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Despite its importance for rumors or innovations propagation, peer-to-peer collaboration, social networking,
or marketing, the dynamics of information spreading is not well understood. Since the diffusion depends on the
heterogeneous patterns of human behavior and is driven by the participants’ decisions, its propagation dynamics
shows surprising properties not explained by traditional epidemic or contagion models. Here we present a detailed
analysis of our study of real viral marketing campaigns where tracking the propagation of a controlled message
allowed us to analyze the structure and dynamics of a diffusion graph involving over 31 000 individuals. We found
that information spreading displays a non-Markovian branching dynamics that can be modeled by a two-step
Bellman-Harris branching process that generalizes the static models known in the literature and incorporates the
high variability of human behavior. It explains accurately all the features of information propagation under the
“tipping point” and can be used for prediction and management of viral information spreading processes.
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I. INTRODUCTION

Each day, millions of conversations, emails, Short Message
Service (SMS), blog posts and comments, instant messages,
tweets, or Web pages containing various types of information
are exchanged between people. Human natural inclination to
share information with others in a “viral” fashion stems from
the need of socializing and seeks to gain reputation, influence,
trustworthiness, or popularity [1]. Such viral dissemination
of information through social networks, commonly known
as “word-of-mouth” (WOM), is of paramount importance
in our everyday life. In fact, it is known to influence
purchasing decisions to the extent that two-thirds of the
United States economy is driven by those kind of personal
recommendations [2]. WOM is also important to understand
sales and customer value [3,4], opinion formation, or rumor
spreading in social networks [5,6], or to determine the
influence of each person in its social neighborhood [7,8].
Despite its importance and due to the difficulty (or inability)
to capture this phenomenon, detailed empirical data on how
humans disseminate information are scarce [9], population
aggregated [10], or indirect [11,12]. Moreover, most studies
have concentrated on asymptotical stationary properties of
information diffusion [13–16]. This has hampered the study
of the dynamics of information diffusion and indeed most of
its understanding comes from theoretical propagation models
running on empirical or synthetic social networks in an
approach borrowed from epidemiology [17–19]. In those
models, information diffusion equates to the propagation of
virus or diseases that spontaneously pass to others by contagion
through the active social connections of the infected (i.e.,
informed) agents.
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However, information diffusion mechanisms are fundamen-
tally different from those operating in disease spreading. In
fact, passing a message along has a perceived transmission
cost, its targets are consciously selected among potentially
interested individuals [20,21], depends on human volition,
and, ultimately, is executed on the individuals’ activity
schedule. An obvious implication of those peculiarities is
that information spreading is bound to depend on the large
variability observed both on the volume and frequency of
human activities and on the perceived value and cost of trans-
mitting the information. For example, the number of emails
sent by individuals per day [22], the number of telephone
calls placed by users [23], the number of blog entries by
user [24,25], the number of Web page clicks per user [26], and
the number of a person’s social relationships [27], or sexual
contacts [28] show large demographic stochasticity. In fact,
these numbers are distributed according to a power-law (or
Pareto) distribution, inconsistent with the mild Gaussian or
Poissonian stochasticity around population-averaged values
traditionally assumed in epidemiological models [29]. The
same large variability pattern applies to the human activities
time dynamics: For example, email response delays, market
trading frequencies or interevent time of Web page visits,
telephone calls, etc., are well described by power-law or log-
normal distributions [22,30,31]. Recent research has shown
that such high variability in human behavior alters substantially
the temporal dynamics of information diffusion and does not
merely introduce some stochasticity in population-averaged
models [9,32,33]. Thus, it is important to incorporate this
human behavior into the models.

In addition, information diffusion travels through social
connections thereby depending on the properties of the
social networks where it spreads. For example, simulations
on synthetic scale-free networks showed that if information
flowed through every social connection the epidemic threshold
would be significantly lowered to the extent that it could
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disappear [13,34], so that any rumor, virus, or innovation might
reach a large fraction of individuals in the population no matter
how small the probability of being infected. Given the fact that
social networks are scale-free [35] those results predict that
there is a strong interplay between network structure and the
spreading process. However such is not the case for informa-
tion spreading processes. Our daily experience indicates that
most rumors, innovations, or marketing messages do not reach
a significant part of the population [36]. As mentioned earlier,
the information transmission perceived cost prevents it from
traveling inexpensively through all possible network paths.
Therefore when participants assess the value of the information
being passed, the impact of their social network structure on
the diffusion process might be diminished. Unfortunately the
true extent of such influence remains unknown in general.
Moreover, the reach of information can be affected by the
dynamics of human communication [33] and thus it is
important to understand the interplay between the static and
dynamical properties of information diffusion.

Finally, there is an important shortcoming in the data
currently available to investigate those questions. The vast
majority of the large amount of data collected on information
exchanges, for example, email, SMS, calls, or tweets, lacks
the details required to follow the dynamics of a specific
content item at the individual’s level (see, however, [37]).
Thus, the behavioral stochasticity of the individuals caused
by the message content is masked and observations are
limited to people’s stochasticity due to the transmission media.
A representative example of this difficulty is the study of
communication patterns in mobile phone calls [32,33,38] in
which every communication, regardless of the message, is
used to partially discover the social relationships network
through which potential messages will spread but is not
capable of revealing the specific dynamics of a particular piece
of information. In other cases, data are not available at the
individual participant level but just as population averaged
metrics [20,36] thereby hiding that different content items
elicit diverse task prioritization in a given person or social
segment. The situation is clearly unsatisfactory since, to our
knowledge and possibly because of privacy concerns or data
proprietorship, there are not very many data sets tracing the
propagation of a specific piece of content throughout the social
network (see, however, [15]).

To overcome those limitations in the understanding of
electronic information diffusion, we present here the results
of a series of controlled viral marketing campaigns, the
commercial form of WOM [39], that we conducted in 11
European countries. In them, subscribers of a business online
newsletter received incentives for recommending the newslet-
ter subscription to their acquaintances. The detailed tracking
of those recommendations revealed the factors impacting the
diffusion dynamics of that particular piece of information
at every step and suggested a branching process as the
mechanism driving the dynamics of information diffusion.
Thus, the Bellman-Harris branching model, a generalization
of the static percolation model introduced by Newman [13]
for contagion propagation in networks, accurately describes
our viral marketing campaigns. In particular, this branching
model explains information diffusion of information in random
networks and constitutes the simplest approach incorporating

the human behavior high variability patterns both in activity
volume and in response time.

The rest of this paper is organized as follows: Sec. II
introduces our viral marketing campaigns and the information
viral diffusion mechanism used in them, while Secs. II A
and II B, respectively, present the campaign propagation
results’ data set and analyze the observed diffusion dynamics
patterns and social connectivity found in such propagation.
Section III follows with the analytical formulation of the
Bellman-Harris branching model which includes detailed
discussion of its phase transitions, asymptotic properties,
and time dynamics while Sec. IV studies several examples
of its application to several scenarios of the response time
distribution in the information propagation. We present our
conclusions in Sec. V. Finally, Appendix discusses aspects
of the substrate social network structure that can be gleaned
through the information propagation process.

II. VIRAL CAMPAIGN DESCRIPTION

We tracked and measured the “word-of-mouth” diffusion
of viral marketing campaigns run in 11 European markets
that invited subscribers of an information technology company
online newsletter to promote new subscriptions among friends
and colleagues. Campaign participants received incentives for
spreading the offering through recommendation emails. The
campaigns were fully Web based. Banner advertisements,
emails, search engines, and the company Web page drove
participants to the campaign offering site. There, participants
could fill in a referral form with names and email addresses
of those to whom they recommended subscribing to the
newsletter. The submission of this form launched recom-
mendation emails including a link to the campaign main
page whose automatically generated URL was appended with
codes allowing the Web server to uniquely assign clicks on
it to the sender and receiver of the corresponding email.1

The form, allowing up to four referrals per submission,
checked destination email addresses for syntax correctness and
to avoid self-recommendations. Cookies prevented multiple
recommendations to the same address and improved usability
by automatically filling in the sender’s data in subsequent visits
to the submission form. Additionally, the campaign server
logged the time stamp of each step of the process (subscrip-
tion, recommendation submission) and removed from records
undeliverable recommendations.

The incentive to potential participants was the possibility
of winning a laptop computer on a lottery taking place at the
end of the campaign. The goal of such an incentive was three-
fold: firstly, increasing participation, secondly, discouraging
indiscriminate referrals which could lead to spamming-like
behavior and, lastly, ensuring legal backup for tracking sender-
receiver pairs as required by the campaign sponsor privacy
policy. To reach those goals, eligibility to participate in the
lottery was limited to the so-called “successful emails” defined
as any recommendation email whose recipient clicked on the
coded URL included on it. Thus, the more referral emails sent

1Clicks on referral emails forwarded to a third person could not
trace that individual and were assigned to their original receiver.
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to recipients who opened them and clicked their link, the bigger
the sender’s winning odds. The lottery draw was held among
successful recommendations only and both sender and receiver
of the winning recommendation would receive the prize. The
campaign terms and conditions, accessible from all web pages,
stated that participation in the prize draw implied the sender’s
and receiver’s authorization for the system recording the details
of their email transaction since it was necessary to ensure
that both parties could receive the prize if their email was
a winner. Subscribing to the newsletter was not required
to take part in the prize draw. Campaigns in all countries
ran in local language but were identical otherwise: same
offering, incentive, eligibility rules, prize draw mechanism,
campaign period, Web user interface, and tracking processes.
This ensured equivalence of the experiment in all countries and
allowed tracing differences in observed behavior to the market
specifics and not to the campaigns’ execution. In addition, this
guaranteed the neutrality of the messages content in regards to
the recipients’ reactions. Unsuccessful emails, disconnected
nodes, nodes with invalid or undeliverable email addresses,
self-recommendations, and multiple referrals between the
same nodes were discarded. The message viral propagation
network was built from such a cleansed data set and its key
parameters measured with standard network analysis tools.
Personal information was encrypted to protect the participants’
privacy.

A. Campaign propagation data set

Spurred by the sponsor Web sites, email marketing, and
exogenous online advertising, a total of 7225 individuals acted
as seed nodes by initiating message diffusion cascades which
subsequently grew through viral pass-along driven by 2002
secondary spreaders which we will also designate as viral
nodes in what follows. Thus the viral offering touched another
21 956 individuals who did not forward it and were, therefore,
passive nodes. All in all, and as shown in Table I, a total
N = 31 183 individuals, of which 9227 were active spreaders,
received the viral message. Thus, 77% of the campaign
participants received the message through the endogenous
viral propagation mechanism. The 7188 treelike, independent
propagation cascades originated by this process such as the one
in Fig. 1, form the cascades network, a sparse graph whose
nodes representing campaign participants are connected by

FIG. 1. The viral message diffusion graph of our campaigns is a
set of 7118 disconnected cascades like this one observed in Spain.
Its 122 nodes (represented by dots) are grouped in eight generations
(horizontal layers) that stem from the generation zero node at the top
(seed node, black) and grow through a branching process driven by
the active nodes (gray) in each generation. Its treelike structure is
devoid of closed paths or triangles for a clustering coefficient C = 0.

24 207 directed links formed by the recommendation emails
they sent. In addition, the viral cascades are generally almost
pure trees, with very few loops or closed triangles, as evidenced
by the clustering coefficient of the network of all markets
Ccas = 0.0048, which is two orders of magnitude lower than
typical values reported for social networks [40]: for example,
Ceml = 0.156 measured in a typical email network of similar
size [41].

By analogy to the spreading of diseases [29], diffusion of
information in a population is often described by average quan-
tities. Although receiving and propagating messages can be
quite involving processes, population-level analysis describes
information propagation as a function of the probability λ1

TABLE I. Structural and dynamic parameters of the viral diffusion network by market. Number of nodes (N ) and of viral cascades
(ns), average cascade size (s = N/ns), largest cascade size (smax), and clustering coefficient of the cascades network (Ccas). The diffusion
dynamic parameters are the average number of recommendations sent by seed nodes (r0) or by viral nodes r1 (a.k.a. fanout coefficient) and
the transmissibility λ1. Also shown are the fanout coefficient standard error of the mean (r1)SEM and basic reproductive number R1. Nordic
comprises DK, FI, NO, and SE.

Market N ns s smax Ccas r0 r1 (r1)SEM λ1 R1

France 11 758 3248 3.62 139 0.0000 2.21 2.50 0.1023 0.062 0.154
DE + AT 7943 1750 4.54 146 0.0049 2.48 3.06 0.1155 0.092 0.281
Spain 5260 843 6.24 122 0.0054 3.16 3.45 0.1909 0.115 0.397
Nordic 2509 524 4.79 34 0.0077 2.82 2.91 0.1836 0.089 0.259
UK + NL 2111 518 4.08 25 0.0112 2.49 2.87 0.2398 0.067 0.192
Italy 1602 319 5.02 41 0.0234 2.87 2.80 0.2301 0.084 0.236
All markets 31 183 7188 4.34 146 0.0048 2.51 2.96 0.065 0.083 0.246
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of a person becoming secondary spreader after receiving a
message from a seed node and of the average number of
people r1 contacted by such secondary spreaders. In this
simple approach those two parameters, transmissibility (λ1)
and fanout coefficient (r1), fully characterize the mean-field
description. In our campaigns only 8.36% of the participants
receiving a recommendation email from other participants en-
gaged in spreading it themselves and thus λ1 = 0.0836. Those
secondary spreaders sent, on average, 2.96 messages each and
hence the fanout coefficient was r1 = 2.96. Interestingly, this
value is higher than the average number of recommendations
(r0 = 2.51) sent by the seed nodes that triggered cascades after
becoming aware of the campaign message through market
seeding tactics. Such gap stems from the combination of two
factors: firstly, a stronger involvement in the diffusion of the
individuals receiving the message from a trusted source versus
those who found the campaign by chance [42] and, secondly,
the “Friendship paradox” [43], a property of networks which
causes individuals reached by messages sent by others to be
more connected on average than those chosen at random: For
example, in a random network with node degree distribution
P (k) the probability of randomly picking a node of degree k′
is P (k′) whereas the probability of a message coming from
any node reaching a node of degree k′ is k′P (k′)/k, bigger
than P (k′) for k′ > k [35]. Thus, highly connected nodes
are more likely to be reached by messages already spreading
through the network than by exogenous marketing tactics (Web
banners or email tactics) which do not benefit from such a
network effect when the message spreading starts. This phe-
nomenon causes secondary spreaders to have more contacts
on average than seed nodes and more choices to forward the
message.

On the other hand, it makes sense to assume that the
number of recommendations sent by secondary spreaders
(including not sending any) results from a decision by each
message recipient that involves a tradeoff between the message
forwarding cost and its perceived value. For our campaign
lottery prize, for example, and in a population average
approach, a reasonable proxy of the perceived value of winning
the prize for residents in a given country could be the fraction
of the average income of its citizens represented by the prize
cost in that market. Granted, there may be many other factors
at play in the formation of such a perception, but there is
a very significant correlation (ρ = 0.6) between the average
income and the average number of recommendations r1 sent
by secondary spreaders in each market which indicates that
the expected gain average relative size may be one of them
(see Table I).

Additionally, the human intervention in such a decision pro-
cess is at the root of a very unique property of the dynamics of
information diffusion. Comparing viral campaign parameters
in different markets (see Table I), we observe a wide range of
values in their respective information propagation dynamical
parameters. Since the campaign execution was identical in
all markets, those variations can only be due to a change in
perception of the viral offering value and/or of the message
forwarding cost by customers in each market. Interestingly,
variations of the transmissibility (λ1) and the fanout coefficient
(r1) present a Pearson coefficient ρ = 0.92 as evidence of a
very strong dependence between them. We proved in [44] that

such dependence has the form,

r1 = 1 + b(1 − e−cλ1 ), 0 � λ1 < 1, (1)

which reduces to r1 � 1 + aλ1 (a = bc) for cλ1 < 1. This
peculiarity of information diffusion processes, not observed in
disease epidemics, arises because the decisions of becoming
a spreader and of the number of viral messages to send are
simultaneously made by each participant which introduces
correlation in their averages.

B. Diffusion dynamics analysis

In a first approximation we could analyze information
dynamics by studying the basic reproductive number R1

of epidemiology, the average number of secondary cases
generated by each virally informed individual, which results
from the definition of the dynamical parameters as R1 = λ1r1.
However, average quantities like R1 hide the heterogeneous
nature of epidemics [45] and also of information diffusion.
In fact our campaigns show that most of the observed
transmission occurs due to extraordinary events. In particular,
we get that the probability distribution function (pdf) of the
number of recommendations sent is well approximated by the
Harris discrete distribution,

pr = Hαβ

β + rα
, r = 1,2, . . . , (2)

where Hα,β is a normalization constant so that
∑∞

r=1 pr = 1.
This function displays a power-law behavior pr ∼ r−α in
its tail starting approximately at the cutoff point r∗ � β1/α .
Table II lists the distribution parameters for seeds (p0,r ),
viral (p1,r ) and total active (pa,r ) nodes while Fig. 2 shows
the probability distribution of the recommendations sent by
active nodes in all markets, and the comparison to the
probability predicted by a Poisson discrete distribution with
mean r = 2.61, same as that of the empirical data. The
markedly different behavior between both of them indicates
the high probability of finding individuals making a large
number of recommendations. As noted in Sec. I, such high
demographic stochasticity, observed in many other human
activities [22–28], suggests that human response to a particular
task cannot be described by close-to-average models where
they are all assumed to behave in a similar fashion with
some small degree of demographic stochasticity [46]. In sharp
contrast with population homogeneous models of information
spreading, we found that 2% of the active population in

TABLE II. Statistics of the viral campaign participants’ recom-
mendation activity (r) by node class. Active nodes (a) are the union
of the seed (0) and viral (1) classes. The probability distribution of
the number of recommendations (r) fits a Harris power-law of the
form of Eq. (2) with α and β estimated by the method of moments
using r and r2.

Node class N r r2 σr (r)SEM α β

Seed (0) 7225 2.51 15.14 2.97 0.035 3.50 30.52
Viral (1) 2002 2.96 18.10 3.05 0.068 3.71 100.88
Active (a) 9227 2.61 15.82 3.00 0.031 3.54 39.48
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FIG. 2. (Color online) Active nodes’ (seed + viral) cumulative
probability distribution for campaigns in all markets (circles). Solid
line is the fit to a power-law P (r) = Hαβ/(β + rα) whose pdf
exponent is α = 3.54 ± 0.02 (see Table II). Dashed line is the
prediction of a discrete Poisson distribution with the mean of the
empirical data (ra = 2.61).

our viral campaigns has ra > 10 suggesting the existence of
superspreading individuals.

Superspreading individuals have also been found in non-
sexual disease spreading [45] where they significantly increase
outbreak sizes. In a similar manner, the sizes of the information
cascades found in our campaigns indicate that superspreading
individuals are responsible for making large viral cascades
rarer but more explosive. The probability distribution of the
campaign cascades sizes, represented (see Fig. 3), is also a
fat-tailed distribution (in fact, the tail can be fitted to a power
law ps ∼ s−β with β � 3.2). In contrast, neglecting the exis-
tence of superspreading individuals but still considering some
degree of stochasticity in the number of recommendations by
assuming pa,r is a Poisson distribution with the same average,

FIG. 3. (Color online) Cumulative distribution of viral cascade
size in all markets (circles). The power-law line underneath the circles
is not a fit of the data but the prediction of the Bellman-Harris
branching model with a power-law pdf for the recommendations
distribution. The line below it is the branching model prediction with
a Poisson distribution (see Sec. III).

a cascade like the one in Fig. 1 would have an occurrence prob-
ability of approximately once every 1012 seed nodes, a number
much larger than the total world population (see Fig. 3).

An element to consider in the aforementioned spread-
ing stochasticity is the impact, if any, of the underlying
social network heterogeneity in a similar way to that of
the connectivity of a computer network on the diffusion
of computer viruses [47]. Social networks data reveals that
humans show large variability in their number of social
contacts [48]. Thus, the connectivity ki of email networks,
whether measured by email traffic or by the users’ email
address books, is fat-tailed distributed [41,47]. In some cases it
is power-law distributed like the number of recommendations
in our campaigns. Large variability in the numbers of social
contacts has a deep effect on disease spreading [13,34]. In fact,
disease spreading models on networks show that if information
flows with the same probability through any link in a social
network, its topological properties can significantly lower the
“tipping point”.2 However, while indiscriminate propagation
can happen in computer viruses, diseases, or other mechanistic
processes, the human handling of information diffusion limits
the influence of the social network structure: We expect, in
general, the number of recommendations to be small compared
to the social connectivity (ri � ki). While in social networks
the “Friendship paradox” [35,43] implies that knn � k (with
knn the average number of social contacts of an individual’s
neighbors and k the average number of social contacts of an
individual), our recommendation network features rnn ≡ rv �
rs . If, as supposed in most models [17,34], information flows
through a fraction of the social contacts of an individual, we
should have rnn � r instead. A way to recover our result
is to assume that ri and ki are largely independent. Our
treelike diffusion cascades lead to a low undirected clustering
coefficient [35] of the viral cascades network (Ccas = 0.048)
compared to the values reported for email social networks
(Csoc ∼ 0.15–0.25) [47] which supports such an assumption.
Assuming ri and ki independent, we get (Appendix)

Ccas ∼ 2R1

(〈knn〉 − 1)
Csoc, R1 � 1, (3)

where knn is the average number of social contacts of the
neighbors of an individual. In social networks 〈knn〉 is a large
number which leads to a very low clustering coefficient even
for processes close to the “tipping point” (R1 � 1). This fact
explains the unreasonable effectiveness of tree-based theory to
explain information diffusion on networks with clustering [49].
In conclusion, large heterogeneity of recommendation activity
is due to the participants’ behavior rather than a consequence of
their connectivity degree which is just the activity upper bound.

Finally, another important aspect to consider in the dynam-
ics of information diffusion is the nodes’ reaction to receiving
a message: Shall they decide to spread it? How long do
they take to do so? For how long do they remain active? Is
their responsiveness correlated in any way to the number of

2Epidemiology term designating the point in a contagion process
where its spreading rate increases dramatically and changes the nature
of the process.
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FIG. 4. (Color online) Relationship between the time (days) a
viral node remains active (infected) τinfected and the time elapsed
until it resends its first message (τresponse) for each viral node in
our campaigns. The line is τinfected = τresponse. Nodes on the line sent
the message to all contacts at once while those outside it remained
spreaders for a longer period. Only early responders (τresponse < 10
days) have some likelihood of staying active for more than one
forwarding session.

contacts to whom they resend the message? The answer to
these questions lies in the increasing evidence that the timing
of many human activities, ranging from communication to
entertainment and work patterns, follow non-Poisson statistics,
characterized by bursts of rapidly occurring events separated
by long periods of inactivity [22]. In fact, our campaigns
revealed that most of the active nodes turn inactive right after
spreading the information once which means that viral nodes
do not remain as spreaders for a long time. The top panel in
Fig. 4 shows that for most of the viral nodes (actually 97% of
them), the lapse of time between receiving the message and
passing it along τresponse equals the interval between receiving
the message and the last time it has been resent τinfected.
The fact that for the most part viral nodes show just one
spreading event means, from a modeling perspective, that
diffusion follows an almost pure “birth and death” model.
In addition, the time dynamics of the viral recommendation
process is independent from the number of recommendations
r1 sent by viral nodes as was shown in [9], that is, there is
no correlation between such a number and the response time
τresponse as evidenced by the Pearson correlation coefficient
of the two variables (ρ = −0.05). As we have shown in [9],
the probability distribution function of the viral nodes response
time P (τresponse) is a long-tailed log-normal in another evidence
of the humans’ large heterogeneity in WOM diffusion. In
this sense, participants behave like a susceptible-infected-
refractory (SIR) epidemic model in which infection and decay
to the recovered state happen at the same time [29].

III. BRANCHING DYNAMICS MODEL

The study of our experimental data leads to a theoretical
framework for the process of information diffusion where
the dynamics of information viral spreading is explained by

treelike cascades. Each information cascade stems from an
initial seed that starts the viral message propagation with a
random number of recommendations distributed as p0,r and
whose average is r0. The individuals reached by the message
become secondary spreaders with probability λ1 thereby
giving birth to a new generation of viral nodes which, in
turn, propagate the message further with r1 recommendations
distributed by p1,r with average r1. After sending their
recommendations individuals become inactive and the process
continues stochastically through new individuals in successive
generations until none of the members of the latest one spread
the message. At that point the information cascades die out
and the propagation ends. This process corresponds to the
well-known Bellman-Harris (BH) branching model [9,50,51]
which is the simplest mathematical framework to study the
branching dynamics of information diffusion. It generalizes
the static and Markovian Galton-Watson model typically used
to model information diffusion [9,14,15,52] or, in general,
percolation processes in social networks [13].

In the BH model, those two distributions, p0,r and p1,r

(ri = 1,2 . . .), represent the number of recommendations sent
by seed and viral nodes, respectively. The introduction of two
different distributions for the recommendations sent by the
seed and viral nodes is not only due to the difference in the av-
erage number of recommendations observed in our campaigns
(see Table II) but also because, in general, in social networks
the average connectivity of a node’s nearest neighbors is higher
than the average connectivity of the network nodes themselves.
In particular, for completely uncorrelated random networks
with distribution of connectivity given by P (k) the distribution
of the number of connections of the nearest neighbors of a node
is P ′(k) = kP (k)/k [53]. The case in which informed nodes
decide not to pass along the information can be incorporated
in the recommendations’ distribution as the case in which the
number of messages sent is r1 = 0. Thus we can construct
a family of probability distributions of the recommendations
sent by nodes p̃i,r where

p̃i,0 = (1 − λi), p̃i,r = λipi,r r � 0, (4)

from whence one can obtain the average number of recom-
mendations in the new distributions which are related to the
primary and secondary reproductive numbers as∑

r�0

p̃0,r r = λ0r0 = R0, (5)

∑
r�0

p̃1,r r = λ1r1 = R1. (6)

To formalize the study of the information spreading
branching process, we define now the generating functions,

f0(x) =
∞∑

r=0

p̃0,rx
r , f1(x) =

∞∑
r=0

p̃1,rx
r . (7)

Moments of the p̃i,r distributions can be obtained through
derivatives of the generating functions,

R0 = f ′
0(1), σ 2

0 = f ′′
0 (1) + f ′

0(1) − [f ′
0(1)]2, (8)

where σ 2
0 is the variance of the number of recommendations

of seed nodes. We will also assume different cdf of response
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FIG. 5. Flowchart example of cascades generated by the Bellman-
Harris branching model used to explain diffusion of information in
social networks: The cascade starts with a seed (labeled 0) which
sends the information to r = 3 of its social contacts after time τ0. Viral
nodes 1 and 2 are “infected” and forward the message to r = 3 and
r = 2 social contacts after times τ1 and τ2, respectively, while unin-
terested node 3 remains inactive. Values of r and τ are independent
and sampled from distributions P (r) and G(t). Propagation continues
until there are no active nodes left. Time increases left to right.

times (τinfected) for seed and viral nodes which we will denote
as G0(t) and G1(t). Their means are τ 0 and τ 1, respectively.

We want to determine the probability distribution of finding
I (t) nodes active (i.e., recommending) at time t provided
we start with one participant at t = 0 (i.e., I (0) = 1). To
do that we use the following self-consistent argument: since
the number of recommendations sent by each viral node
are random independent processes, the branching processes
starting from each viral node after a given recommendation,
which we denote I1(t) [with I1(0) = 1] are independent
identically distributed (iid) copies of the same process. For
example, in Fig. 5 the branching processes starting from nodes
1 and 2 are iid copies of the same process I1(t). But also, the
I1(t) process starting from 1 and the I1(t) processes starting
from 4 and 5 must be statistically the same. Thus we have
a self-consistent relationship between the branching process
starting at a viral node and the processes starting from any of
its r1 recommendations:

I1(t) =
{

1 if t < τ,∑r1
i=1 I

(i)
1 (t − τ ) if t � τ,

(9)

where I
(i)
1 (t) are iid copies of the branching process I1(t) and

assuming that the recommendation event happens at t = τ .
Note that in this self-consistent equation r1 (the number of
recommendations made by a viral node and distributed by p̃1,r )
and the time τ are both random and independent. To describe
the process we use generating functions techniques; we define
the generating function for I1(t) as F1(s,t) = ∑

k�0 P [I1(t) =
k]sk , and thus we get

F1(s,t) =
{
s if t < τ,

f1[F1(s,t − τ )] if t � τ.
(10)

Finally, since τ occurs randomly with cdf G1(τ ), one can
integrate Eq. (10) over τ to get

F1(s,t) = s[1 − G1(t)] +
∫ t

0
dG1(τ )f1[F1(s,t − τ )]. (11)

The same reasoning can be applied to the seed nodes,
with the exception that now the number of recommendations

are distributed according to p̃0,r . Denoting I0(t) the process
starting from an initial seed then we have

I0(t) =
{

1 if t < τ,∑r0
j=1 I

(j )
1 (t − τ ) if t � τ,

(12)

where once again I
(j )
1 (t) are j copies of the branching process

I1(t) and r0 is a random number with probability distribution
p̃0,r . The same reasoning above leads to

F0(s,t) = s[1 − G0(t)] +
∫ t

0
dG0(τ )f0[F1(s,t − τ )]. (13)

This equation is the one that describes the time dynamics
of our branching process, starting from a given seed. Note
that it is a nonhomogeneous equation, since it depends on the
solution of Eq. (11). Thus we must first try to solve Eq. (11)
and then insert its solution in Eq. (13).

Identical reasoning can be used to derive the equations for
S0(t) [S1(t)], the size of a cascade at time t starting from a seed
or viral node at t = 0 to obtain

S0(t) =
{

1 if t < τ,

1 + ∑r0
i=1 S

(i)
1 (t − τ ) if t � τ,

(14)

where

S1(t) =
{

1 if t < τ,

1 + ∑r1
i=1 S

(i)
1 (t − τ ) if t � τ.

(15)

Thus, the generating function for the cascade sizes,

�0(s,t) =
∞∑

k=1

P [S0(t) = k]sk, (16)

�1(s,t) =
∞∑

k=1

P [S1(t) = k]sk, (17)

are the solution of the integro-differential equations,

�0(s,t) = s[1 − G0(t)] + s

∫ t

0
dG0(τ )f0[�1(s,t − τ )], (18)

�1(s,t) = s[1 − G1(t)] + s

∫ t

0
dG1(τ )f1[�1(s,t − τ )]. (19)

Note that these equations generalize the static ones in-
troduced by Newman [13] and include the example of
epidemics in configuration model networks in Ref. [54].
General solutions for Eqs. (11), (13), (18), and (19) are not
known, but some special cases and limits can be studied. In
the following subsections, we study some properties of the
model and compare its predictions with our experiments and
other theoretical situations.

A. The “tipping point”

We are interested in the dynamical process when time is
large enough, but also in the asymptotic regime when t → ∞.
In particular, the overall probability q of extinction of the
cascade is given by the probability that the initial seed does
not propagate the information (1 − λ0) and that, even when
the seed propagates the infection to some nodes, the branches
stemming from the eventual viral nodes die out. In this case the
extinction probability q1 of a branch starting by a viral node,
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that is, the probability of I1(t) = 0 (number of new nodes in
the branch) for any finite time t , results from the generating
function as

q1 = lim
t→∞ P [I1(t) = 0] = lim

t→∞ F1(0,t) ≡ F1(0,∞). (20)

Inserting this definition in Eq. (11) we get that q1 is the root
of

q1 = f1(q1). (21)

Since generating functions are convex and f1(1) = 1 we
get that if R1 = f ′

1(1) � 1 the only solution is q1 = 1, while if
R1 > 1 there exists a solution 0 � q1 < 1. The point R1 = 1
is known as the “tipping point”, since above it there is a finite
probability 1 − q1 that a viral cascade does not die out and
thus grows infinitely, while below the “tipping point” q1 = 1
and thus every cascade started by a seed node will eventually
die out. Including the probability of seeds not making any
recommendation we obtain the probability that a cascade dies
out:

q0 = 1 − λ0 + λ0q1, (22)

and using the results for q1 we get q0 = 1 below the
“tipping point” and q0 < 1 above the “tipping point”. For our
campaigns seeds are active by definition which means that
λ0 = 1 and q0 = q1 = 1 in all cases.

Moreover, using the correlation between λ1 and r1 in
Eq. (1) and the condition R1 = (λ1)cr1 = 1 one can estimate
the critical viral transmissibility (λ1)c required for the viral
message to percolate through a large fraction of the entire
network. We obtained that (λ1)c = 0.19 which corresponds
to (r1)c = 5.27. Of course this is an upper limit to the real
“tipping point” since it is based on the assumption that
cascades originating from different seeds do not merge as
the propagation progresses which is only valid far from the
“tipping point”. The low average number of recommendations
needed to attain the “tipping point” illustrates the limited
effect of the social network topology on the viral campaigns
efficiency: It is not necessary to forward the message to each
participants’ social contact in order to reach a significant
fraction of the network population. Figure 6 shows the
estimation of our campaign’s message propagation “tipping
point” based on such findings. While both λ1 and r1 vary with
the market where the campaign ran (see Table I) we found that
R1 < 1 for all cases (i.e., the viral propagation did not reach
the “tipping point”).

B. Asymptotic properties

As we have seen, below the “tipping point” q1 = 1, that is,
all viral cascades die out eventually. This means that there must
exist an asymptotic distribution for the size of the cascades
�(s,∞) = limt→∞ �(s,t) which is the solution of Eqs. (18)
and (19) in the limit t → ∞,

�0(s,∞) = sf0[�1(s,∞)], (23)

�1(s,∞) = sf1[�1(s,∞)]. (24)

These equations were obtained previously by Newman
[13]. In particular, we can obtain the average and variance
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FIG. 6. (Color online) Size of viral cascades as a function of λ1

for markets in Table I. Triangles represent the cascade size multiplier
1/(1 − R1) (left Y axis). Dashed line is not a fit but the prediction of the
branching model Eq. (27) which diverges at the “tipping point” [r1 �
5.27, (λ1)c � 0.19] estimated by the correlation r1 = 1 + 22.48λ1

existing between transmissibility and fanout coefficient (solid line,
circles, right Y axis).

of the cascade’s size by using 〈S0(∞)〉 = �′
0(1,∞) and

Var[S0(∞)] = �′′
0(1,∞) + �′

0(1,∞) − [�′
0(1,∞)]2 to get

〈S0(∞)〉 = 1 + R0

1 − R1
, (25)

Var[S0(∞)] = σ 2
0 R2

1 + R0
σ 2

1 + R2
1

1 − R2
1

. (26)

As expected, when we approach the “tipping point,”
R1 → 1, the average and variance of the cascade size diverges.
With λ0 = 1 in Eq. (25) we get the following expression for
the average cascade size at infinite time,

s∗ = 1 + r0

1 − R1
, 0 � R1 < 1, (27)

which, using the parameters for all markets in Table I,
estimates the average cascade size in our campaigns as
s∗ = 4.4, very close to the observed value (s = 4.34). Not
only are average cascade sizes well predicted by the branching
model, but their distribution, which can be obtained from the
derivatives of �0(s,∞) [13] is properly replicated as well
when the heterogeneity in the number of recommendations
is implemented (see Fig. 3). Both results show how accurate
the model is in predicting the reach of a viral marketing
campaign by merely using its dynamic parameters. Moreover,
since the values of λ1 and r0,r1 can be roughly estimated at
the campaign early stages, we could have predicted its final
reach at the very beginning.

C. Time dynamics

In the previous subsection we concentrate on the properties
of the cascades in the asymptotic regime. Here we come back
to the original equations for the dynamics of the nodes (11)
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and (13) to investigate its time dependence. Using on them
that

i0,1 ≡ 〈I0,1(t)〉 = ∂F0,1(s,t)

∂s

∣∣∣∣
s=1

, (28)

we get

i0(t) = 1 − G0(t) + R0

∫ t

0
dG0(τ )i1(t − τ ), (29)

i1(t) = 1 − G1(t) + R1

∫ t

0
dG1(τ )i1(t − τ ), (30)

for the dynamics of the average number of infected
participants.

Once again, the equation for i0(t) depends on the solution
of the integral equation for i1(t). Actually, for G0(t) =
G1(t) = G(t) we could explicitly write i0(t) = [1 − G(t)] +
(R0/R1)[i1(t) − 1 + G(t)]. However, the solution for i1(t) is
not known in general, although we can study its asymptotic
behavior using renewal theory [55]. Such behavior strongly
depends on the existence or not of the so-called Malthusian
parameter α(γ,G) ( [50], p. 142), that is, the real solution of
the equation,

γ

∫ ∞

0
e−αtdG(t) = 1. (31)

If this parameter α = α(γ,G) exists for γ = R1 then i1(t)
behaves asymptotically like

i1(t) ∼ Ceαt , C = R1 − 1

αR2
1

∫ ∞
0 te−αtdG(t)

, (32)

for all values of R1. Although α(γ,G) always exists above
the “tipping point” where γ > 1, there is a large class of
distributions G(t) for which α(γ,G) does not exist when
0 < γ < 1. This is the so-called subexponential class which
consists of all distribution functions G(t) such that

lim
t→∞

1 − G∗2(t)

1 − G(t)
= 2, (33)

where G∗2(t) is the twofold convolution of G(t) [51]. All those
distributions have tails that decay slower than any exponential,
that is, they are heavy-tailed distributions which is the best
qualitative description of the subexponential class. Examples
of G(t) are power-law (Pareto-like), stretched exponentials or
log-normal distributions. For this class of distributions, the
asymptotic behavior of i1(t) is given instead by the tail of the
distribution,

i1(t) ∼ 1 − G(t)

1 − R1
. (34)

The asymptotic regime is reached for values of t such that
1 − G(t) � 1 − R1 or, equivalently when G(t) � R1. For the
cascades size we get from Eq. (19)

〈S1(t)〉 = 1 + R1

∫ t

0
〈S1(t − τ )〉dG1(τ ), (35)

whose asymptotic behavior, analyzed using renewal theory,
gives

〈S1(t)〉 ∼
{

〈S1(∞)〉 − R1
1−R1

i1(t) if R1 < 1,
R1

R1−1 i1(t) if R1 > 1.
(36)

IV. EXAMPLES

In this section we illustrate two kinds of behavior that we
can find in the time dynamics of the viral cascades. Specifically
we consider the case in which G(t) is superexponential with
two significant examples, the Poisson process and the Gamma
process, and the case in which G(t) is subexponential with
application to the log-normal distribution found in Sec. IV B.

A. Superexponential processes

When G(t) is not subexponential the Malthusian parameter
given by Eq. (31) always exists and the asymptotic solution is
given by Eq. (32).

Poisson process. Most of the literature assumes that G(t) is
the cdf of the exponential distribution for the response times.
Thus, if G0,1(t) = 1 − e−ρ0,1t Eq. (11) can be derived once to
obtain

∂F0(s,t)

∂t
= ρ0{f0[F1(s,t)] − F0(s,t)}, (37)

∂F1(s,t)

∂t
= ρ1{f1[F1(s,t)] − F1(s,t)}, (38)

and for the moments,

di0

dt
= ρ0[R0i1(t) − i0(t)], (39)

di1

dt
= ρ1[R1 − 1] i1(t). (40)

The solution for the second equation with initial condition
i1(0) = 1 is i1(t) = eα1t with α1 = ρ1(R1 − 1) and then,

i0(t) ∼
{

R0ρ0

α1+ρ0
eα1t if α1 = −ρ0,

R0ρ0te
−tρ0 if α1 = −ρ0,

(41)

where

α1 = ρ1(R1 − 1) = R1 − 1

τ 1
(42)

is the Malthusian parameter for I1(t). The resonant case α1 =
−ρ0 can only happen below the “tipping point” where α1 < 0.
Equations (39) and (40) are the linear growth Markovian model
typically used to understand the dynamics of information
spreading in social networks [29]. In particular, if the number
of recommendations depends linearly on the substrate social
network connectivity then p1,r ∼ kpk/k and thus R1 = λk2/k

to recover the result by Pastor-Satorras and Vespignani [34]
that the Malthusian parameter is

α1 = λ
k2

k
− 1 ⇒ λc = k

k2
. (43)

Thus, if the social connectivity has a distribution which is
fat tailed then k2 � k and λc � 0. Moreover, we recover the
result of [56] in which the Malthusian parameter, in that case,
is α1 � 1, and leads to an exploding exponential that grows
very fast in a short time.

The Poisson process is special, since α1 depends linearly
on R1. Thus the value of R1 for social networks influences
the total reach of the cascades but also the time dynamics.
However, this is not always the case, as we will see for other
time processes. In addition, the Poissonian case tells us that the
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time dynamics of viral cascades is Markovian and that human
dynamics can be described by differential equations like (39).

Gamma process. In the case in which the distribution of
response times is not given by an exponential, the behavior
below the “tipping point” is given by Eq. (32) for distributions
G(t) not in the subexponential class. Above the “tipping
point” the Malthusian parameter α always exists, but the
relationship with R1 can be highly nonlinear. For example, in
many applications it is found that the response time distribution
G(τ ) can be fitted to the cdf of the gamma distribution [57,58],
whose pdf is

P (τ1) = τ k−1
1

e−τ1/θ

θk�(k)
, (44)

where τ 1 = kθ and Var(τ1) = kθ2. In fact, in [58] Vázquez
et al. found that the email response time is distributed as (44)
with k � 0 and θ � 20 days. On the other hand, the gamma
distribution is used as a simple model for the response time
or lifetime since it can accommodate different functional
behaviors: a delta function when k → ∞ and kθ fixed, a power
law with exponential cutoff when k < 1, or the exponential
case when k = 1,1/θ = ρ. For k > 0 and θ < ∞ the gamma
distribution does not belong to the subexponential class. Thus
the Malthusian parameter always exists and moreover it can
be calculated exactly as

α1 = R
1/k

1 − 1

θ
. (45)

This equations shows the nontrivial entanglement in the
time dynamics of the recommendation process between the
distribution of recommendations (R1) and the response time
distribution (k,θ ). In particular, it shows that the exponential
growth depends not only on the mean response time τ 1 but also
on the variance. To show this, we take the case τ 1 = kθ = 1
fixed and we vary k to control the variance. Figure 7 shows that
above the “tipping point” α1 diverges when Var(τ1) grows and
thus propagation happens much more rapidly than in the case
of the Poissonian approximation. The reason for it is that above
the “tipping point” the initial exponential growth of the infinite
cascade is triggered by those people with response times below
the mean, which in the case of long-tailed distributions are also
more abundant than those with large response times. Below the
“tipping point,” the contrary happens: Since all cascades die
out, their time dynamics is controlled by a few nodes which, in
the case of long-tailed distributions, can have large response
times halting the branching process and slowing down the
propagation of the information. In particular, Eq. (45) recovers
the result in [58] that with k � 0 and below the “tipping point”
we get α1 = −1/θ (i.e., the time scale is given by the cutoff
in the distribution of response times).

However, it is important to note that even in this case,
the asymptotic dynamics in the limit t → ∞ is still given
by the exponential decay in Eq. (32) which shows that
although α1 now depends nontrivially on the moments of the
G(t) distribution we may describe the dynamics in terms of
Markovian equations like (39) replacing α1 by its actual value.
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FIG. 7. (Color online) Malthusian parameter α1 for the gamma
distribution of response times given by Eq. (45) above (left, μ1 > 1)
and below (right, μ1 < 1) the “tipping point.” The horizontal line is
the Malthusian parameter for the Poissonian approximation with the
same average response time (i.e., ρ = 1).

B. Subexponential process

In the case where G(t) is subexponential the Malthusian
parameter does not exist below the “tipping point” and the
process asymptotic dynamics is given by the tail of the
distribution G(t) as Eq. (34). In particular, this implies that we
cannot describe the dynamics of viral cascades by Markovian
approximations like the differential equations (39) a sign for
the strong non-Markovian character of the process in this
situation, which corresponds to our empirical findings.

Log-normal process. We concentrate on the case where
G(t) is the cdf of the log-normal distribution which we found
to be a good model for the response time in our campaigns.
Specifically, assuming its pdf is

P (t) = 1

tσt

√
2π

e−(ln t−τ 1)2/(2σ 2
t ), (46)

with mean τ 1 and variance σ 2
t , then Eq. (34) tells us that

i1(t) ∼ 1

2(1 − R1)
erfc

(
ln t − τ 1

σt

√
2

)
, (47)

where erfc(x) is the complementary error function. In the large
t limit we can replace erfc(x) in Eq. (47) by the first term of
its asymptotic expansion to obtain

i1(t) ∼ 1

(1 − R1)

σt√
2π

exp
( − (ln t−τ 1)2

2σ 2
t

)
ln t − τ 1

, (48)

which indicates that the decay below the “tipping point” is
not exponential and also that it happens in a logarithmic
and not in a linear time scale as shown in Fig. 8. This in
turn implies that the information propagation prevails for
much longer times than expected, as was shown in [9],
since the asymptotic dynamics in dying viral cascades can
be dominated (and halted) by a single individual. However,
above the “tipping point” the Malthusian parameter α1 always
exists and can be calculated. In this case, however, it can be
very different from the Poissonian approximation given by
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FIG. 8. (Color online) Distribution of the average fraction of new
participants as a function of the cascades start time in our campaigns
(circles) compared with Eq. (47) (black line), the prediction of
the Bellman-Harris model with P (t) the log-normal distribution of
Eq. (46) and with P (t) exponential of the same mean (red). Dashed
line is Eq. (48), the asymptotic approximation of the Bellman-Harris
model with P (t) log normal. (Inset) Time dynamics of S(t), the
cascade’s average size (circles) accurately predicted by the model for
G(t) log normal. In red are predictions for G(t) exponential.

Eq. (42) since there is not an analytical solution in closed
form for the Laplace transform of the log-normal distribution
and Eq. (31) must be solved through numerical methods like
the one proposed in [59]. Finally, an important difference
with the superexponential process is that with subexponential
cdf’s of the response times Eq. (34) shows an asymptotic
dynamics for i(t) that is always universally given by the
cdf of the response (with a rescaling prefactor dependent
on R1). This could be used to measure G(t) if no access to
individual responses is possible. Note however than in the case
of subexponential distributions, this is not possible since the
Malthusian parameter in Eq. (31) depends highly nontrivially
on both G(t) and R1.

V. CONCLUSIONS

We closely tracked an invariable message propagation in an
information diffusion process below the “tipping point” (i.e.,
with R1 < 1) driven by a real viral marketing mechanism run
in several European markets. Our analysis of the data set of
the resulting propagation that reached over 31 000 individuals,
reveals the striking diffusion patterns that characterize the
dynamics of information diffusion processes as being sub-
stantially different from the ones used in the epidemic models
traditionally used to explain information propagation.

Those characteristic patterns affect both the structure
of the propagation paths and their dynamics. On the
structural side, the viral propagation cascades are nearly
pure trees almost completely devoid of closed loops or
cycles and feature a very low clustering coefficient which
is almost two orders of magnitude lower than the one
typical of the email social networks upon which the viral
propagation took place. Besides, the recommendation
spreading activity of the campaigns’ active participants is very

heterogeneous and its pdf is a long-tailed power law which
explains why most of the observed propagation was due to
extraordinary events caused by superspreading individuals.
On the other hand, the dynamics side of the propagation
process shows that a majority of the spreading individuals
become inactive right after sending their recommendations
in what could be considered a “birth-and-death” process.
Finally, the pdf of the forwarding time for the received
recommendations is also a very heterogeneous long-tailed
distribution, a log normal in this case, and the spreaders
forwarding time distribution and that of the number of
recommendations they sent are independent and uncorrelated.

While there exist in the literature a number of studies
about the static properties of viral information diffusion
none of them explain the peculiar features discovered in the
dynamics of our real campaigns. On the one hand most models
concentrate only on the static asymptotic properties of the
viral dynamics like Jurvetson’s viral marketing model [39],
the marketing percolation model of Goldenberg and Libai
[60], or the recommendation propagation model by Leskovec
et al. [20] which predicts a power law with exponent γ = −1
for the distribution of the number of recommendations. On
the other hand, numerous authors have studied the dynamic
stochastic rumors [17,19,61,62] using the Daley-Kendall
(DK) or the susceptible-infective-refractory (SIR) propagation
models with Markovian differential equations, or the elaborate
branching model of van der Lans et al. [52]. However, those
models assume that the response time can be described by
an exponential distribution which facilitates the theoretical
analysis since Markovian and thus viral information diffusion
can be explained by differential equations.

As we have found, this is not the case for our real experi-
ments and we have described how to model the dynamics of
information diffusion by means of the Bellman-Harris, which
is the minimal framework to understand the non-Markovian
spreading of information on social networks. This model
generalizes the branching Galton-Watson scheme typically
used both in information diffusion [13–16,52] and general
percolation processes in social networks [13,34]. Our main
result is that the information diffusion process object of this
research shows a branching dynamics with some striking
peculiarities that result (a) from the human characteristic
patterns when scheduling and prioritizing tasks, (b) from
the human decisions on how to select targets for the viral
propagation, and (c) from the negligible influence of the
substrate social network when the process runs below the
“tipping point”. Thus, to explain all of them we propose
a concise model that considers the large heterogeneity of
human behavior but neglects the impact of the email social
network underlying the diffusion process. The mathematical
description of this approach is a non-Markovian, Bellman-
Harris branching model with a subexponential (log-normal)
distribution of the recommendation’s response time G(t) like
the one in Sec. IV B, and two different power-law distributions
for the number of referrals for the classes of seed and viral
nodes, p0,r and p1,r , respectively. Since ri and τi in our model
are both iid random variables, the overall a priori probability
of transmission of the information between two individuals,
the transmissibility λ1, is the average over the distributions
p1,r and G1(t) of the transmission probability between any
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two individuals [13]. Thus, per Newman [35], our branching
model is equivalent to uniform bond percolation on the same
social network and several magnitudes of interest (cascades
size distribution and “tipping point”) in the infinite time limit
can be obtained by mapping it onto a bond percolation model.

Given the distributions p0,r , p1,r , G0(t), and G1(t), this
model accurately predicts all the magnitudes of interest of the
viral information or WOM diffusion processes: the dynamic
parameters transmissibility and fanout coefficient, the cascades
size distribution, its average and variance in the asymptotic
limit, the cascades network clustering coefficient, the message
propagation “tipping point,” or the precise time dynamics in
the asymptotic regime. In addition, it allows predictions for
processes past, but close to, the “tipping point” provided the
substrate network of the propagation is large enough to avoid
finite-size effects and maintain the assumption of its negligible
influence. The accuracy of those predictions, which can be
achieved early in the propagation process, make this model
a valuable tool for managing information diffusion. Finally,
since most information transmission, sharing, and searching
in social networks has limited reach (thus happening below
the “tipping point”) and given the fact that there seems to exist
certain universality on both the heterogeneity in the number
of actions [22–28] and the subexponential character of human
response times [9,22,30–33], our theoretical model is thus the
most basic and general analytical tool to understand processes
like rumor spreading, cooperation, opinion formation, cultural
dynamics, diffusion of innovations, etc.

APPENDIX: CLUSTERING COEFFICIENTS’
CORRELATION

Assuming independence between the degree of a social
network node and the number of messages it sends in a
diffusion process, the undirected clustering coefficients of
the social network Csoc and of the cascades network Ccas are
correlated. Both are defined as [35]

C = 3 × number of triangles in the network

number of connected triples in the network
, (A1)

where “triple” means a node with two edges running to an
unordered pair of others. If connected, such a pair forms a tri-
angle. In a mean-field approximation they can be estimated as

Csoc = 3 × 〈triangsoc〉
〈triplsoc〉

, (A2)

Ccas = 3 × 〈triangcas〉
〈triplcas〉

, (A3)

with 〈triang〉 and 〈tripl〉 being the average of triangles or
triples by node in the social (soc) or cascades (cas) network.
The probability of finding a triangle on a given node is the
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FIG. 9. (Color online) Clustering coefficient Ccas for the cascades
network obtained through simulations of the viral propagation model
on a real email network (circles) with Csoc = 0.22 and 〈knn〉 = 18.9
compared with the linear relationship in Eq. (3).

probability of it having a triple times the linking probability of
its end nodes,

P (triang) = P (tripl) × P (close), (A4)

where P (close) is the existence probability of a link in the open
side of the triad. Due to the independence of social links and
recommendations, the average number of triangles and triples
in the cascades network results as

〈triangcas〉 = P (tripl) × P (close) × 〈triangsoc〉, (A5)

〈triplcas〉 = P (tripl) × 〈triplsoc〉, (A6)

which, replaced in (A2), (A3), and combined with (A4), yield

Ccas = P (close) × Csoc. (A7)

Since nodes reached by a viral message become active
with probability λ and each resends it in average to r1 of
its 〈knn〉 − 1 nearest neighbors (excluding the ancestor node),
the probability of closing the triple is

P (close) ∼ 2λr1

〈knn〉 − 1
= 2R1

〈knn〉 − 1
, R1 � 1, (A8)

whose factor 2 stems from the fact that either of the nodes at
the open end of a triple can send the message and close the
triangle. Replacing P (close) in Eq. (A7) recovers Eq. (3) which
has been verified (even for R1 ∼ 1) through simulations on a
university email network [63] with Csoc ∼ 0.22. Its correlation
with the cascades network clustering coefficient as a function
of R1 is shown in Fig. 9. The low values of Ccas explain why
our model neglects the substrate network structure in the study
of information propagation below the “tipping point.”
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