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Theory of microbe motion in a poisoned environment
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The motility of a microorganism which tries to avoid a poisoned environment by chemotaxis is studied within
a simple model which couples its velocity to the concentration field of the poison. The latter is time independent
but inhomogeneous in space. The presence of the poison is assumed to irreversibly reduce the propulsion speed.
The model is solved analytically for different couplings of the total poison dose experienced by the microbe to
the propulsion mechanism. In a stationary poison field resulting from a constant emission of a fixed point source,
we find a power law for the distance traveled by the microbe as a function of time with a nonuniversal exponent
which depends on the coupling in the model. With an inverted sign in the couplings, the acceleration of microbe
motion induced by a food field can also be described.
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I. INTRODUCTION

Understanding the motility of microbes [1–3] and other
self-propelled particles in solution [4,5] in terms of the under-
lying physics [6,7] is a challenging problem. In particular, it
is interesting to control the motility by environmental stimuli
and conditions [8,9]. In fact, many microorganisms are guided
by chemotaxis [10–12]; i.e., they “smell” the concentration
of a chemical field and on average swim along its steepest
gradient in order to optimize their local environment. If the
microbe tries to avoid an unfavorable chemical (which may
also be termed “poison” or a chemorepellent field) [13], it
will go effectively along the negative steepest gradient of
this field, while the opposite is true for a favorable chemical
(which may also be termed “food” [14] or a chemoattractant
field) [11,15].

Recently, individual models for microbe dynamics have
been studied which incorporate the influence of chemoat-
tractants and chemorepellents [16–23]. In the following,
the effective averaged speed resulting from the ability of
microorganisms to actively move along chemical gradients
is referred to as drift velocity. In the models studied hitherto,
the drift velocity was modelled to be proportional to the local
gradient. In this paper, we model a complementary situation
where the chemical affects irreversibly the maximal drift
velocity.1 In a dangerous “paralyzing” chemical environment
the microbe will try to escape with its maximal drift velocity
along the negative steepest gradient of the poison field. If
the poison field irreversibly destroys or reduces the ability
to move, the microbe slows down accordingly. Then the
important questions are: under which conditions can the
microbe escape a prescribed poison field? How far can it get
until a lethal dose stops its motion completely? Of course, the
answer to these questions depends on the detailed destructive
action of the poison to the propulsion mechanism of the
microbe. Experiments on the motility of Escherichia coli in

1This is different from the short-time memory many microbes
feature in their chemotaxis. For appropriate modeling in that case,
e.g., see N. Vladimirov and V. Sourjik, Biol. Chem. 390, 1097 (2009);
N. Bournaveas and V. Calvez, Kinetic and Related Models 1, 29
(2008).

an environment polluted by copper ions [24] point indeed
to the idea that the motion of bacteria is controlled by the
amount of locally experienced poison. The same was found in
more recent investigations on Hotorhabdus temperata where
the motility depends on the salt concentration of the carrier
liquid [25].

In this paper, we propose a simple model for a microbe
which tries to avoid a poisoned environment by chemotaxis.
The model couples its drift velocity to the concentration field
of the poison. The chemical concentration field is assumed
to be time independent but inhomogeneous in space. The
presence of the poison is supposed to irreversibly reduce
the drift velocity, and a hyperbolic coupling is proposed
in terms of a simple spring destruction model. The model
is solved analytically for a one-dimensional setup (ignoring
reorientation of the microbe). Three different static concentra-
tion fields are considered explicitly, namely a homogeneous
field, a linear gradient field, and a field resulting from a
poison point source in a quiescent solvent. For a poison
source fixed in space which secretes a chemical at a constant
rate, an inverse distance scaling of the concentration field is
realized. In this field, the traveled distance is found to scale
with a power law as a function of time with a nonuniversal
exponent which depends on the coupling in the model. With
an inverted sign in the couplings, the acceleration of microbe
motion induced by a chemoattractant field (food field) can
also be described accordingly. Our results may be helpful to
discriminate between different mechanisms [26,27] for poison
action on the propulsion [28] by using detailed real-space
measurements of microorganisms [29,30].

II. THE MODEL AND ITS ANALYTICAL SOLUTION

In our model, the microbe performs a completely over-
damped self-propelled one-dimensional motion in a viscous
solvent [6,31]. As long as the microbe has not encountered
poison, it moves with a constant drift velocity v0. Now the
microbe has a sensing of chemical poison concentration as
a mean of avoiding poison. In analogy to previous work on
chemotaxis [20–23] we assume that the microbe responds by
directing its motion in the direction of the steepest decline (the
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negative gradient) of poison concentration2 which is assumed
to be a prescribed time-independent field c(x).3 At time t = 0,
the microbe is at position x(0) = x0 and is moving with its
original maximal velocity ẋ(0) = v(0) = v0.

The poison concentration field attacks the motion apparatus
by rendering parts of it unusable, as detailed below. Recovery
and adaptation processes are not considered, but rather the ac-
tual magnitude of the drift velocity v responds to the total dose
of poison y = ∫ t

0 c [x(t ′)] dt ′ the microbe has encountered
since the time it was first exposed to poison. The coupling
between c(x) and v is modelled as v = G{ ∫ t

0 c [x(t ′)] dt ′},
where the coupling function G(y) is monotonic decreasing
in its argument y since the poison reduces the motion. Fur-
thermore, according to our initial conditions, G(0) = v0. The
resulting integrodifferential equation for the microbe motion

ẋ(t) = G

{∫ t

0
c [x(t ′)] dt ′

}
(1)

can be solved analytically. The solution x(t) is implicitly
given by solving the algebraic equation

t =
∫ x(t)

x0

dx ′

H−1
[∫ x ′

x0
dx ′′c(x ′′)

] . (2)

Here, the function H (y) is given by

H (y) =
∫ y

v0

dy ′y ′ d(G−1)

dy ′ (y ′), (3)

and f −1(y) denotes the inverse function to f (y).
Most of the physics is contained in the explicit form of

the coupling function G(y), which describes the irreversible
weakening of the propulsion if the microbe is exposed to
a static poison field c(x). In the following we motivate a
hyperbolic and a linear form for G(y) by using a simple spring
model for the coupling.

III. HYPERBOLIC COUPLING

For many microswimmers [32] the propulsion and (hence
the drift) velocity is coupled to material elasticity. We model
the latter by an effective spring assuming a linear relation be-
tween the spring constant and the drift velocity v. The effective
spring is serially composed of N individual springs of spring
constant D0 so that the total spring constant equals D0/N .
The presence of a poison particle now irreversibly weakens the
elasticity of one spring by reducing its spring constant from D0

to D1 < D0 (see also Fig. 1). After K � N of such incidents,
the reduced effective spring constant is D(K) = 1/[(N − K)/
D0 + K/D1] = 1/[N/D0 + K(1/D1 − 1/D0)].

2This has to be understood as a dynamically coarse-grained
(averaged) effective description of a drift velocity. On shorter time
scales the microbe typically performs individual sensing motions
[11,15,38–40] which are not considered explicitly here.

3We remark that the gradient coupling leads to a quasi-one-
dimensional trajectory for a concentration field c(�r) in three spatial
dimensions. The curve �r(s) parameterized by the arc length s, along
which microbe motion occurs, is uniquely defined for each starting
point by the solution of d�r/ds = −�∇c[�r(s)]/| �∇c[�r(s)]|.

(a) (b)

FIG. 1. Sketch of poison action: a poison particle weakens the
elasticity of one of several serial coupled springs.

Going over to continuous concentrations leads to a hyper-
bolic coupling of

G(y) = v0

1 + λy
. (4)

Here, λ denotes a coupling constant modeling the strength of
poison action. Equation (4) guarantees monotonicity as well
as the condition G(0) = v0.

For the hyperbolic coupling, Eq. (2) is readily evaluated to
give

t

τ
= 1

l

∫ x(t)

x0

dx ′ exp

[
l2

∫ x ′

x0

dx ′′c(x ′′)

]
, (5)

where l = √
λ/v0 and τ = l/v0 are characteristic length

and time scales. If
∫ ∞
x0

dx c(x) exists, the microbe escapes
the poison field retaining a finite terminal velocity of
v0 exp[−l2

∫ ∞
x0

dx c(x)].
We now discuss the solution x(t) for three special

cases. First, for a homogeneous concentration field c(x) =
C = const , the microbe trajectory is given by x(t) = x0 +
1/(l2C) log(1 + l3Ct/τ ). Second, for a constant gradient
field c(x) = C1 x + C with C1 > 0 for x > xe = −C/C1 and
c(x) = 0 elsewhere, we can assume without loss of generality
x0 = 0. Then the solution is implicitly given by t/τ =
exp(β2/2)

√
π/2[�(β) − �(

√
C1lx + β)] with β = lC/

√
C1

and the probability integral �(x) = 2/
√

π
∫ x

0 exp(−t2) dt .
The microbe escapes the poison field at position xe after a
time te = τ exp(β2/2)

√
π/2�(β) where it has still kept the

finite escape velocity ve = v0 exp(−β2/2).
Third, for a point source at the origin which is emitting

poison with a constant rate in a quiescent solvent, the steady-
state solution of the three-dimensional diffusion equation for
the poison concentration field is [19,20] c(�r) = A/ |�r| with an
amplitude A. Anticipating that the microbe tends to escape
the poison field, the microbe motion will be one-dimensional
in the radial direction with an effective concentration field
c(x) = A/x leading to

x(t) = x0

[
1 + (1 + l2A)

l

x0

t

τ

]α

, (6)

with the exponent

0 < α = 1

1 + l2A
< 1. (7)
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FIG. 2. Logarithmic plot of the reduced displacement |x − x0|/l

vs reduced time t/τ with a starting position x0 = 3l for different
amplitudes A with l2A = 0.1, 1, and 3, leading to exponents α =
0.90, 0.5, and 0.25. Asymptotic power laws are plotted as light lines.

Clearly, for large times, this solution approaches the power
law x(t) ∝ tα (see the plots in Fig. 2). The exponent α is
nonuniversal; i.e., it depends on the model parameters.

As a further application, we consider a three-dimensional
point source in a homogeneous solvent flow. The flow is along
the positive x direction with a velocity u. For this setup, the
poison concentration field is [19]

c(�r) = A

|�r| exp

[
−u (|�r| − x)

2Dp

]
, (8)

with the diffusion coefficient Dp of the poison in the solvent
and �r = (x,y,z), which reduces obviously to the static situation
for vanishing flow velocity, u = 0. Due to Galilean invariance,
the same expression is gained for a point source moving
with speed −u in a quiescent solvent. Interestingly, the
concentration field decays algebraically as the inverse distance
in the “wake” of the flow, i.e., in the positive x direction, while
it decays exponentially in the distance to the origin for all other
directions. In the solvent flow, the microbe is dragged along
so that the flow velocity has to be added to its velocity. The
best strategy for the microbe to escape the poison field is to
get away into a direction different than the positive x axis. The
major difference is that an escape along the wake along the
positive x axis would result in a vanishing self-propulsion of
the microbe [an algebraic decay of c(x)] while it would still
retain a finite self-propulsion velocity in the other directions
[an exponential decay of c(x)] as the inner integral in Eq. (5)
remains finite.

IV. LINEAR COUPLING

We now present the solution for another linear coupling
function G(y) where

G(y) =
{
v0(1 − λy), for 0 � y � 1/λ

0, else , (9)

with a different coupling constant λ. Again, G(y) is monotonic
and the condition G(0) = v0 is fulfilled by construction. This
expression contains a lethal dose of poison y = y0 = 1/λ

where the mobility is zero. The linear coupling can be derived
from a simple spring model in a similar way as before but now
for a system of parallel springs which are affected by the poison

(a) (b)

FIG. 3. Action of poison for linear coupling: a poison particle
cuts one of several parallel coupled springs.

(see Fig. 3). Now we consider N identical parallel coupled
springs with total spring constant ND0 and assume that the
poison will irreversibly cut the springs. After K � N of such
incidents, the new spring constant is D(K) = D0 (N − K).
So the effective driving force is v = v0 (1 − K/N) and the
continuum expression yields Eq. (9).

Due to the lethal dose, the microbe can stop completely after
a time tc, i.e., ẋ(tc) = 0. Then it has traveled a maximal distance
xc − x0 from its initial position. For a prescribed poison field,
xc − x0 is obtained from the condition

∫ xc

x0
dx ′c(x ′) = 1/(2l2)

and the corresponding time tc for immobilization is given by
tc = τ/ l

∫ xc

x0
dx ′[1 − 2l2

∫ x ′

x0
dx ′′c(x ′′)]−1/2.

We now give analytical expressions for the three special
concentration fields discussed above. In a homogeneous field
c(x) = C, the microbe trajectory is a constant deceleration
x(t) = x0 + lt/τ − (l4C/2)(t/τ )2 with xc = x0 + 1/(l2C)
and tc = τ/(l3C). Second, for a gradient field c(x) =
C1x + C vanishing for x < xe = −C/C1, we obtain for x0 = 0
x(t) = β/(l

√
C1)[cosh(νt) − 1] − 1/(l

√
C1) sinh(νt) with

ν = l2
√

C1/τ . For β > 1, the microbe stops at xc = xe(1 −√
1 − β−2) after a time tc = ν−1artanh(β−1), while it escapes

for β < 1 after a time te = ν−1artanh(β), keeping an escape
velocity of ve = v0

√
1 − β2. For the special case β = 1,

it approaches xe exponentially as x(t) = xe[1 − exp(−νt)].
Third, in the field c(x) = A/x of a point source, the
microbe’s motion stops at x(t) = x0 exp[1/(2l2A)] after a
time tc = τ (xc/ l)

√
π/(2l2A)�(1/

√
2l2A).

V. FOOD FIELDS

Our model can be extended to describe an increase in
propulsion due to the microbe’s ingestion of nutrients. In order
to do so, the sign of the coupling parameter λ which couples
the dose of the nutrient to the propulsion velocity needs to
be inverted, and the motion of the microbe is now along the
positive gradient of the concentration field c(x).

Similar analytical solutions as in the previous sections are
possible. For hyperbolic coupling and a static point source
of food where c(x) = A/x, there is a scaling x(t) = x0(1 −
t/τ0)α of the distance x(t) of the microbe toward the origin
with time t with the same exponent Eq. (7). The associated
time constant is τ0 = ατx0/l.
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VI. CONCLUSIONS

In conclusion, we have modelled microbe motion in
a poisoned environment by assuming a spatially varying
poison concentration field which irreversibly reduces the
motion of the microbe. For a hyperbolic coupling in a
static poison source, the distance achieved by the microbe
scales with a power law in time, the associated exponent
α < 1 being nonuniversal [5]. This result is obtained for
hyperbolic coupling in the static poison concentration field
of a constantly emitting point source. The model can serve to
classify different bacterial modes of propagation in poison and
food environments.

Future work should incorporate more details of microbe
motion, including the tumbling process [33,34]. In particular,
the coupling assumed here needs certainly more micro-
scopic background modeling and understanding in terms
of more details of the microbe propagation mechanism

[35]. Furthermore, it would also be interesting to apply
the theory to time-dependent poison fields and to include
a recovery of the microbe after the action of the poi-
son field. Moreover, additional Brownian motion should be
considered. The model could also be expanded to include
the influence of other stimuli, like phototaxis. Finally, the
collective and swarming behavior of many microbes in a
poisoned environment is expected to give rich new nonequi-
librium physics [36,37]. This needs, however, a nontrivial
generalization of our toy model, including hydrodynamical
interactions.
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(2011).

[20] Y. Tsori and P.-G. de Gennes, Europhys. Lett. 66, 599 (2004).
[21] R. Grima, Phys. Rev. Lett. 95, 128103 (2005).
[22] R. Grima, Phys. Rev. E 74, 011125 (2006).
[23] A. Sengupta, S. van Teeffelen, and H. Löwen, Phys. Rev. E 80,
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