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Nonuniqueness of global modeling and time scaling
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Starting from an observed single time series, it is shown how to reconstruct a global model in the original phase
space by using the ansatz library approach. This model is then compared to the underlying dynamical system that
describes the initial time series, and the nonuniqueness of the reconstructed model is discussed. This framework
is extended by taking an additional time scaling factor in the reconstructed model class under consideration.
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I. INTRODUCTION

To study an mth order dynamical system, all m physical
quantities should be known to have a complete description
of the system under investigation. In most experimental
situations, only a single quantity can be measured. The
embedding theorem of Takens [1] shows us how to get
insight into the whole dynamical system from this incomplete
set of measurements. Examples of modeling of physical
experiments on chaotic systems include chemical reactions
[2,3], vibrating strings [4], optical fiber ring resonators [5],
and laser and sunspot data [6], among others. There are two
main model types: the phenomenological models that need
specialized knowledge about the system under study and
models that are based on the time series data, which are the
subject of this paper. Time series based modeling can yield
linear stochastic models (e.g. AutoRegressive Moving Average
models) or deterministic models (local or global). There are
several different types of global deterministic models, such
as neural networks or differential equation models, and the
basis functions of these models can be, e.g., polynomials
or radial basis functions. A nice data driven introduction to
all these techniques can be found in [7], which is based on
the freely available software package TISEAN [8]. Another
good review of modeling techniques (local and global, linear
and nonlinear) can be found in [9]. In this paper, global
nonlinear deterministic ordinary differential equations (ODE)
models with polynomials will be considered. Global modeling
strongly depends on the time series available, and the papers
of Letellier and Aguirre [10,11] explain how the choice of
observables influences the amount of information we can
achieve from such a single time series of a nonlinear dynamical
system. Reconstruction of a system of ODEs from a single
time series then can be done using differential coordinates
[12,13]. The ansatz library [13–15] can then further be used
to reconstruct a dynamical system in the original phase
space. The problems that have been neglected in these
papers are the questions on uniqueness of the reconstructed
model and the role of time scaling in the time series under
consideration.

In this paper, it is assumed that a time series is available and
the following questions are asked: (1) Is it possible to create
a model, within a certain class of models, that describes the
initial time series? (2) Is the model unique? If not, what is the
degree of nonuniqueness within the class of models treated?
(3) What is the role of time scaling?

To answer these questions, the ansatz library approach
[13] is used where a three-dimensional (3D) system of
ODEs is proposed that can be converted to jerk form with
polynomial functions. The transformation between the original
dynamical system and the jerk or differential model provides
a relation between the parameters of these two systems. When
a differential model is extracted from a scalar time series, this
relation of the parameters can be used to extract the coefficients
and model form in the initial model. This idea is illustrated with
the example of the Rössler system.

The paper is organized as follows: In Sec. II, the trans-
formation of a dynamical system to its differential model is
introduced. This transformation is discussed, and it is shown
that there exists a whole class of dynamical systems that share
the same differential model. In Sec. III, this is extended to an
additional time scaling factor. Section IV is the conclusion.

II. GENERAL DESCRIPTION OF THE PROBLEM

A. Background

The class of models considered here is a 3D system of
ODEs with the right-hand sides containing polynomials with
up to second order nonlinearities, which can be written in a
general form as

ẋi = ai,0 + ai,1x1 + ai,2x2 + ai,3x3 + ai,4x
2
1

+ ai,5x1x2 + ai,6x1x3 + ai,7x
2
2 + ai,8x2x3

+ ai,9x
2
3 , i = 1,2,3. (1)

Usually, only a small subset of coefficients ai,∗ is assumed
to be nonzero [13]. This subset defines the class of models
under consideration. This class has Nm nonzero parameters
ai,∗.

1. Rössler-type models

We ask the following question: Is it possible that the time
series corresponds to a function of the variables φ(xi)? For
simplicity, does it correspond to one of the variables xi?

To answer these questions, the x2 variable of the Rössler
system [16]

ẋ1 = a1,2 x2 + a1,3 x3,

ẋ2 = a2,1 x1 + a2,2 x2, (2)

ẋ3 = a3,0 + a3,3 x3 + a3,6 x1 x3
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is assumed to be the observed scalar signal. For this class of
models, Nm = 7.

B. Transformation

The Rössler system is rewritten as differential model
starting from X = x2 as

Ẋ = Y, Ẏ = Z, Ż = F (X,Y,Z), (3)

where the successive derivatives of X = x2 define the new state
space variables Y and Z. The function F (X,Y,Z) is explicitly

F (X,Y,Z) = α1 + Xα2 + X2α3 + Yα4 + XYα5

+Y 2α6 + Zα7 + XZα8 + YZα9, (4)

where the coordinates αr of the differential embedding are
related to the coordinates ai,∗ of the Rössler model by

α1 = a1,3 a2,1 a3,0, α2 = −a1,2 a2,1 a3,3,

α3 = a1,2 a2,2 a3,6, α4 = a1,2 a2,1 − a2,2 a3,3,
(5)

α5 = a2
2,2 a3,6

a2,1
− a1,2 a3,6, α6 = −a2,2 a3,6

a2,1
,

α7 = a2,2 + a3,3, α8 = −a2,2 a3,6

a2,1
, α9 = a3,6

a2,1
.

The differential model has Nd = 9 nonzero parameters αr .

C. Jacobian rank

The nine parameters α1 through α9 of the differential model
are explicit functions of the seven parameters ai,∗ of the initial
class of models Eq. (2) of Rössler type. It would therefore
seem that it is not possible to solve for the seven parameters
ai,∗ once the nine parameters αr have been determined.

There are, however, some subtleties that must be taken
into consideration, and that allow inversion of Eq. (5). To
be specific, α6 = α8. In addition, a2,2 = −α6/α9 and a3,3 =
α7 + α6/α9. In short, there are nontransparent relations among
the parameters αr that allow inversion of Eq. (5).

The number of relations is determined by computing the
rank of the Jacobian

∂αr

∂ai,∗
. (6)

This matrix has rank 5 � Nm = 7 < Nd = 9. This means
that there are 4 (=9 − 5) relations among the parameters αr .
This also means that an inverse solution to Eq. (5) is not
only possible, but there is a 2 (=7 − 5)-parameter family
of solutions ai,∗ to these equations. In retrospect, this result
should not be surprising. In attempting to construct a class of
models, the x2 dependence of which matches the initial data
set, there is a degree of “floppiness” or lack of rigidity, and this
degree is measured by the co-rank 2 = 7 − 5 of the Jacobian
of the transformation.

D. Determining the differential model

There are two possible ways to fit the differential model
to the initial time series data. The more rigorous but more
difficult way is to determine the four constraints satisfied by
the nine parameters αr and then carry out a fit subject to these

constraints. A second procedure is to allow each of the nine
parameters αr to vary independently, carry out a fit, then check
to see that the constraints are satisfied. A variation of this latter
procedure has been followed.

As a first step, the nine parameters αr have been fitted to
the data using a least squares method. These nine values have
been used as inputs to a genetic algorithm (GA) that has been
used repeatedly to estimate the values of the seven parameters
ai,∗. These values have, in turn, been substituted into Eq. (5)
to verify that the indicated functions of the ai,∗ do in fact
reproduce the estimated values of the αr . It can be found, for
example, that the fitted values of α6 and α8 are always within
a standard deviation.

The genetic algorithm has been run many times to estimate
sets of values of the parameters ai,∗ because of the lack of
uniqueness of the inverse transformation. Numerically, certain
parameters, such as a2,2 and a3,3, have the same value each
time the genetic algorithm has been run. These correspond to
the values identified above (a2,2 = −α6/α9 and a3,3 = α7 +
α6/α9). Other parameters ai,∗ have values that vary from one
run to another. This variation is indicative of the lack of rigidity
in the model formulation (i.e., the co-rank 2 of the Jacobian).

E. Scaling

We simplify the general arguments by introducing a scaling
transformation. It is typical that, if some set of parameters ai,∗
satisfies the inverse transformation Eq. (5), then a new set of
parameters ãi,∗ also satisfies the inverse transformation. The
new parameters are related to the original set by a scaling
transformation

ãi,∗ = λp(i,∗)ai,∗. (7)

The simplest way to determine these scaling relations, specifi-
cally, the set of exponents p(i,∗), is to note that each coefficient
αr is a sum of products of powers of the original model
parameters ai,∗. Take the logarithms of these nonlinear product
functions, construct the appropriate coefficient matrix, and
look for the null space.

This is illustrated with an example. The scaled version of
the inverse transformation Eq. (5) with ai,∗ → λi,∗ai,∗ is

α1 = (a1,3a2,1a3,0) (λ1,3λ2,1λ3,0),

α2 = (−a1,2a2,1a3,3) (λ1,2λ2,1λ3,3),

α3 = (a1,2a2,2a3,6) (λ1,2λ2,2λ3,6),

α4 = (a1,2a2,1) (λ1,2λ2,1) − (a2,2a3,3) (λ2,2λ3,3),
(8)

α5 = a2
2,2a3,6

b1

λ2
2,2λ3,6

λ2,1
− (a1,2a3,6) (λ1,2λ3,6),

α6 = −a2,2a3,6

a2,1

λ2,2λ3,6

λ2,1
,

α7 = a2,2λ2,2 + a3,3λ3,3,

α8 = −a2,2a3,6

a2,1

λ2,2λ3,6

λ2,1
, α9 = a3,6

a2,1

λ3,6

λ2,1
.

To leave αi in Eq. (5) unchanged, the scaling has to be one (e.g.,

for α5:
λ2

2,2λ3,6

λ2,1
= 1 and λ1,2λ3,6 = 1). Taking the logarithm,

they obey a linear relation (e.g., −λ2,1 + 2λ2,2 + λ3,6 = 0 and
λ1,2 + λ3,6 = 0). The set of linear relations derived from the
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12 term scaling of Eq. (8) is summarized in matrix form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 0 0 1 0 0 1

1 0 1 0 0 0 0

0 0 0 1 0 1 0

0 0 −1 2 0 0 1

1 0 0 0 0 0 1

0 0 −1 1 0 0 1

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 −1 1 0 0 1

0 0 −1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

log(λ1,2)

log(λ1,3)

log(λ2,1)

log(λ2,2)

log(λ3,0)

log(λ3,3)

log(λ3,6)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (9)

This 12 × 7 matrix has a two-dimensional null space spanned
by the null vectors (−1, − 1,1,0,0,0,1), (0, − 1,0,0,1,0,0).

This means that, for the Rössler system reconstructed from
its x2 variable, there exists a two-parameter family of solutions

ẋ1 = 1

b
a1,2 x2 + 1

b

1

c
a1,3 x3,

ẋ2 = b a2,1 x1 + a2,2 x2, (10)

ẋ3 = c a3,0 + a3,3 x3 + b a3,6 x1 x3,

where b and c are real numbers. Any choice of b and c will
generate exactly the same time series of x2(t). Therefore,
reconstruction can only be done within the uncertainty of these
two parameters b and c.

F. Discussion

The same approach as shown here for the example of the x2

variable of the Rössler system works for any model function
F of the differential model that is composed of monomials

F (X,Y,Z) =
∑

l

αl XiY jZk, (11)

where the indices (i,j,k) for the monomials may also be
negative, yielding a model with rational monomials. The ansatz
library [13] summarizes all 26 general 3D systems Eq. (1) that
can be transformed into such a differential model.

It is shown in [13] how the correct structure of the model
function F of the differential model can be recovered from a
time series without any knowledge of the underlying dynami-
cal system in the case that the original system is covered by the
ansatz library. If the correct structure of the differential model
has been estimated from the time series, then the ansatz library
lists all possible 3D systems Eq. (1) that yield that differential
model. Numerically, a GA is then used to select only parame-
ters of the original system that can reproduce the original time
series. The example of reconstructing the Rössler system from
the time series of the x3 and x1 variables is shown in [13].

As pointed out in [13], the differential model of the Rössler
system derived from its x1 variable is not in the form of
Eq. (11), but can be brought into such a form by shifting
the x1 variable along the x1 axis: x1 → x1 + a2,2−a3,3

a3,6
.

Applying then the same scaling relations as in Sec. II E
to each of the three state space variables, the two-parameter

family of solutions Eq. (10) is slightly changed to

ẋ1 = 1

b
a1,2 x2 + 1

k

1

c
a1,3 x3,

ẋ2 = b a2,1 x1 + a2,2 x2, (12)

ẋ3 = c a3,0 + a3,3 x3 + k a3,6 x1 x3.

Note the additional parameter k: There is a slightly different
set of parameters b, c, and k depending on the time series used
for reconstruction. When reconstructing from the x1 variable,
only b and k are present (c = 1); when reconstructing from the
x2 variable, b = k and c are present; and when reconstructing
from the x3 variable, only b and c are present (k = 1). This
confirms the observation by Letellier and Aguirre [10,11] that
the choice of observable is important for global modeling.
In the remainder of this paper, only modeling from the x2

variable will be considered since the above differences in the
parameters b, c, and k could be applied one to one to the results
of the next section.

III. TIME SCALING

It is possible to extend the model family by one dimension
by introducing a time scaling transformation

t̃ = D t. (13)

With this, the inverse transformation Eq. (5) becomes

α1 = D3 a1,3 a2,1 a3,0, α2 = −D3 a1,2 a2,1 a3,3,

α3 = D3 a1,2 a2,2 a3,6, α4 = D2 (a1,2 a2,1 − a2,2 a3,3),

α5 = D2

(
a2

2,2 a3,6

a2,1
− a1,2 a3,6

)
, (14)

α6 = −D
a2,2 a3,6

a2,1
, α7 = D (a2,2 + a3,3),

α8 = −D
a2,2 a3,6

a2,1
, α9 = a3,6

a2,1
.

To determine the degree of nonuniqueness of the recon-
structed solution set in this case, a scaling transformation is
introduced in the same way as in Sec. II E with an additional
scaling factor D → dD. In this case, the coefficient matrix of⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 1 1 0 1 0 0

3 1 0 1 0 0 1 0

3 1 0 0 1 0 0 1

2 1 0 1 0 0 0 0

2 0 0 0 1 0 1 0

2 0 0 −1 2 0 0 1

2 1 0 0 0 0 0 1

1 0 0 −1 1 0 0 1

1 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0

1 0 0 −1 1 0 0 1

0 0 0 −1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

log(d)

log(λ1,2)

log(λ1,3)

log(λ2,1)

log(λ2,2)

log(λ3,0)

log(λ3,3)

log(λ3,6)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 (15)

has a three-dimensional null space spanned by the null
vectors (0, − 1, − 1,1,0,0,0,1), (0,0, − 1,0,0,1,0,0), and
(−1,2,3,0,1,0,1,0).
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This means that there is a three-parameter family of
solutions

ẋ1 = d2 1

b
a1,2 x2 + d3 1

b

1

c
a1,3 x3,

ẋ2 = b a2,1 x1 + d a2,2 x2, (16)

ẋ3 = c a3,0 + d a3,3 x3 + b a3,6 x1 x3,

where the additional parameter d is a time scaling factor for
the time series. This parameter can be reconstructed from a
single time series. This means, if time series with different
time scalings from the same dynamical system is available,
this technique can identify those time series as originating
from the same dynamical system and reconstruct the time
scaling parameter.

IV. SUMMARY AND DISCUSSION

Starting from a single time series, a differential model
in a phase space spanned by the successive derivatives of

the observed variable can be reconstructed. This differential
model is unique and corresponds to a whole class of models.
In this paper, it is shown how this class of models in
the original phase space can be reconstructed from the
differential model and specify the nonuniqueness of these
models.

This framework is further extended by taking an additional
time scaling factor in the original time series under considera-
tion. This time scaling factor is an additional parameter to be
reconstructed, which extends the family of obtained models in
the original phase space.
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