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Large velocity fluctuations in small-Reynolds-number pipe flow of polymer solutions
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The flow of polymer solutions is examined in a flow geometry where a jet is used to inject the viscoelastic
solution into a cylindrical tube. We show that this geometry allows for the generation of a “turbulentlike” flow at
very low Reynolds numbers with a fluctuation level which can be as high as 30%. The fluctuations increase with
an increase in solution polymer concentration and flow velocity. The turbulent fluctuations decay downstream
for small flow velocities but persist for high velocities. The statistical properties of the generated fluctuations
indicate that this turbulentlike flow is different from previously studied flows displaying elastic turbulence and
shows a direct cascade of energy to small scales with practically no intermittency.
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In Newtonian fluids, turbulence sets in at high enough
Reynolds numbers, a measure of the ratio of inertial to viscous
forces. It is given by Re = Ud/ν, where ν is the kinematic
viscosity, U a large-scale velocity, and d an appropriate scale
in the system [1]. For non-Newtonian fluids, the situation
is less clear. The addition of small amounts of polymers
to high-Reynolds-number flows can diminish the turbulent
intensity dramatically, a phenomenon called turbulent drag
reduction [2,3]. However, in the opposite limit of very small
Reynolds numbers, flow instabilities [4] and even a random
and chaotic motion of the fluid known as elastic turbulence
[5] may also be observed for very similar dilute solutions
of polymers. Such flow instabilities must find their origin
in the non-Newtonian flow properties of the fluid, notably
elastic forces that result from the stretching of the polymers
by the flow [4,5]. The relevant dimensionless number is the
Weissenberg number Wi = .

γ λ, which compares the velocity
gradient

.
γ in the fluid to the viscoelastic relaxation time of

the polymer solution λ. Such low-Reynolds-number random
flows may have applications for mixing chemical reactants in
microchannels [5,6] but may also be an unwanted side effect
in the manufacturing of polymer fibers [7–9].

It is known that polymer solutions can become unstable in
flows with curved streamlines provided the velocity is large
enough [10]. The instability threshold depends on the curvature
of the streamlines [10]. This naturally poses the question of
what happens for the more usual case of flows in straight
channels, without any curvature, such as in microchannels. A
linear stability analysis shows that these flows are linearly
stable [11]; however, a recent nonlinear stability analysis
shows that a finite-amplitude perturbation of the flow may
lead to instability for large enough Wi [7,8,12]: The instability
is subcritical.

In this Rapid Communication we present evidence for the
existence of “elastic turbulence” in straight channels, and also
show that a prerequisite for observing such unstable flows is
a very large initial perturbation of the flow. This concurs with
the theory, and provides a plausible reason why, to the best
of our knowledge, the effect has not been observed before, in
spite of a large number of efforts. In addition, we characterize
the flow and show that it has properties usually associated

with large-Reynolds-number flows, such as the presence of an
energy cascade and the scaling of the structure functions.

The experiments use a large molecular weight polymer
(18 × 106 amu polyacrylamide) in water at 10-mM NaCl at
concentrations between 100 and 1000 ppm. The rheology
of the solutions was done with a cone-plate geometry in a
commercial rheometer (Rheologica). This allows to determine
the relaxation time λ and shear-rate-dependent viscosity of
the solutions [Fig. 1(a)]. For the flow experiments, solutions
are injected in cylindrical tubes of different cylinder diameters
(2R = 5 and 8 mm) using a syringe pump, after its passage
through a smaller tube (1 or 3.5 mm diam) to produce a
perturbation of the flow where the small tube enters the larger
one. The velocity and its fluctuations are measured using a
laser Doppler velocimeter (LDV) (probing a zone of 0.1 mm
in diameter and 0.8 mm in length) at or near the centerline of
the tubes. We measure the velocity of tracer particles (1 or 6
μm in diameter) with which the solution is seeded, allowing for
a measurement of the time series of the longitudinal velocity
at different distances x from the exit of the small tube. Control
experiments were carried out using water-glycerol solutions
of shear viscosity 400 mPa s, comparable to the zero shear
rate viscosity of the most concentrated polymer solutions. The
velocity time series is then analyzed to extract the level of
fluctuations, the velocity histograms, and the power spectra of
the temporal velocity variations.

The first remarkable feature is the much larger level of
velocity fluctuations for the polymer solution as compared to
the control solution as shown in Fig. 1(b). The two solutions
have comparable shear viscosities corresponding to Reynolds
numbers of 0.08 and 0.04, respectively. However, the polymer
solution exhibits large velocity fluctuations with an intensity
(width of the histogram at half maximum divided by the mean
value) of nearly 30% as compared to only 3% for the control
case. The presence of large fluctuations is further illustrated by
the power spectra of velocity fluctuations shown in Fig. 1(c).
Here, the power spectrum of the glycerol solution is flat and
comparable to the noise floor of the measurements. For the
polymer case, at comparable injection flux, the power spectra
are broad band and present at least a two order of magnitude
increase with respect to the test solution at the low-frequency

045301-11539-3755/2011/84(4)/045301(5) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.045301


RAPID COMMUNICATIONS

D. BONN, F. INGREMEAU, Y. AMAROUCHENE, AND H. KELLAY PHYSICAL REVIEW E 84, 045301(R) (2011)

0.000 0.005 0.010 0.015

101

102

103  700ppm
 water glycerine 

C
ou

nt
s

U (m/s)

0.1 1 10
10-10

10-9

10-8

10-7

10-6
 glycerine 8ml/min 
 1000ppm PAM 8ml/min
 1000ppm PAM 1ml/min
 1000ppm PAM 2ml/min
 1000ppm PAM 3ml/min
 1000ppm PAM 5ml/min
  1000ppm PAM 0.5ml/min

P
ow

er
 S

pe
ct

ru
m

 (
m

2 /s
2  p

er
 H

z)

f (Hz)
0.1 1 10

10-10

10-9

10-8

10-7

10-6

0.1 1 10

10-9

10-8

10-7

U
V

P
ow

er
 S

pe
ct

ru
m

-1.5

f (Hz)

 0.5ml/min, U=0.4mm/s
 1ml/min, U=0.8mm/s
 2ml/min, U=1.7mm/s
 3ml/min, U=2.4mm/s
 5ml/min, U=4mm/s
 8ml/min, U=5.9mm/s

P
ow

er
 S

pe
ct

ru
m

 (m
2 /s

2  / 
H

z)

f/U
mean

   (cm-1)

1/R

1000ppm

-1.5

(b)

(c)
(d)

10-3

10-2

10-1

100

101

10-3 10-2 10-1 100 101 102 103 104

η 
(P

a 
s)

 γ (s-1)

1000ppm

833ppm

400ppm

100ppm

200ppm

.

100 1000
10-3

10-2

10-1

100

101

λ (s) from Carreau Model

λ (s) from linear Rheology

c (ppm)

(a)

FIG. 1. (Color online) (a) Viscosity vs shear rate. The relaxation times λ were obtained using a Carreau model (dashed lines) and linear
rheology measurements. (b) Histograms of the velocity at x = 3.5 cm for a flux of 8 ml/min. (c) Power spectra at x = 3.5 cm. (d) Spectra vs
wave number the arrow indicates the radius of the channel. Inset: Spectra of the longitudinal and transverse components.

end of the spectrum. By reducing the injection flux and
therefore the mean velocity of the flow, the fluctuation level
decreases and the spectral amplitude decreases accordingly.
However, the spectra always remain at significantly higher
fluctuation levels than the control solution. These observations
are also recovered when the polymer concentration decreases;
here the spectral amplitude decreases with concentration. The
large fluctuations we observe therefore increase when the
polymer concentration and the mean flow velocity increase.

A further analysis of the spectra is shown in Fig. 1(d),
where the frequency axis is normalized by the mean velocity of
the flow. In high-Reynolds-number turbulence this procedure
amounts to admitting the validity of the so-called Taylor
frozen turbulence hypothesis. This hypothesis has not been
tested explicitly here, but for viscoelastic flows in the elastic
turbulence regime it was found to work reasonably well when
the mean flow is well defined [13]. Figure 1(d) suggests that the
high-frequency part of the spectra for different injection fluxes
but similar concentration seems to asymptote to the same level.
This asymptote can be roughly approximated by a power-law
decay with an exponent 1.5 for scales smaller than the radius

of the channel R. The inset of Fig. 1(d) shows the power-law
decay of the spectrum for both the longitudinal and transverse
component of the velocity, indicating anisotropy of the large
scales but isotropy at the small-scale (high-frequency) end of
the spectrum.

A second observation concerns the evolution of the spectra
as the measurement position varies. We measure the fluctua-
tions at different distances from the entrance tube (the flow
perturbation) and observe that for small Wi (typically Wi = 1)
the fluctuation intensity decreases with the downstream dis-
tance from the entrance x when Wi is small; however, a high
level of fluctuations persists when Wi is high. This is illustrated
in Fig. 2(a) for two values of Wi, 0.7 and 4. The distance y

divided by the mean flow velocity gives us the time evolution
(persistence) of the turbulence. For low Wi, it decays away
from the perturbation, which is reminiscent of decaying jet
or grid turbulence; however, the decay is much slower than
a simple flow perturbation in a laminar flow and seems to be
algebraic. Note that this decay occurs over a period of time that
is at least ten times longer than the polymer relaxation time
λ ≈ 1 s before the fluctuations reach the noise floor. The decay
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FIG. 2. (Color online) (a) Amplitude of fluctuations vs t = x/U for a 1000-ppm solution. (b) Power spectra at different x for Wi = 4.
(c) Polymer elongations for two Wi: Image 1 is near the outlet, and images 2–5 are farther down stream and at different distance z (indicated in
the images) from the wall of the channel. Velocity profiles and a parabolic fit: The vertical bars indicate the fluctuation level. (d) Spectra using
two different injection diameters.

of the fluctuations for small Wi suggests that the fluctuations
introduced by the small tube die out over time and that the
flow will become stable farther downstream. The persistence
of the fluctuations for large Wi, on the other hand, suggest a
sustained state. Very close to the exit of the small tube the
fluctuations decay somewhat, but farther downstream the de-
cay is arrested signaling that the fluctuations persist: A plateau
value of the amplitude is obtained [Fig. 2(a)]. Figure 2(b)
shows the spectra, for this value of Wi, taken at different
distances from the exit of the small tube. The spectra show
a fast decrease in amplitude at first, but farther away, they
remain practically unaltered when changing the downstream
distance. The scaling of the high-frequency end also persists.

To gain more insight into the microscopic dynamics of the
polymers, we carried out additional experiments to examine
the polymer conformations within the flow. In the pioneering
work of Steinberg and collaborators, polymers exhibited strong
elongations in the elastic turbulence regime. These elongations
can be used as a measure of the local elastic stresses in the flow
[14]. To carry out a visualization of the polymer conformations,
we seeded a 1000-ppm polymer solution prepared in an
appropriate buffer with a small quantity of fluorescent T4
DNA molecules [15]. To be able to do experiments under
a microscope, the flow glass cell now consists of a 2-cm-long
rectangular channel of 200 μm height and 2 mm width into

which a cylindrical tube of 100 μm diam was inserted for
the injection of the solution. This cell was mounted on an
inverted microscope equipped with an oil immersion objective
[63×, numerical aperture (NA) 1.46] and a sensitive camera
[EMCCD], allowing to directly visualize the conformation of
the DNA polymers. We observe strong elongations within the
small cylindrical injection tube. At the outlet of this tube,
the streamlines of the flow show a strong divergence, and the
polymers exiting the tube are observed to be either already
elongated or to get stretched by the diverging streamlines
as shown in the two upper images of Fig. 2(c) for two
different values of Wi. We estimate that the polymers can
be elongated up to at least 50% of their total length; in doing
so, they exhibit a variety of conformations, notably elongation
both parallel and perpendicular to the main flow direction.
We subsequently examine the elongation of the polymers at
different heights z in the rectangular channel and at different
positions in the flow direction for two different Wi, 1 and 4.
The small Wi flow shows that the polymers may be elongated
near the outlet of the cylindrical tube and near the walls of the
channel farther downstream (image 2) but not near the middle
of the channel (image 5) where the shear rate is small: See
the corresponding velocity profiles in Fig. 2(c) (the velocity
fluctuations around the mean in these measurements obtained
from particle tracking are near 30%, which is consistent with
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FIG. 3. (Color online) (a) Sn(r) for 1000 ppm at 8 ml/min. (b) ζn obtained from different runs are reported. (c) The pdf’s of velocity
increments and a Gaussian fit. (d) S3(r).

the laser Doppler velocimeter (LDV) measurements). The
snapshots in Fig. 2(c) are taken at different heights in the
channel for a distance of 1 cm from the outlet, i.e., sufficiently
far from the outlet so that entrance effects can be neglected.
Note that near the center of the channel, the molecules are not
strongly elongated. For the higher Wi flow, strong elongations,
even in the middle of the channel where average shear rate is
small, are clearly observed (images 4 and 5 for Wi = 4).
The elongations of the polymers observed here persist as the
distance to the entrance increases for high Wi but not for
the low Wi case. We conclude that both the passage in the
small tube and the diverging flow at its exit contribute to
elongate the polymers and therefore inject elastic stresses into
the flow. These elastic stresses then drive the turbulent flow; the
latter persist farther downstream for high Wi, and die out for
small Wi, in agreement with the macroscopic measurements
presented above.

These observations suggest that for high enough Wi, large
fluctuations persist. However, this is not the only condition:
The injection also has to be violent enough. This follows from
our observation that different injection schemes lead to very
different results. We use different injection tubes of 1 and
3.5 mm diam. The power spectrum in the channel in the first
case has an amplitude at least an order of magnitude larger
than in the second case, signaling that the injection through
a smaller tube is much more efficient in producing the large
fluctuations [Fig. 2(d)] and that the flow is more stable if the
perturbation at the entrance is smaller. This ties in with recent
theoretical analyses of viscoelastic channel flow [7,12], where
the subcritical nature of the instability leads to the prediction
that the flow goes unstable only if the initial perturbation is

strong enough and for Wi greater than a threshold value of ∼5.
Our experiments show that first, a strong perturbation is needed
to render the flow “turbulent” and that this “turbulence” decays
downstream for small Wi while it persists for higher Wi.

Let us now focus on the properties of this turbulence. The
statistics of the fluctuations are usually characterized by the
structure functions of the absolute value of velocity differences
across different time scales or length scales r if we again invoke
the Taylor hypothesis Sn(r) = 〈|U (x + r) − U (x)|n〉. This
analysis confirms the scaling behavior of the power spectrum at
high frequencies observed for the high concentration solutions.
This follows from the power-law scaling of the structure
functions with r as well as from the variation of the exponents
ζn versus the order n of the structure functions, which for an
exponent of 1.5 for the spectrum should vary as n/4, shown
in Figs. 3(a) and 3(b). A remarkable feature here is that the
exponents seem to vary roughly linearly with n with only a mild
deviation for the fifth and sixth moments and no noticeable
changes with respect to Wi. Despite this mild deviation, the
probability density functions (pdf’s) of velocity differences
remain roughly the same all through the scaling range, as
shown in Fig. 3(c) where they are found to superimpose for
different values of r (indicated by solid lines in Fig. 3(a))
showing that the functional shape of these pdf’s is independent
of the increment r . Interestingly, these functions do show a
skewness toward negative velocity differences. An attempt at
fitting these pdf’s with a Gaussian function show that while
this function may approximate the central portion of the pdf’s,
it fails for the negative velocity tail due to the asymmetry.
A final remark concerns the third-order moment of velocity
increments S3(r) = 〈[U (x + r) − U (x)]3〉. This moment is
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negative (in agreement with the observation of the skewed
pdf) and increases in absolute value as the scale increases,
before going through a minimum at a scale comparable to the
radius of the pipe used [Fig. 3(d)]. These features indicate
that, despite the obvious differences between the two flows,
this low-Reynolds-number flow exhibits features in common
with high-Reynolds-number turbulent flows such as a negative
third moment and therefore a nonzero energy transfer rate from
large to small scales.

For elastic turbulence in curved channels, previous exper-
iments, supported by theory [16] and numerical simulations
[17], suggest a power-law scaling of the power spectra as well;
however, the important difference is that the exponent found is
near 3.3 [5,18]. Experiments in a Taylor-Couette cell showed
exponents smaller than 3 [18], suggesting that the type of base
flow may also modify the statistical properties of the velocity
fluctuations. Here, we find an exponent that is significantly
smaller, which suggests a different “type” of turbulence in our
linear channel. In fact, an exponent smaller than 3 suggests
that the velocity field is singular over the scaling range [19].
Our observation of power-law scaling with a power smaller

than 3 is valid for the three concentrations we have examined.
However, the exponent seems to increase from 1.5 at 1000 ppm
to nearly 3 at 200 ppm: If the polymer concentration decreases,
the velocity field seems to become smooth. In addition to the
linearity of our channel, it is then probable that the difference
between our findings and previous results [5] is due to the high
concentrations used here and perhaps also to the shear thinning
character of our solutions.

We conclude from the above observations that low-
Reynolds-number pipe flow of polymer solutions may become
unstable and turbulentlike if the flow is perturbed sufficiently.
The results indicate that the turbulentlike flow has different
properties from previously found random flows in viscoelastic
solutions. It may well be that the geometry of the flow is at the
heart of such differences. We speculate that such fluctuations
of a different nature than seen previously will also change
the way mixing is achieved in low-Reynolds-number flows of
viscoelastic solutions.

We would like to thank V. Steinberg for a critical reading
of the manuscript.
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