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Geometry of twist transport in a rotating elastic rod
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An elastic rod rotating in a viscous fluid undergoes a shape transition from a twirling (axial spinning) to a
whirling state (crankshafting motion) at a certain critical frequency [Wolgemuth et al., Phys. Rev. Lett. 84, 1623
(2000)]. The physical properties of such whirling rods are largely unknown, owing to their strongly nonlinear
character. We analytically and numerically demonstrate that this dynamical transition occurs to reduce the viscous
energy dissipation. A simple geometric interpretation underlying this observation is also given. These results
provide a fundamental scenario for viscous twist transport in flexible filaments and are potentially important in
the analysis of biopolymer dynamics such as DNA supercoiling during transcriptions.
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I. INTRODUCTION

The buckling of a thin elastic rod subjected to an external
load has a long history of study in mechanics, dating back to
Euler and Kirchhoff [1,2]. The diverse forms of filaments and
polymers found in biology have kept this classical subject a
fascinating one in the fields of biological physics and applied
mathematics [3]. The geometric and mechanical interplay in
twisted filaments is of particular interest [4].

Unlike a self-avoiding closed curve where the linking
number Lk, which is the sum of twist Tw and writhe Wr, is
invariant under any deformation [5,6], the topological aspects
of open curves are often more involved. The concept of
writhe has been previously generalized to open curves, and its
nontrivial role in DNA twist elasticity has also been recognized
in relation to geometric phases [7–9]. It is mentioned that an
open polymer can release its axial rotation of 4π by rotating
around its end once [7,8]. Geometrically, this refers to the
well-known importance of the spinor representation of the
rotation group [8,10,11]. However, the role of this writhing
geometry in the driven dynamics of elastic filaments [12]
appears to have been much less explored so far, which is the
purpose of the present study.

Specifically, we study an isotropic elastic rod that is
axially rotated at one end at frequency ω0 with the other end
free (see Fig. 1). This model system exhibits a rich variety
of elastohydrodynamic phenomena and was first proposed
and analyzed by Wolgemuth et al. [13]. They showed that
a shape instability occurs at a critical frequency ωc. For
ω0 < ωc, the rod remains straight and undergoes simple
axial spinning (twirling), but for ω0 > ωc the rod buckles
and exhibits a combination of axial spinning and rigid-body
rotation (whirling). Large-amplitude whirling in the stationary
state was later demonstrated numerically [14,15]. However, a
detailed physical understanding of whirling dynamics is still
lacking because of its strongly nonlinear character. In this Brief
Report, we calculate the nonlinear dependence of the energy
dissipation rate on the driving frequency and demonstrate
that dynamical buckling occurs to reduce the dissipation.
We also show its simple geometric origin. Our results elucidate
a previously unknown role of the writhing geometry in the
energetics of the dynamical transition of forced filaments.
This is conceptually important, since it may open up a new
way to characterize the nature of dynamic buckling of a driven

filament by analogy with the well-established energetic theory
of its static buckling transition, where the elastic energy is
minimized for a buckled configuration.

II. MODEL

We study the overdamped dynamics of an isotropic and
inextensible rod of total length L and radius a. The force and
moment balance of the rod can be described by the Kirchhoff
rod equations [1,2]

∂sF − fv = 0, (1)

∂sM + t̂ × F − mv = 0, (2)

where r(s,t) is the rod’s centerline position parameterized by
arc length s and t = ∂sr is the unit tangent vector. F(s) and
M(s) are the internal force and moment acting on the rod cross
section at s, and −fv and −mv are the viscous drag force and
moment per unit length. Neglecting the anisotropy of friction
coefficients for a slender rod due to hydrodynamic interactions,
we assume fv = ζv = ζ ṙ and mv = ζrωt̂, where ζ and ζr are
translational and rotational friction coefficients proportional
to fluid viscosity η, respectively [16]. The constitutive relation
for an isotropic rod with bending and twisting moduli A and
C is given by M = At̂ × ∂s t̂ + C�t̂, where �(s) is the twist
density [2]. The tangential component of Eq. (2) gives the
viscous torque balance about the tangent:

ζrω = t̂ · ∂sM = C∂s�. (3)

To express the dynamics in terms of r(s,t) and twist �(s,t), it
is useful to employ the following geometric relation for twist
density [13,17]:

�̇ = ∂sω − �t̂ · ∂s ṙ + (t̂ × ∂s t̂) · ∂s ṙ. (4)

This equation describes how twist is transported along the rod
centerline; it is a local conservation law for � [13,17]. The
first term on the right-hand side implies that twist changes if
the axial rotational velocity is not uniform along the curve.
This term describes the diffusive transport of twist, and thus
−ω(s) is interpreted as the twist current. The second term is
the stretch-twist coupling, which is absent in our inextensible
rod. The third term accounts for the change in twist due to
writhing (out-of-plane bending) [18]. This term is explicitly
nonlinear and is usually interpreted as a sink or source in the
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FIG. 1. (Color online) Schematic diagram of our model system.
An isotropic elastic rod is forced to rotate at frequency ω0 at its
clamped base with the other end free in a viscous fluid of viscosity η.

twist dynamics. Substituting Eq. (3) into Eq. (4), we can obtain
the dynamic equation for twist [13]. At the forced boundary,
we impose r(0) = 0, ∂sr(0) = ẑ, and ω(s = 0) = ω0, while at
the free end the force and moment vanish, i.e., F(L) = 0 and
M(L) = 0.

At low frequencies, the rod is twisted but remains straight
along z = t̂(0), in which twist � obeys the diffusion equation
�̇ = (C/ζr )∂2�/∂s2. Noting the viscous torque balance at
z = 0, i.e., ζrω0 = C∂s�(s = 0), Wolgemuth et al. [13] found
that the steady-state twist profile is linear in space: �(s) =
(ζrω0/C)(s − L). Therefore, the external torque Mext that must
be applied at the base to maintain a constant rate of rotation
obeys Mext = −C�(0) = ζrω0L, which is proportional to ω0.
The energy balance in the stationary state implies that the
total energy dissipation rate P , i.e., the power expended by
the motion of the rod, is equal to the work done externally on
the rod per unit time. Thus, P = ω0Mext. This relation holds
for all ω0 as long as the system is stationary. In the case of
twirling, we have

P = ζrω
2
0L. (5)

Physically, a shape instability appears when the twisting
external torque Mext = ζrω0L becomes comparable to the
bending torque A/L. An exact numerical analysis using
linearized equations gave ωc = 8.9A/(ζrL

2) [13].

III. NONLINEAR DYNAMICS

Numerical approaches are necessary to study the nonlinear
time evolution of the rod shape for ω0 > ωc. In our simulations,
a rod is modeled as a chain of N spheres of radius a connected
by sufficiently stiff springs that limits the change of contour

length at a negligible level. The elastic energy is given in terms
of the Euler angles that describe the transformation between
consecutive tangent vectors in the chain. The elastic force
and torque acting on each sphere are calculated using the
variational method [19]. Neglecting inertia, the viscous force
and torque balance equations are integrated by the explicit
Euler method.

Upon buckling, the free end traces out a circle about the
rotational axis, whose radius increases exponentially with
time until the rod bends downward. The rod then reaches
the stationary state and exhibits rigid-body-like motion, while
spinning rapidly about its local tangent; see Fig. 2 [14,15]. The
dynamics is more quantitatively characterized by plotting Mext

as a function of ω0 during the transition (inset of Fig. 3). The
numerical data at a low frequency confirm the predicted linear
relation for twirling. Interestingly, however, the torque Mext

grows only sublinearly with ω0 after the buckling. Thus, the
whirling rod becomes easier to rotate for ω0 > ωc compared
with a twirling rod at the same ω0. Correspondingly, the energy
dissipation rate P increases more slowly than that expected
from Eq. (5); see also Fig. 3.

This finding appears to be at odds with the expectation
that the rod must consume a much larger viscous power to
undergo crankshafting motion. The key to understanding this
counterintuitive observation is the geometric relation for twist
dynamics Eq. (4). Note first that the rod centerline exhibits the
crankshafting motion with a frequency χ independent of time,
i.e., ṙ = χ ẑ × r(s), where ẑ = t̂(0) is the axial spinning axis.
Substituting this into Eq. (4) (with t · ∂s ṙ = 0), we obtain the
local conservation law for twist without any source terms, �̇ +
∂sj = 0. The corresponding “effective” twist current density
is given by

j (s) = −ω(s) + χ cos θ (s), (6)

where we have defined ẑ · t̂(s) = cos θ (s). In addition to the
diffusive current −ω, Eq. (6) has an additional contribution,
χ cos θ , which describes the change in twist due to writhing.
Note, however, that it is not generally true that a twist current
can be expressed in such a form as Eq. (6). As emphasized
by Eq. (4), the twist current should be expressed as −ω and
the writhing term generally acts as a source of � [13]. In our
particular case, however, steady-state crankshafting motion
exhibits an axial symmetry that allows us to define the twist
current in the form of Eq. (6).

In the steady state, an injected twist at s = 0 has to exit the
rod at s = L in the form of either axial spinning or writhing,

time

FIG. 2. (Color online) Trajectory of shape changes during the twirling-whirling transition. For ω0 > ωc, twirling (axial spinning) becomes
unstable and the rod buckles to realize a large-amplitude whirling state. The snapshots here are obtained from our dynamic simulations for
L/a = 30 and ω0/ωc = 1.2 [15,19].
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FIG. 3. (Color online) Relationship between dissipation rate
P and frequency ω0 obtained from our simulations and analytic
argument. Red circles correspond to P “measured” directly as the
work done at the base per time ω0Mext, while blue squares correspond
to the prediction obtained from Eq. (9). The broken line is the relation
given by Eq. (5). Inset: external torque Mext is plotted as a function of
ω0/ωc for the same simulation data. The dotted line shows the linear
relation Mext = ζrω0L, valid for twirling.

meaning that the twist current is constant, j (s) = j (0) =
−ω0 + χ . This condition leads to the geometric relation

ω0 = ω(s) + χ [1 − cos θ (s)]. (7)

At the free end s = L, we have ω0 = ω(L) + χ [1 − cos θ (L)].
Note that essentially the same relation was previously given but
only in the weak bending limit [13]. One finds immediately that
the twist transport via writhing is maximized for cos θ (L) =
−1 at a given ω0.

Our argument so far depends only on geometry and is
essentially free of physics. Substituting Eq. (3) into Eq. (7)
and integrating over s, we obtain

C�(0) = −ζrω0L + ζrχL(1 − σ ), (8)

where we defined the fractional extension of the rod σ =
z(L)/L. Note that σ = 1 for twirling, σ < 0 for whirling, and∫ L

0 ds(1 − cos θ ) = L(1 − σ ). Despite the linearity of the elas-
tic constitutive relations and viscous dynamics, we have found
the nonlinear dependence of Mext on ω0 due to the change in rod
shape (Fig. 3) similar to that found in Ref. [20]. To analyze this
more quantitatively, we return to the Kirchhoff equations (1)
and (2). Integrating Eq. (2) over the rod length, we obtain
M(0) + ∫ L

0 [r(s) × ζv(s)]ds + ∫ L

0 ζrω(s)t̂ds = 0. Using v =
χ ẑ × r for a whirling rod and M(0) = Aẑ × ∂2

s r(0) + C�(0)ẑ,
we obtain C�(0) + ζχ

∫ L

0 |r⊥(s)|2ds + ζr

∫ L

0 ω(s)t̂ · ẑds =
0, where r⊥(s) = [x(s),y(s),0], which describes the overall
torque balance between the rod’s internal torque and the
drag torque. Substituting Eqs. (7) and (8) into this, we
arrive at χ = ω0ζr (1 − σ )L/

∫ L

0 ds[ζr (1 − cos θ )2 + ζ |r⊥|2].
Assuming a uniformly bent rod at ω ≈ ωc, we obtain from
this formula χ ≈ 30A/(ζL4) ≈ ωc(a/L)2, in agreement with
the value given in Ref [13]. The difference in the numerical
prefactors stems from our neglect of the helical nature of

the buckled rod. Finally, the dissipation rate in steady-state
whirling is

P (ω0) = P0

[
1 − L(1 − σ )2∫ L

0 ds[(1 − cos θ )2 + (ζ/ζr )|r⊥|2]

]
, (9)

where P0 = ζrω
2
0L is given by Eq. (5). The torque-frequency

relationship is immediately obtained from Mext(ω0) =
P (ω0)/ω0. Note that the second term in the large bracket in
Eq. (9), the nonlinear writhe correction term, is always positive
for ω0 > ωc and is essentially independent of the viscosity,
which indicates that it has a purely geometric origin. Therefore,
one arrives at a physically important conclusion: the role of
the whirling transition is to reduce the energy dissipation.
This result reveals an energetic origin of the large-amplitude
whirling transition. Equation (9), as well as the data in Fig. 3,
constitutes the main result of this paper.

To obtain an exact value of P , we still have to determine
the shape of the entire rod to evaluate the integral in Eq. (9).
We compare in Fig. 3 our prediction obtained from Eq. (9)
with the data obtained directly from the numerical simulations.
In the comparison, the rod shape was extracted from the
numerical simulations to evaluate the integral in Eq. (9). There
is very good agreement, which further validates our physical
argument. At higher ω0, deviations become visible because
the assumed axial symmetry is violated by secondary shape
bifurcations.

IV. DISCUSSION

The buckled rod undergoes a cycle of global motion and
returns to its original shape, during which the driving base
undergoes a rotation of 4π about its axis. There is a simple

whirling

t̂(0)

t̂(L)

4π
2π

A

B

FIG. 4. (Color online) (Top) Geometric aspect of twist transport
in a whirling rod: 2π global rotation removes the 4π axial twist.
(Bottom) Simple demonstration with a rod bent into a half circle.
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geometric interpretation for this observation; see Fig. 4. Take
an open rod and fold it into a half circle. Upon the rotation of
both ends by 2π in opposite directions, the rod executes a 2π

rotation about its axis without changing its shape. Considering
this phenomenon in a corotating frame at end A (shown in
Fig. 4), the other end B executes a rotation of 4π about its
tangent, while at the same time the rod centerline undergoes a
global rotation of 2π about the tangent at A. This is expressed
as ωB − ωA = 2χ on the basis of Eq. (7). Thus, the global
whirling motion removes twist at the driving end twice as
fast as axial spinning, with larger dissipation occurring as
a tradeoff; see also Fig. 4 (top). This is why this mode
prevails at elevated frequency ω0. The geometric aspect of
large-amplitude whirling is actually relevant to Feynman’s
plate trick, which shows the importance of the geometric phase
when rotation and translation occur at the same time [10,11].
While this geometric argument is not mathematically new, it is
helpful for more intuitively understanding why a rotating rod
adopts such a distinct buckled shape.

V. SUMMARY

The twirling-whirling shape transition can be viewed as a
means of decreasing the viscous dissipation. While our dy-
namics can be formulated in terms of the Rayleigh dissipation
functional, the steady state of a rotationally driven rod cannot
be understood by such a functional only and is distinct from
the previous studies [21]. Although the present results were
obtained by studying a specific system, our physical picture for
twist transport in thin elastic media is robust and fundamental
and potentially important for clarifying various biophysical
phenomena, such as the looping and supercoiling dynamics of
DNA driven by various DNA-processing proteins [22,23].
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