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The synchronization is investigated in a two-dimensional Hindmarsh-Rose neuronal network by introducing
a global coupling scheme with time delay, where the length of time delay is proportional to the spatial distance
between neurons. We find that the time delay always disturbs synchronization of the neuronal network. When both
the coupling strength and length of time delay per unit distance (i.e., enlargement factor) are large enough, the time
delay induces the abnormal membrane potential oscillations in neurons. Specifically, the abnormal membrane
potential oscillations for the symmetrically placed neurons form an antiphase, so that the large coupling strength
and enlargement factor lead to the desynchronization of the neuronal network. The complete and intermittently
complete synchronization of the neuronal network are observed for the right choice of parameters. The physical
mechanism underlying these phenomena is analyzed.
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I. INTRODUCTION

Synchronization of coupled nonlinear oscillators is a
widespread phenomenon occurring in physical [1], chemi-
cal [2], engineering [3,4], biological [5], and medical [6]
systems, e.g., between cardiac and respiratory systems or
between interacting neurons or coupled laser systems with
feedback. However, synchronization is not always desirable.
For example, synchronization of individual neurons leads
to the emergence of pathological rhythmic brain activity in
Parkinson’s disease, essential tremor, and epilepsies [7,8].
Therefore it is interesting to find various methods to suppress or
facilitate the synchronization of coupled nonlinear oscillators.

In recent years, the synchronization of time-delay systems
has attracted a lot of attention [9–24]. Anticipating syn-
chronization [9,10], generalized synchronization [14], phase
synchronization [15–17], complete synchronization [18,19],
exponential synchronization [20], chaotic burst synchroniza-
tion [21], globally clustered chimera [22], and zero lag
synchronization [23] are observed in time-delay coupled
systems. It is found that the delayed interaction between
two or among many oscillators can suppress or facilitate
synchronization [12,13], and result in oscillation quenching
as well [24]. Although the synchronization in a coupled
neuronal network with time-varying delay [25–27], distributed
time delays [16,28,29], or mixed time-varying delays [30,31]
has been extensively studied, how the length of time delay
depending on the spatial distance between neurons affects
the synchronization of chaotic neuronal networks with time-
delayed coupling has not yet been explored.

Signal transmission time delays are unavoidable in spatially
distributed coupled oscillator systems. A careful measurement
of axonal conduction delays in the mammalian neocortex
showed [32–34] that they could be as small as 0.1 ms and
as large as 44 ms, depending on the type and location of the
neurons. Thus the time delays are spatially distributed due
to different distances and finite signal transmission speeds
between different pairs of coupled neurons in the brain. In this
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paper we investigate the synchronization of a two-dimensional
(2D) neuronal network with global time-delayed coupling. The
network is made of identical Hindmarsh-Rose (HR) neurons
placed randomly inside the chaotic regime. Considering the
fact that the distance between coupled neurons may delay
the receiving of signals, we take the length of time delay
between two neurons as τ ∝ d, where d denotes the spatial
distance between them. We mainly focus on how the length
of time delay per unit distance affects the synchronization
of the neuronal network. It is found that the time delay
always impedes the synchronization of the neuronal network.
This results in the abnormal membrane potential oscillations
(AMPOs) in neurons when the coupling strength and length of
time delay per unit distance are large enough. Specifically, the
AMPOs for the symmetrically placed neurons are in antiphase.
The birth of these AMPOs induces desynchronization of the
network. The complete synchronization (CS) and intermit-
tently complete synchronization (ICS) are observed if the
related parameters are properly chosen. It has been generally
accepted that the large coupling strength can easily achieve
CS in a globally coupled neuronal network. However, in our
work we interestingly find that large coupling strength always
induces the desynchronization of the neuronal network for
large length of time delay per unit distance.

The paper is organized as follows: In Sec. II, we introduce
a 2D neuronal network model with global time-delayed cou-
pling. Section III is devoted to investigate the synchronization
of the neuronal network, and the detailed numerical simu-
lation results are given. The physical mechanism underlying
desynchronization is analyzed in Sec. IV. A brief conclusion
is presented in the last section.

II. TWO-DIMENSIONAL NEURONAL NETWORK MODEL

We consider identical HR neurons placed on a two-
dimensional square lattice with global time-delayed coupling,
which is the self-time-delay coupling used by Dhamala et al. in
Ref. [12]. The neuronal network is composed of N = n′ × n′
neurons. The time evolution of the neuron labeled (i,j ) is
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described by the set of equations [35]

u̇i,j = vi,j − au3
i,j + bu2

i,j − wi,j + Iext + Fi,j (t), (1a)

v̇i,j = c − du2
i,j − vi,j , (1b)

ẇi,j = r[s(ui,j + χ ) − wi,j ], (1c)

Fi,j (t) = k

n′∑
l,m=1

[ul,m(t − τlm,ij ) − ui,j (t − τlm,ij )], (1d)

i,j,l,m = 1,2, . . . ,n′,

where variable ui,j represents the membrane potential, vari-
ables vi,j and wi,j represent fast and slow ion currents in
the neuronal dynamics, respectively, Fi,j (t) is global coupling
term, k is coupling strength, and τlm,ij is the length of
time delay. The parameters are defined as a = 1, b = 3, c =
1, d = 5, r = 0.006, s = 4, χ = 1.56, and Iext = 3.0 where
an isolated neuron exhibits a chaotic behavior. In this model,
the neuron (i,j ) receives the signal from the neuron (l,m)
after a time delay τlm,ij . On the other hand, the membrane
potential, generated in the soma, spreads forward to the axon
and back into a dendritic terminal. This is referred to as
a back-propagating membrane potential. There is a corre-
sponding back-propagating membrane potential for different
received signals. The back-propagating membrane potential
ui,j (t − τlm,ij ) means the state of the neuron (i,j ) delayed by
τlm,ij . In the global coupling term, the corresponding feedback
signal is generated from the difference of received signal and
the corresponding back-propagating signal.

In our numerical simulation, the model equations are
integrated by using the fourth-order Runge-Kutta algorithm
with time step �t = 0.001. The total integration time length
of each run of simulation is 5000. The synchronization of
the neuronal network with time delay that is taken to be the
same for all neurons had been investigated in Ref. [12]. We
now consider the time delay that only depends on the spatial
distance between neurons. The length of time delay between
a pair of neurons is given as

τlm,ij = int[pdlm,ij ]�t = int[p
√

(l − i)2 + (m − j )2]�t.

(2)

Where int[·] denotes the integer part of [·], dlm,ij is the distance
between neurons (i,j ) and (l,m), and p is an enlargement factor
which takes an integer value for simplicity. The dynamics of
an isolated HR neuron and the initial state of the neuronal
network are shown in Fig. 1.

In order to study the synchronization degree of the neuronal
network, we define a synchronization parameter δ(t) and its
average value as

δ(t) = 1

N − 1

n′∑
i,j=1

|ui,j − u1,1|, (3)

δ0 = 1

1000

∫ 5000

4000
δ(t)dt, (4)

where δ(t) = 0 indicates the precisely complete synchro-
nization. But, δ(t) is generally not equal to zero. The
more synchronous the neuronal network, the smaller is the
synchronization parameter δ(t). Hence, in this situation, the

FIG. 1. (a)–(c) Chaotic bursting of a single HR neuron. (a), (b)
Chaotic time series of the variables u and v, respectively. (c) Phase
trajectory on the u − w phase plane. (d) Initial pattern of the neuronal
network.

neuronal network is considered to be CS when the network
fulfills δ0 < 10−3.

III. NUMERICAL STUDIES

Generally speaking, ul,m(t − τlm,ij ) and ul,m(t − τlm,i ′j ′)
are different due to time delay, so

∑n′
l,m=1[ul,m(t − τlm,ij )] in

Eq. (1d) is different for major neurons. The computation load
thus increases sharply as the size of the network increases. In
order to reduce the computation load, we apply a small network
with N = 16 × 16 neurons to investigate the synchronization
of the neuronal network. Coupling strength k and enlargement
factor p are treated as adjustable parameters. We vary p in
[0,50] and k in [0,0.3]. The numerical results show that the
CS of the neuronal network can be achieved at k � 0.004
for p = 0 (i.e., τ = 0). The increase of k only facilitates
synchronization. However, we note that large k and p always
lead to the desynchronization of the neuronal network with the
time delay.

Figure 2 shows the time evolution of the synchronization
parameter δ(t) for p = 13 and different coupling strengths.
Figures 2(a) and 2(f) indicate that the neuronal network
is chaotic. Figures 2(c) and 2(d) show that the network
has reached the CS state. Obviously, the δ(t) of the latter

FIG. 2. Time evolution of synchronization parameter δ for p =
13 and different values of k. (a) k = 0.0005, (b) k = 0.0044,
(c) k = 0.0075, (d) k = 0.069, (e) k = 0.072, (f) k = 0.20.
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FIG. 3. log10(δ0) vs k for p = 13.

oscillates irregularly around a small value and does not vanish.
Figure 2(b) corresponds to a transition state between spa-
tiotemporal chaos and CS. The spike and burst synchronization
between neurons occur sporadically in the transition state.
Figure 2(e) shows that δ(t) approaches intermittently zero.
This means that the network reaches ICS state. In Fig. 3,
log10(δ0) is plotted against k for p = 13. Figure 3 shows that
when k is small the neuronal network is chaotic. In the range
of value of k [0.0055,0.039], δ0 = 0 is achieved. For further
increased k, δ0 would increase gradually. Finally, this results
in the desynchronization of the neuronal network, generating
ICS or spatiotemporal chaos. The CS region is clearly observed
from Fig. 3. However, the ICS region is not quite clear.

To get more insight into the ICS state, we plot in Fig. 4
the three-dimensional patterns of variable u at different time
moments for k = 0.072 and p = 13. The corresponding time
series of variables u of specially chosen two neurons are
shown in Fig. 5. It is observed that the abnormal high
frequency oscillation of membrane potential arises during
the after-spiking stage of neuron. Moreover, the AMPOs of
symmetrically placed neurons have inverse phase. The AMPOs
of neurons closely resembles the early after-depolarizations in
cardiac myocytes, which are a type of triggered activity that
arises before action potential repolarization is completed. In
contrast to the former, the latter involves dynamic changes in
intracellular Ca2+, such as spontaneous Ca2+ release from the
sarcoplasmic reticulum and activation of membrane currents

FIG. 4. Three-dimensional patterns of variable u at different
time moments for k = 0.072 and p = 13. (a) t = 535, (b) t = 545,
(c) t = 553, (d) t = 554.9, (e) t = 555.5, (f) t = 565.

FIG. 5. Time series of variables u of neurons (1,1) and (16,16) for
k = 0.072 and p = 13. Solid and dotted lines correspond to neurons
(16,16) and (1,1), respectively. Bottom diagram is the local blowup
of top diagram.

through a Ca2+-activated process [36]. The desynchronization
of the neuronal network begins at the corners of the network
with the square boundary and is induced by the AMPOs of
neurons. The AMPOs in neurons vanish when the membrane
potential goes back to its resting potential. Thus the CS of
the network is restored. We find that both amplitude and
oscillation duration of AMPO increase as coupling strength
increases. The AMPOs would become very strong if coupling
strength is large, so that the neuronal network cannot restore
synchronization after membrane potential returns to the resting
potential. The corresponding neuronal network is chaotic.

In Fig. 6 we plot the CS region in the p-k parameter
plane. One can observe that the time delay does not lead to
the synchronization of the neuronal network when coupling
strength is outside the CS region of the neuronal network
without time delay, i.e., it can not extend the CS region. On
the contrary, the right border of the CS region shrinks as p

increases. Moreover, δ0 is not equal to 0 for p > 1 when
coupling strength is close to the right border of the CS region.
This implies that the time delay defined by Eq. (2) always

FIG. 6. The CS region in the p-k parameter plane. The shaded
region represents CS while the blank region represents nonsynchro-
nization.
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FIG. 7. Time evolution of synchronization parameter δ for p =
13 and different values of k. Triangular lattice with 16 × 16 grid
points is applied. (a) k = 0.0044, (b) k = 0.005, (c) k = 0.0075,
(d) k = 0.069, (e) k = 0.073, (f) k = 0.20.

suppresses the synchronization of the neuronal network,
whereas the time delay that is independent of the spatial
distance between neurons can either suppress or enhance the
synchronization of a neuronal network, but does not induce
the AMPOs in neurons [12]. The above phenomena will be
explained in the next section.

So far our investigation has focused on square lattice, the
square boundary of the network, and a chaotic oscillatory
state. Now we investigate the effects of different factors on
the synchronization of the neuronal network. When a square
lattice is applied, we consider the different factors, such as the
circular boundary of the network and the different chaotic or
nonchaotic oscillatory states. We also apply a triangular lattice
to investigate the synchronization of the neuronal network.
The results obtained in all cases are similar to those shown in
Fig. 2 when the number of neurons is 256 (see Fig. 7). The
phenomena of CS, ICS, spatiotemporal chaos, and AMPO
are also observed. The desynchronizations of the neuronal
networks also begin at the corners of the network with the
square boundary or at the circular boundary of the network.
These factors only lead to a little change of the CS region
shown in Fig. 6. However, we find that the number of neurons
can significantly affect the synchronization of the neuronal
network (see Fig. 8). Comparing Fig. 8 with Fig. 2, we observe
that the increase of the neuronal network size causes the
considerable shrinkage of the CS range.

FIG. 8. Time evolution of synchronization parameter δ for p =
13 and different values of k. Square lattice with 32 × 32 grid points is
applied. (a) k = 0.001, (b) k = 0.002, (c) k = 0.012, (d) k = 0.015,
(e) k = 0.05.

IV. ANALYSIS OF DESYNCHRONIZATION

In order to understand the above results, we define the
synchronization error between any two neurons in the network
as

eu
ij,i ′j ′ = ui,j − ui ′,j ′ , ev

ij,i ′j ′ = vi,j − vi ′,j ′ ,

ew
ij,i ′j ′ = wi,j − wi ′,j ′ . (5)

Their dynamics in linear approximation can be derived from
Eq. (1) as

ėu
ij,i ′j ′ = ev

ij,i ′j ′ − 3aui,jui ′,j ′eu
ij,i ′j ′ + b(ui,j + ui ′,j ′ )eu

ij,i ′j ′

− ew
ij,i ′j ′ + �Fij,i ′j ′ , (6a)

ėv
ij,i ′j ′ = −deu

ij,i ′j ′(ui,j + ui ′,j ′ ) − ev
ij,i ′j ′ , (6b)

ėw
ij,i ′j ′ = rseu

ij,i ′j ′ − rew
ij,i ′j ′ , (6c)

�Fij,i ′j ′ = Fi,j − Fi ′,j ′ = gij,i ′j ′ + fij,i ′j ′ , (6d)

gij,i ′j ′ = −Nkeu
ij,i ′j ′ , (6e)

fij,i ′j ′ ≈ k�t

16∑
l,m=1

Lmax∑
n=Lmin+1

u̇l,m(t − n�t)

+ k�t

Q∑
n=0

[
Nn

ij u̇i,j (t − n�t)−Nn
i ′j ′ u̇i ′,j ′ (t − n�t)

]
,

(6f)

LA = int[p
√

(l − i)2 + (m − j )2],

LB = int[p
√

(l − i ′)2 + (m − j ′)2],

Lmax = max(LA,LB), Lmin = min(LA,LB),

for given l and m,

Q = int[p
√

(1 − 16)2 + (1 − 16)2] = int[21.21p],

i,j,i ′,j ′ = 1,2, . . . ,16,

where Nn
ij is the number of u̇i,j (t − n�t). From Eq. (6) we

draw conclusions as follows: (1) The synchronization errors
ev
ij,i ′j ′ and ew

ij,i ′j ′ will approach zero if eu
ij,i ′j ′ approaches zero.

Therefore we use synchronization parameter δ defined by
Eq. (3) to measure the synchronization degree of the neuronal
network. (2) �Fij,i ′j ′ is composed of negative feedback term
gij,i ′j ′ and time delay term fij,i ′j ′ . fij,i ′j ′ is equal to zero
when the time delay is not considered. The global coupling
can easily achieve the CS of the neuronal network with
p = 0 for large coupling strength. (3) When the time delay
is considered, fij,i ′j ′ is generally not equal to zero except
that the neuronal network exhibits the precisely complete
synchronization. Therefore fij,i ′j ′ reduces the synchronization
ability of the negative feedback term.

The number of terms in the right-hand side of Eq. (6f) is
proportional to M (=∑16

l,m=1

∑Lmax
n=Lmin+1 1). The value of M

is generally different for different neuron pairs. M reaches
its maximum for the neurons at the opposite corners of the
network with square boundary. The effect of the corresponding
fij,i ′j ′ on �Fij,i ′j ′ reaches maximum value over fij,i ′j ′ . The
result indicates that the desynchronization of the neuronal
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FIG. 9. (a) Time evolution of f0101,1616 and g0101,1616 for k = 0.072
and p = 13. (b) Local blowup of diagram (a).

network will begin at the corners of the network. This deduc-
tion is supported by the results shown in Fig. 4. On the other
hand, fij,i ′j ′ depends on the time derivative of the variable u.
When neuron is in the spiking stage, the time derivative
of the variable u is large. Thus fij,i ′j ′ will sporadically be
larger than gij,i ′j ′ if the coupling strength is large enough. In
Fig. 9 we plot the time evolution of f0101,1616 and g0101,1616

for the specially chosen two neurons (1,1) and (16,16) at
k = 0.072 and p = 13. It is observed that both f0101,1616 and
g0101,1616 oscillate in opposite manners when the two neurons
are in after-spiking stage. That is why large k and p lead to
the AMPO of neuron and desynchronization of the neuronal
network.

V. CONCLUSION

We have investigated the synchronization in the globally
coupled square network with time delay depending on the
spatial distance between two neurons. Numerical experiments
demonstrate that the time delay always impedes the syn-
chronization of the neuronal network. We have uncovered a
phenomenon of the AMPO of the neuron, which is induced
by time delay and emerges under the after-spiking stage of the
neuron. A novel desynchronization and ICS are observed in
the neuronal network since the AMPOs of the symmetrically
placed neurons form an antiphase. Abnormal oscillation of
membrane potential is a widespread phenomenon in biological
systems. In heart diseases, cardiac myocytes can exhibit
abnormal membrane potential oscillations, such as early after-
depolarizations, which are associated with lethal arrhythmias
[37]. The abnormal neural oscillations in brain may lead to
tics [38]. Hopefully, this study will contribute to the basic un-
derstanding of the AMPO occurring in biological systems, and
can help one to achieve a good control over synchronization
and desynchronization in an interacting population of neurons.
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