velocity because of a single sink
and develop an analytical model for it. This model can help us
understand how wave propagation is modified in the presence
of many such sinks randomly distributed in the medium.

IV. EFFECT OF A SINGLE SINK ON PROPAGATION

A. Numerical study

To study how a single sink modifies propagation in an
excitable medium, we analyze properties of propagation in
a simulation domain with 200 × 200 grid points. The sink is
placed at (x = 100,y = ysink), where ysink is varied from 60
to 120. In this medium we measure velocity by measuring
the activation times at the 50th and 150th sites along the
y direction. In the absence of the sink the wave arrives
simultaneously at all points along the line at y = 150. But
when there is a sink present, the activation will be delayed near
the sink position (x = 100). We plot this delay in Fig. 7(a) as a
function of x, for ysink = 120, 80, and 60 when D = 1.0 cm2/s.

FIG. 6. (Color online) Isosurface plots of wave propagation for
the three-dimensional FHN model with heterogeneities when D =
0.7 cm2/s for ρ = 200 cm−3 (left) and for ρ = 1000 cm−3 (right).
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FIG. 7. (Color online) (a) Change in crossing time [Td (x)] along
the x direction because of a single sink located at x = 100 grid
points and y = 120 (circles), 80 (squares), and 60 (diamonds)
for D = 1.0 cm2/s. The solid lines are the solutions of the one-
dimensional diffusion equation with an instantaneous point source of
amplitude Asink = 0.36 ms cm located at x = 100. (b) Asink plotted as
a function of D (open circles). The solid line is the best-fitting curve
Asink = 0.37D0.27. (c) In three-dimensional media, Td (x) behaves like
solutions of the two-dimensional diffusion equation from a point
source of strength Asink ms cm2. Asink in three dimensions is plotted
here (open circles) as a function of D. The solid line is the best-fitting
curve Asink = 0.0079D0.52.

The profile of activation times is narrower when ysink = 120
and is broader when ysink = 60. This profile can be expressed
as a solution of the one-dimensional diffusion equation with
an instantaneous point source, given by

T (x) = T0 + Asink√
4πDt

exp − (x − 100)2

4Dt
, (7)

where t is the time taken for the wave from the sink to the line at
y = 150 and Asink is an unknown parameter. Asink is calculated
by fitting the T (x) profile with Eq. (7). For a given D, Asink has
very little variation with ysink. In our simulation the maximum
difference in Asink due to sinks placed at different location was
less than 4% of the mean Asink.

In Figs. 7(a) and 7(c) we plot Asink as a function of D for two
and three dimensions, respectively. We assume that Asink varies
as aDb, and we determine a and b from a linear regression
analysis of a log-log plot. In two dimensions, a = 0.37 and
b = 0.27 (R = 0.993) and in three dimensions a = 0.0079
and b = 0.52 (R = 0.998). In Figs. 7(b) and 7(c) we plot
Asink = aDb along with the numerically computed values in
two and three dimensions, respectively.

The profile of arrival times shown in Fig. 7(a) suggests
that diffusion processes in the medium play a critical role in
the interaction of the sink with the propagating wave. When
the sink interacts with the wave, it causes a perturbation
proportional to Asink, which then diffuses along the wave
front. Asink itself is determined by the diffusive processes that
mediate the interaction between the wave front and the sink. In
the next section, we develop a model of the interaction of the
wave front with the sink in order to calculate the delay caused
by a single sink.

B. Model of a single sink

To compute the effects of the sink, we adopt a frame of
reference moving along with the wave front with the same
velocity as the wave. We assume there is a sink at the origin
(x = 0) and that the wave is traveling along the y direction in a
medium of size Lx × Ly . For our heuristic model, we assume

that the effect of the sink can be modeled by passive diffusion
of charge in a narrow segment of the medium of width (
y).

During wave propagation in a homogeneous medium, the
value of e in Eq. (1) at the maximum is e = emax. At the sink
at x = 0, e = esink = 0. Associated with the potential e(x,t)
in the moving reference frame is a space-dependent charge,
q(x,t) = (
y)Ce(x,t), where C is the capacitance per unit
area and q(x,t) is the charge per unit length. During wave
propagation, the charge diffuses into the sink, leading to a
change in the transmembrane potential along the wave front.
We define the potential deficit along the wave front as E (x,t) =
emax − e(x,t). When the wave front reaches the sink at time
t = 0, E (x,t) = 0 everywhere except in the neighborhood of
a sink at x = 0, where E (x,t) = emax.

The distribution of E (x,t) along the x direction can
be calculated by solving the diffusion equation ∂E (x,t)

∂t
=

D ∂2E (x,t)
∂x2 with the above initial condition. After a given time

t , the distribution E (x,t) will be of the form [39]

E (x,t) = emax

[
1 − erf

(
x

2

√
1

Dt

)]
,

where erf(u) is the error function. Therefore the average deficit
in potential because of the sink along the wave front is [40]

1

Lx

∫ ∞

0
E (x,t) dx = 2emax

Lx

√
Dt

π
. (8)

Although the diffusion from the wave to the sink continues
for the whole wavelength, once the wave front moves past
the sink, the interaction of the rest of the wave with the sink
will have minimal influence on the propagation. Hence t will
be only a fraction of the time that the whole wave interacts
with the sink. Although we cannot compute t exactly, we will
assume that

t = r

v0
= r

k

√
τ

D
, (9)

where r is the length of the wave front that interacts with the
sink. We also assume that for relatively fast action potential
upstroke, the wave front and hence r are independent of D,
for the range of D we consider.

Because of this interaction, the sink would lead to delayed
activation at points downstream from the sink. In order to
compute the total delay Td induced by the sink, we assume
that there are active processes that lead to a depolarization at
a rate ė. Consequently, from Eqs. (8) and (9), we find

Td = 2emax

ėLx

4

√
r2Dτ

π2k2
, (10)

where Td is related to Asink as Td = Asink/Lx [Eq. (7)]. Hence
Eq. (10) predicts Asink to vary as 4

√
D. This is consistent

with our numerical simulations where Asink varies as D0.27

[Fig. 7(b)].
In order to extend this analysis to wave propagation past

a single sink in three dimensions, we need to compute the
potential deficit because of the sink. By using a similar
argument to that used in two dimensions, the total change
in potential in Eq. (8) would be proportional to A0Dt .
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Consequently, the delay caused by a sink in three dimensions
will be

Td = k3
emax

ėLxLz

√
Dτr

k
, (11)

i.e., Asink varies as
√

D in three dimensions, which is again
consistent with what we find numerically where Asink ∼ D0.52

[Fig. 7(c)].
This result enables us to compute the decrease in the

observed velocity due to a single sink. For wave propagation
over a distance Ly the velocity is

v = Ly

T0 + Td

. (12)

Now using Eq. (10) to calculate Td , and assuming that T0 =
Ly/v0 and Td 
 T0, we find

v = v0

⎛
⎝1 − 2emax

LxLyq̇

4

√
k2r2D3

π2τ

⎞
⎠ . (13)

This equation for the conduction velocity slowing due to a
single sink can be extended to describe the velocity slowing
due to many sinks. Multiplying the delay caused by a single
sink [Eq. (10)] by the number of sinks (n) we can obtain an
expression for velocity in terms of ρ (ρ = n

LxLy
), D, and other

parameters:

v = v0

⎛
⎝1 − k2emax

ė

4

√
r2

τ
ρD

3
4

⎞
⎠ , (14)

where k2 is a dimensionless constant. Using emax/ė � τ we
can rewrite the above equation as

v = v0
[
1 − k2ρ

√
r(Dτ )

3
4
]
; (15)

i.e., the value of γ is 0.75. This is consistent with the
numerically estimated value (0.77).

Similarly, we can obtain an expression for the velocity in a
three-dimensional heterogeneous excitable media:

v = v0(1 − k3ρrDτ ), (16)

where k3 is a dimensionless constant in three dimensions.
Here also the value of γ (1) is consistent with the numerically
estimated value (1.02).

We have also verified that Eq. (15) applies even when sinks
are of size 4δx2 and 9δx2. With larger sinks the distance over
which the wave front interacts with the sink (r) also becomes
larger. We find that r scales approximately linearly with the
length of the sink.

Equations (15) and (16) are of the form v = v0(1 − kρlds ),
where d is the spatial dimension and lds = √

Dτ (rDτ )
d−1

2

is the effective volume occupied by the sink. To show that
our numerical results are consistent with this theoretical
prediction, we replot the data in Fig. 4(a) but now with ρl2

s

along the abscissa and v/

√
D
τ

along the ordinate [Fig. 8(a)].
Similarly, for the three-dimensional FHN model [Fig. 4(b)],

we replot the same data with ρl3
s along the abscissa and v/

√
D
τ

along the ordinate [Fig. 8(b)]. Here ls is calculated using
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FIG. 8. (Color online) (a) The data plotted in Fig. 4(a) replotted

with ρl2
s along the abscissa and v/

√
D

τ
along the ordinate. Symbols

(dots, circles, etc.) stand for velocity measured for D = 0.5 to
5.0 cm2/s as in Fig. 4(a). (b) The data plotted in Fig. 4(b) replotted
with ρl3

s along the abscissa and the ordinate as in (a). Symbols have
the same meaning as in Fig. 4(b).

r = 0.02 cm. With this rescaling, the data for different values
of D line up together. Conduction fails in the two-dimensional
medium when ρl2

s ∼ 0.4 and in the three-dimensional medium
when ρl3

s ∼ 0.7.

V. DISCUSSION

In this paper we have studied the propagation of excitation
waves in heterogeneous excitable media and the proposed
relationships that relate the decrease of the conduction velocity
to the proportion of randomly dispersed heterogeneities in
the medium. Our results agree with several earlier numerical
simulations in which a linear decrease in conduction velocity
and subsequent wave breaks and conduction failure in both
simple and more complex models of excitable media were
noted [9,10,28,29,31]. In addition to this earlier work, we
consider the effects of heterogeneities in a simple cellular
automata model of excitable media, as well as using a nonlinear
differential equation. We also compare the effects of two
different types of heterogeneities of relevance to cardiac tissue:
breaks and sinks.

The cellular automata model, in spite of its simplicity, is
able to capture the essential properties of wave propagation
seen in partial differential equation models. We can make ana-
lytic estimates of the dependence of the velocity of propagation
on the model parameters. By equating the linear terms for the
decrease of the conduction velocity with heterogeneity density
for the cellular automata model in Eq. (4) and in Eq. (6)
we obtain an estimate of the slope in the partial differential
equation models of k = 2θ/(1 − θ ). From the value of k in
Fig. 8(a) the corresponding θ in the FHN equations would be
0.45.

For sinks and breaks in the differential equation models,
our main results are contained in Eqs. (6), (15) and (16), in
which numerical results and theoretical arguments are used
to extract the form of the dependence between conduction
velocity and heterogeneities. With breaks, the slope of the
velocity against φ is independent of D and τ , as predicted by
Alonso et al. [9,10]. Alonso et al. further suggest that for breaks
the velocity decrease is well described by the relationship

v = v0

√
1 − φ/φc, (17)

046208-6



SCALING PROPERTIES OF CONDUCTION VELOCITY IN . . . PHYSICAL REVIEW E 84, 046208 (2011)

where φc is the critical density at which propagation fails.
Equating the first-order term from Eq. (17) with Eq. (6), we find

φc = 1/(2c). (18)

For the FHN equations, this gives agreement with the
observed densities for propagation failure to within 10%. The
propagation fails at the percolation threshold, in accordance
with earlier studies [9,10]. While this is of theoretical interest,
it may be less relevant to cardiac tissue where φ < φc even in
cases of extreme diffuse fibrosis [29].

One interesting question is whether there is a parameter
that can predict the regimes of wave breaking, reentry, or
conduction failure in a given excitable media. For both sinks
and breaks the velocity changes as v = v0(1 − kρld ), where
ld is the effective volume of the heterogeneity. For breaks
ld = ldb , the physical volume of the break. For sinks, ld =√

Dτ (rDτ )
d−1

2 . The parameter ρld acts as such a dimension-
less number. Further studies are required to test the generality
of this result. Similarly, Eqs. (15) and (16) enable us to make
predictions concerning the dependence of critical densities for
propagation failure on D in media with sink heterogeneities.
It has also been observed that the wave properties change near
the boundaries of such heterogeneities [41]. We have ignored
such spatial variations in wave properties and have expressed
our results in terms of wave properties in the homogeneous
media.

In the intact heart, structural abnormalities are often
associated with an increased risk of serious and in some
cases potentially fatal cardiac rhythms. In recent years,
experimental observations have manipulated the degree of
heterogeneities and the strength of coupling between cells in
cardiac tissue using a variety of techniques including drugs that
impair conduction between cells [13,14], growing mixtures
of cells of different types [15], and inducing the growth of
fibrous tissue, which has different conduction and coupling
properties from normal cardiac muscle tissue [16,17]. Our
results in the current paper are consistent with the general
observation that decreased coupling between excitable cells
and increased heterogeneity of cardiac tissue facilitates the
initiation of blocked conduction and reentrant spiral waves.
There is a need to combine theoretical analysis of heteroge-
neous excitable systems with experimental manipulation of
heterogeneity and conduction to enable the development of
methods to reduce the incidence of serious arrhythmias in the
heart.
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