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Conformists and contrarians in a Kuramoto model with identical natural frequencies
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We consider a variant of the Kuramoto model in which all the oscillators are now assumed to have the
same natural frequency, but some of them are negatively coupled to the mean field. These contrarian oscillators
tend to align in antiphase with the mean field, whereas, the positively coupled conformist oscillators favor an
in-phase relationship. The interplay between these effects can lead to rich dynamics. In addition to a splitting of
the population into two diametrically opposed factions, the system can also display traveling waves, complete
incoherence, and a blurred version of the two-faction state. Exact solutions for these states and their bifurcations
are obtained by means of the Watanabe-Strogatz transformation and the Ott-Antonsen ansatz. Curiously, this
system of oscillators with identical frequencies turns out to exhibit more complicated dynamics than its counterpart
with heterogeneous natural frequencies.
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I. INTRODUCTION

The Kuramoto model [1] of coupled oscillators has been
used to shed light on many diverse systems of physical
interest, particularly those involving synchronization transi-
tions. Examples include Josephson junction arrays [2], charge-
density waves [3], laser arrays [4], collective atomic recoil
lasers [5], bubbly fluids [6], neutrino flavor oscillations [7],
electrochemical oscillators [8], and human crowd behavior [9].

Originally, however, the Kuramoto model had no known
physical applications; these were only discovered years later.
Kuramoto was led to his model solely by considerations of
mathematical tractability. He was seeking an exactly solvable
many-oscillator system displaying a phase transition to mutual
synchronization, in hopes of illuminating this novel critical
phenomenon seen earlier by Winfree in his simulations of
biological rhythms [10].

In that same spirit, we have begun investigating a family
of simple models that generalize the Kuramoto model in
one key respect: they include both positive and negative
couplings in the same system. Positive coupling, analogous
to a ferromagnetic interaction, tends to align the oscillators
in phase. Negative coupling, analogous to an antiferromag-
netic interaction, drives oscillators apart and favors a phase
difference of π . When both types of couplings are present, the
system becomes frustrated. In this case, very little is known
about what sort of dynamics and equilibrium states might
follow.

Even the mean-field version of such systems remains
mysterious. Twenty years ago, in pioneering work, Daido
found evidence that Kuramoto models with mixed positive and
negative couplings could undergo a glass transition [11], but
the existence and properties of such an oscillator glass remain
unclear [12]. Other models with mixed attractive and repulsive
interactions have since been explored by several authors, who
were also motivated by analogies to spin glasses as well
as to neural networks with mixed excitatory and inhibitory
connections [13]. In each instance, it has been difficult to
understand the behavior of these models because of their
inherent nonlinearity, quenched random interactions, and large
numbers of degrees of freedom.

Inspired by Kuramoto’s success in explaining Winfree’s
synchronization transition through the use of a toy model, we
wondered whether Daido’s oscillator glass transition might
be rationalized similarly by studying much simpler models
with mixed coupling. In this paper, we analyze the behavior
of one such model and find, unfortunately, that this particular
simplification does not exhibit an oscillator glass. Neverthe-
less, this negative result still provides valuable information.
It shows that certain types of frustration are insufficient to
produce an oscillator glass and, thereby, constrains the possible
mechanisms at work.

Furthermore, the model does display some interesting
different dynamical phenomena, as we discuss below. And
although we are unaware of any physical realization of the
model studied here, we suspect that such realizations may
exist, given the model’s simplicity, and given the history
of the Kuramoto model itself, whose physical relevance
was established only after the model had been proposed on
theoretical grounds.

The governing equations for the model are

φ̇
(s)
j = ω + Ks

N

N∑
k=1

sin
(
φk − φ

(s)
j

)
, j = 1, . . . ,N, (1)

where φ
(s)
j is the phase of the j th oscillator in the s

subpopulation, ω is its natural frequency, and N is the total
number of oscillators. The oscillators in subpopulation 1 are
assumed to have positive coupling (K1 > 0) to all the other
oscillators in the system, whereas, those in subpopulation 2
have negative coupling (K2 < 0).

Equation (1) differs from the classic Kuramoto model in
that the distributed natural frequencies ωj have been replaced
by a uniform natural frequency ω, and the single positive
coupling constant K has been replaced by a two-valued
coupling constant Ks . In an earlier paper, we considered the
case in which ωj was kept heterogeneous [14]. As we see here,
however, the long-time dynamics is actually more complicated
for the homogeneous case. This finding is consistent with
previous studies of identical oscillators (see Refs. [15,16], for
example).
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What is unusual about this model is that its pairwise
interactions need not be symmetric. For example, oscillator
k could be coupled positively to oscillator j while j is coupled
negatively to k in return. This leads to a different type of frus-
tration. Although unfamiliar, physically, it may be realizable
in certain kinds of series arrays of Josephson junctions [2] or
in liquid crystal spatial light modulators suitably coupled by
global optoelectronic feedback [17]. Because of its asymmetry,
this form of coupling is nonvariational; no energy function
exists, and the dynamics do not correspond to relaxation or
gradient descent down an energy landscape. While this might
seem unnatural in some physical settings (e.g., magnetic spin
systems), it is more plausible in certain social or political
contexts. In particular, if we set ω = 0 (as can be done without
loss of generality by going into a suitable rotating frame, or
equivalently, by replacing φj with φj + ωt), the model starts
to resemble some of the existing models of social opinion
formation [18].

To see the connection, imagine a spectrum of opinions or
attitudes that can be laid out as points on a circle, rather than
as points on a line. For instance, Binmore [19] has argued
that political attitudes are more properly represented this way
than as the usual linear continuum from left wing to right wing.
Now, consider a population of indifferent individuals who have
no preferred phase along the circle, or, to continue the analogy,
no inherent political preference. All that matters to them is
what other people think. Such an individual updates his or her
political phase continuously, based on where he or she stands
in relation to the prevailing sentiment. Some individuals—the
conformists—want to be in phase with conventional wisdom,
whatever it happens to be, whereas, contrarians reflexively
oppose it.

The question is: Depending on the relative proportions of
conformists and contrarians, and depending on how intensely
they react to the prevailing opinion, what will this population
do in the long run? Split into two camps? Fail to reach any
consensus at all? Or cycle through all attitudes periodically? As
we will see, all of these will be possible long-term outcomes,
depending on the choice of model parameters.

Let p denote the fraction of oscillators with positive
coupling; thus, the system consists of pN conformists and
qN contrarians, where q = 1 − p (Fig. 1). When p = 0, all
the oscillators repel one another, a case explored in Ref. [20].

0 1p

FIG. 1. A schematic of a set of eight identical oscillators with
positive and negative couplings. Open circles represent oscillators
with negative coupling to all the others; filled circles denote oscillators
with positive coupling. When p = 0, all oscillators are contrarians.
However, as p is increased, conformists begin to appear and
eventually replace all contrarians as p approaches 1.

In what follows, we examine the dynamics of this system as
its parameters are varied. We will continue to use the metaphor-
ical language of conformists and contrarians, although perhaps
we should stress that we do not intend the model to be taken
literally as a description of real social situations. It is a toy
model. Like the Kuramoto model itself, it is being offered on
theoretical grounds, without any particular physical realization
in mind. The goal is to clarify the dynamical consequences
of mixed coupling by investigating a particularly simple and
tractable special case. Our hope is that such an investigation
may bring us a step closer toward solving the puzzle of
oscillator glass [11–13].

II. DIMENSIONAL REDUCTION

The dynamical system given by Eq. (1) enjoys a highly
nongeneric structure. It has N − 6 constants of motion, for
all N > 6. In geometrical terms, its phase space is foliated
by an (N − 6)-parameter family of six-dimensional invariant
manifolds.

These results can be seen explicitly by using a theoretical
device discovered by Watanabe and Strogatz [21] and recently
generalized by Pikovsky and Rosenblum [22]. Rewrite Eq. (1)
as

φ̇
(s)
j = f + Ksg cos φ

(s)
j + Ksh sin φ

(s)
j , (2)

where f = ω, g = (1/N)
∑N

k=1 sin φk , and h = −(1/N )∑N
k=1 cos φk . As discussed above, assume that ω = 0 without

loss of generality. Watanabe and Strogatz showed that all
solutions φj (t) of Eq. (2) can be expressed as

tan

[
φ

(s)
j (t) − �s(t)

2

]
=

√
1 + γs(t)

1 − γs(t)
tan

[
ψ

(s)
j − �s(t)

2

]
,

(3)

where the ψ
(s)
j in Eq. (3) are constant and γs(t), �s(t), and

�s(t) evolve according to the ordinary differential equations,

γ̇s = −(
1 − γ 2

s

)
Ks(g sin �s − h cos �s),

�̇s = −
√

1 − γ 2
s

γs

Ks(g cos �s + h sin �s), (4)

�̇s = −Ks

γs

(g cos �s + h sin �s).

Here again, the variables φ
(s)
j (t) denote the oscillator phases

in the s subpopulation, where s = 1,2. The constants ψ
(s)
j

represent a set of fixed phases on which the transformation
operates. For example, if we set γs(0) = �s(0) = �s(0) = 0,
then the ψj are just the initial phases φj (0). Since the variables
γs(t), �s(t), and �s(t) are the same for all j within each
subpopulation, the flow governed by Eq. (4) is effectively six
dimensional, as claimed. It describes the dynamics restricted
to the invariant manifold labeled by the choice of the constants
ψ

(s)
j , of which N − 6 turn out to be independent [21].
A further reduction is possible in the continuum limit

N → ∞, in the special case where the phases ψj are uni-
formly distributed around the circle. Then, the transformation
Eq. (3) maps old phases ψj to new phases φj such that
for each subpopulation, a uniform distribution of ψj maps
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onto a Poisson kernel distribution of φj [15,21–23]. This
implies that the set of states in which each subpopulation is
distributed like a Poisson kernel is dynamically invariant (see
Refs. [15,16,21–23] for more about this). From here on, we
will refer to this distinguished invariant manifold as the Poisson
submanifold.

Incidentally, these considerations underlie the (otherwise
seemingly miraculous) ansatz discovered by Ott and Antonsen
[16]. They found that Poisson kernels are also dynamically
invariant for the original Kuramoto model, where the oscil-
lator frequencies are nonidentical. This beautiful invariance
property has its origin in group theory [23] and has allowed
many insights to be gained into the dynamics of the Kuramoto
model and its relatives [16,24–26].

On the Poisson submanifold, two of the equations in
the system (4) decouple from the other four. Thus, as we
see in detail below, the dynamics become effectively four
dimensional there. And because of an additional rotational
symmetry [stemming from the fact that the right hand side of
Eq. (1) involves only phase differences, not absolute phases],
the flow can be further reduced to a three-dimensional system,
which appears later in this paper as Eq. (9).

III. SIMULATION OF THE REDUCED SYSTEM

We now numerically explore the dynamics of the six-
dimensional system given by Eq. (4) to get a sense of
its equilibrium states. To do so, we recall that p is the
fraction of the N oscillators that are conformists, and we
define C as the relative intensity of the conformist coupling:
C = K1/(K1 − K2). Thus, values of C close to 1 mean the
conformists are much more intense in their desire to be like
everyone else, as compared to the relatively mild obstinacy of
the contrarians. On the other hand, when C is close to 0, the
conformists are tepid while the contrarians are passionate.

For our initial conditions, we choose each γs(0), �s(0), and
�s(0) uniformly at random from [0,1), [−π,π ), and [−π,π ),
respectively. In addition, we set the N constants ψj such that
each subpopulation is evenly spaced on the interval [−aπ,aπ )
for a � 1. For example, if the pN conformists are indexed
first and the qN contrarians after, we set ψj to be

ψj =
⎧⎨
⎩

2aπ(j−pN/2)
pN

, j = 1, . . . ,pN,

2aπ(j−pN−qN/2)
qN

, j = pN + 1, . . . ,N.

(5)

As we noted in the previous section, choosing a = 1 confines
the trajectories to a distinguished submanifold of the phase
space in which the new phases φj for each subpopulation are
distributed like a Poisson kernel. Choosing a < 1 instead gives
an initial condition off this special manifold and, therefore,
allows the system to explore other parts of phase space [21,27].

We begin by numerically integrating Eq. (4) from initial
conditions on the Poisson submanifold. After transients have
decayed, we compute the final phase density P (φ) and order
parameter Z, defined by

Z ≡ Reiθ = 1

N

N∑
j=1

eiφj . (6)

−π π

P(φ)

φ

(a) Incoherent state 

−π π

P(φ)

φ

(b) Blurred π-state

−π π

P(φ)

φ

(c) Traveling wave state

−π π

P(φ)

φ

(d) π-state

FIG. 2. (Color online) Four states commonly observed in the
long-time behavior of numerical trials on the Poisson submanifold.
The integration was performed for N = 104, oscillators and the final
states were presented as histograms with a bin size of 0.01. Conformist
oscillators are shown in blue (dashed line) and contrarian oscillators
in red (solid line). The four states shown are (a) the incoherent state
at (p,C) = (1/20,2/3), (b) a blurred π state at (p,C) = (1/4,2/3),
(c) a traveling wave state at (p,C) = (1/4,2/3), and (d) a π state at
(p,C) = (4/5,2/3).

We also compute the final order parameters of each subpopu-
lation,

Zs ≡ rse
iθs = 1

Ns

∑
j∈Js

eiφj , (7)

where J1 = {1, . . . ,pN} and J2 = {pN + 1, . . . ,N}. Here, rs

represents the degree of synchronization of the subpopulation
s, and θs denotes its average phase. Likewise, Ns is the number
of oscillators in this subpopulation. The integration itself is
performed using Heun’s method with a time step of 0.01.

Out of the whole 105 time steps, the first 7 × 104 time
steps are discarded as transients, after which the quantities of
interest were measured and were averaged for the remaining
time steps. The system generally seems to end up in one of
four states (Fig. 2):

(a) The incoherent state in which both the conformists
and contrarians are uniformly distributed around the unit
circle in the complex plane, yielding r1 = r2 = 0. In terms
of the political analogy discussed earlier, this means that no
predominant attitude emerges in the population. All points on
the political spectrum are equally represented.

(b) A one-parameter family of blurred π states, correspond-
ing to nonuniformly distributed populations of conformists
and contrarians on the unit circle. The peaks of their phase
distributions are blurred and are separated from one another
by an angle of π . Here, the political interpretation is that two
main factions have emerged, in diametrical opposition to one
another. They could lie anywhere on the political spectrum,
but once they emerge, the contrarians oppose the conformist
view. And because of the blurred nature of both peaks, fringe
views are also present on either side of the two main attitudes.

(c) A traveling wave state in which the conformists and
contrarians exhibit full and partial phase synchronies, respec-
tively, with the peaks of their phase distributions offset by an
angle less than π . Here, the conformists are unified in their
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1

-1 1

Im Z

Re Z

(a)

-1

1

-1 1

Im Z

Re Z

(b)

-1

1

-1 1

Im Z

Re Z

(c)

-1

1

-1 1

Im Z

Re Z

(d)

FIG. 3. (Color online) Trajectories of the order parameter Z(t)
both (a) on and (b)–(d) off the Poisson submanifold. The spe-
cific parameter values (p,C,a) for these states are (a) (1/2,2/3,1),
(b) (2/5,2/3,1/2), (c) (1/2,2/3,1/2), and (d) (11/20,2/3,3/10).

views, yet that consensus view keeps changing, periodically
cycling through all possible points on the political spectrum.
Meanwhile, the contrarians oppose them, but not quite diamet-
rically, and their opinions remain dispersed throughout.

(d) The π state in which the conformists and contrarians
are completely synchronized into two antipodal δ functions
(and, thus, r1 = r2 = 1 and |θ2 − θ1| = π ). This simple state
represents implacable polarization between two unified and
unchanging factions.

The offset by an angle less than π for the traveling wave
state induces a nonzero wave speed. Hence, Z traces out a
circular orbit as shown in Fig. 3(a). Interestingly, the traveling
wave state has also been found in analogous systems with
heterogeneous natural frequencies [14].

The long-time dynamics of Z becomes substantially
more complicated when we evenly space the constants
ψj on the interval [−aπ,aπ ) for a < 1, corresponding to
initial conditions lying off the Poisson submanifold. Typical
trajectories appear either quasiperiodic or possibly chaotic in
these cases as shown in Figs. 3(b)–3(d). Similarly, nonperiodic
behavior off the Poisson submanifold has been seen in other
systems of oscillators with identical frequencies [15,21,22].

IV. ANALYSIS OF THE REDUCED SYSTEM

According to Refs. [15,27], the Watanabe-Strogatz trans-
formation is the real part of the Möbius transformation.
Additionally, we can convert γs in Eq. (4) to rs via the relation
γs = −2rs/(1 + r2

s ) to obtain

ṙs = 1 − r2
s

2
KsRe(Ze−i�s ),

�̇s = 1 − r2
s

2rs

KsIm(Ze−i�s ), (8)

�̇s = 1 + r2
s

2rs

KsIm(Ze−i�s ),

where Re and Im denote the real and imaginary parts of
their arguments. We here note that the relation between γs

and rs works only on the Poisson submanifold. It is not
satisfied elsewhere (see details in Ref. [15]). Using the fact that
Z = pZ1 + qZ2 and defining δ = θ2 − θ1, Eq. (8) becomes

ṙ1 = C
(
1 − r2

1

)
(pr1 + qr2 cos δ),

ṙ2 = −(1 − C)
(
1 − r2

2

)
(pr1 cos δ + qr2), (9)

δ̇ = sin δ

[
p(1 − C)

(
r1

r2
+ r1r2

)
− qC

(
r2

r1
+ r1r2

)]
.

By a fixed point analysis of Eq. (9), we can show that the
four states found above by simulation are, in fact, the only
generic equilibrium states of the reduced system restricted
to the Poisson submanifold [27]. We summarize several
interesting points of this analysis in the remainder of this
section and compute the order parameter R for the four
different states. We do the latter by making repeated use of
the relation Z = pZ1 + qZ2. Decomposed more fully, this is
Z = pr1e

iθ1 + qr2e
iθ2 or Z = (pr1 + qr2e

iδ)eiθ1 .

A. Incoherent state

We start with the easiest case: The incoherent state has r1 =
r2 = 0, so its order parameter R is zero. By a linear stability
analysis [27], we find that this state is stable when p < 1 − C.
This gives us our first bifurcation value of p: pb = 1 − C.

B. Blurred π states

The one-parameter family of blurred π states is given by
the following fixed points of Eq. (9): δ = π and pr1 = qr2

(where r1,r2 �= 0). By our above equations for Z, this implies
R = 0. Linear stability analysis then shows that the blurred π

states farthest from the incoherent state begin to lose stability
at pa = (1 − √

2C − 1)/2, whereas, loss of stability for the
entire set of blurred π states occurs as p nears pb = 1 − C.
Hence, there are stable blurred π states on the same region
that the incoherent state is stable.

C. Traveling wave state

Next, we turn to the traveling wave state. From Fig. 2(c),
it is clear that the conformists are fully synchronized (r1 = 1)
for this state, so Eq. (9) reduces to

ṙ2 = −(1 − C)
(
1 − r2

2

)
(p cos δ + qr2),

(10)

δ̇ = sin δ

[
p(1 − C)

(
1

r2
+ r2

)
− 2qCr2

]
,

where sin δ �= 0. If we then solve for the fixed points of this
system, we obtain

r2 =
√

p(1 − C)

2qC − p(1 − C)
, δ = cos−1(−qr2/p). (11)

This solution can only exist for 0 < r2
2 < 1, which implies

that the traveling wave state exists only for p greater than
pa = (1 − √

2C − 1)/2 and less than pc = C. Within this
region of existence, we can determine the order parameter R

for the traveling wave state using the fact that Z = pr1e
iθ1 +
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qr2e
iθ2 . Since by definition, Z = Reiθ , we know that R2 =

ZZ̄, or

R2 = p2 + 2pqr2 cos δ + q2r2
2 . (12)

Substituting Eq. (11) into Eq. (12) gives

R =
√

p2 − p(1 − p)2(1 − C)

2C − p(1 + C)
, (13)

which goes to zero at p = pa , as the numerical data suggest.

D. The π state

Last, we consider the π state. As Fig. 2(d) suggests,
the subpopulations are both synchronized (r1 = r2 = 1) and
antipodal to each other (δ = π ). Substituting r1 = r2 = 1 and
δ = π into Z = pZ1 + qZ2 yields

R = 2p − 1, (14)

which can only be positive for p � 1/2. A more systematic
stability analysis of the π state shows that it is stable for p >

max{C,1/2} [27]. For example, when the conformist coupling
is twice the magnitude of the contrarian coupling (e.g., K1 = 1
and K2 = −1/2, and so, C = 2/3), Eq. (14) implies that the
π state is stable for p greater than pc = 2/3. Interestingly, this
agrees with the pc beyond which the traveling wave state does
not exist. Yet pc is not a bifurcation point since δ is always
π for the π state but does not approach π for the traveling
wave state as p approaches pc. Instead, the r2 = 1 nullcline
corresponding to ṙ2 = 0 and a parallel nullcline corresponding
to δ̇ = 0 approach each other as p approaches pc until they
coincide and form a line of fixed points at p = pc [27].

The above analysis indicates that the stable states of
the reduced system reach their boundaries of stability (and
sometimes also existence) at three transitional points: pa =
(1 − √

2C − 1)/2, pb = 1 − C, and pc = max{C,1/2}. We
can verify this by first computing R for the numerically
discovered fixed points found at various values of p and then
plotting the theoretical curves that we found above on top of
these numerical data. The results in Fig. 4 illustrate the level
of agreement between simulation and theory.

We finish by summarizing which states lie in which regions
delimited by the transitional points pa, pb, and pc. In general,
there are four regions of behavior, and for C = 2/3, their
boundaries are pa = (1 − √

1/3)/2 ≈ 0.21, pb = 1/3, and
pc = 2/3. On these regions, we have found the following
states:

(I) On 0 < p < pa , both the incoherent state and all of the
blurred π states are stable.

(II) On pa < p < pb, the incoherent state, some of the
blurred π states, and the traveling wave state are stable.
(III) On pb < p < pc, only the traveling wave state is stable.
(IV) On pc < p < 1, only the π state is stable.

To be more precise, the notion of stability being used
above is that of stability within the Poisson submanifold,
not stability within the full phase space. All states within the
Poisson submanifold are neutrally stable to perturbations off
the submanifold because such perturbations carry the system

0

0.2

0.4

0.6

0.8

1

0 1

R

p

I II III IV

pa pb pc

FIG. 4. (Color online) Behavior of the order parameter R for
the four different types of equilibrium states as a function of
the conformist fraction p. Parameter values: C = 2/3, N = 104

oscillators. The different symbols denote R values of the different
fixed points found in numerical simulations of Eq. (1) for initial
conditions on the Poisson submanifold. Asterisks denote both the
incoherent state and the blurred π states; open squares denote the
traveling wave state; filled squares denote the π state. The solid curve
for pa < p < pc traces the theoretical value of R for the traveling
wave state where it exists, and the line for p > pc gives the theoretical
R for the π state on its domain of existence.

onto another invariant manifold of the foliation discussed
earlier.

V. SUMMARY

In this paper, we considered a system of identical oscillators
with positive and negative global couplings and investigated
how the interplay between the positive and negative interac-
tions affected the collective dynamics and equilibrium states
of the system. We reduced the dynamics of our system from
N dimensions to six by means of the Watanabe-Strogatz
transformation, and found that, in the infinite-N limit, there
are four types of equilibrium states of the system on a special
submanifold of the phase space (the invariant manifold of
phase distributions given by Poisson kernels). Using both
numerical and analytical techniques, we characterized each
of these equilibrium states, paying particular attention to
the illustrative case in which the conformists were coupled
twice as strongly to the mean field as the contrarians were.
Even for this slice of parameters, however, we found that a
menagerie of complicated states exists throughout the phase
space.
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